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Abstract In this paper, the author proves that if the dual X∗ of X is weakly locally
uniformly convex and the convex function f is continuous on X, then there exist two
sequences {fn}

∞

n=1 and {gn}
∞

n=1 of continuous functions on X∗∗ such that (1) fn(x) ≤
fn+1(x) ≤ f(x) ≤ gn+1(x) ≤ gn(x) whenever x ∈ X; (2) the two convex functions fn and
gn are Gâteaux differentiable on X; (3) fn → f and gn → f uniformly on X. Moreover,
if the function f is coercive on X, then (1) fn and gn are two w∗-lower semicontinuous

convex functions on X∗∗; (2) epifn = epi fn ∩ (X ×R)
w

∗

and epi gn = epi gn ∩ (X ×R)
w

∗

.
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1 Introduction

In this paper, let (X, ‖ · ‖) denote a real Banach space and X∗ denote the dual space of

Banach space X . Let S(X) = {x ∈ X : ‖x‖ = 1} and B(X) = {x ∈ X : ‖x‖ ≤ 1}. Moreover,

let xn
w

−→ x denote that {xn}
∞
n=1 weakly converges to x and x∗

n

w∗

−−→ x∗ denote that {x∗
n}

∞
n=1 is

weakly∗ convergent to x∗.

Definition 1.1 (see [8]) Suppose that D is an open subset of Banach space X, a continuous

function f is called Gâteaux (Frechet) differentiable at x ∈ D if there exists a functional

dGf(x) ∈ X∗ (dF f(x) ∈ X∗) such that

lim
t→0

[f(x+ ty)− f(x)

t
− 〈dGf(x), y〉

]

= 0

(

lim
t→0

sup
y∈B(X)

[f(x+ ty)− f(x)

t
− 〈dF f(x), y〉

]

= 0
)

.

In 1979, Ekeland and Lebourg [6] proved that if a Banach spaceX is a strongly smooth space,

then X is an Asplund space. In 1990, Preiss, Phelps and Namioka [10] proved that if a Banach

spaceX is a smooth space, then X is a weak Asplund space. Converses of previous theorems fail

in general. It is well known that continuous convex functions are not necessarily differentiable in
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the definition domain, for example y = |x|, x ∈ R. Therefore, we naturally ask what conditions

can ensure that every continuous convex functions can be uniformly approximated by a sequence

of differentiable convex functions. In 2002, Cheng and Ruan studied uniform approximation of

Lipschitzian convex functions in locally uniformly convex space (see [4]). In 2015, Azagra and

Mudarra [1] proved that if the dual X∗ of X is locally uniformly convex and f is a continuous

convex function on X , then there exists a continuous convex function sequence {fn}∞n=1 on X

such that fn is Frechet differentiable on X and fn → f uniformly on X . In 2019, Shang [11]

proved that if X∗ is a smooth space and convex function f is Lipschitzian on X∗, then there

exist two w∗-lower semicontinuous convex function sequences {fn}∞n=1 and {gn}∞n=1 such that

(1) fn(x
∗) ≤ fn+1(x

∗) ≤ f(x∗) ≤ gn+1(x
∗) ≤ gn(x

∗) whenever x∗ ∈ X∗;

(2) {fn}∞n=1 and {gn}∞n=1 are Gâteaux differentiable on X∗;

(3) both function sequences {fn}∞n=1 and {gn}∞n=1 converge uniformly to f on X∗.

In 2020, Shang [12] proved that if the dual X∗ of X is a strictly convex space and the

convex function f is coercive, bounded on every bounded subset of X , then f can be uniformly

approximated by Gâteaux differentiable, continuous convex functions. We refer to [2, 4–5 7, 9,

14–15] for further details on the differentiability of functions.

From the above description, the geometric properties of Banach space play an essential role

in studying the approximation via differentiable functions. In this paper, we continue to study

the approximation properties of differentiable functions by using the geometric properties of

Banach spaces. We prove that if the dual X∗ of X is weakly locally uniformly convex and the

convex function f is continuous on X , then there exist two sequences {fn}∞n=1 and {gn}∞n=1 of

continuous functions on X∗∗ such that

(1) fn(x) ≤ fn+1(x) ≤ f(x) ≤ gn+1(x) ≤ gn(x) whenever x ∈ X ;

(2) the two convex functions fn and gn are Gâteaux differentiable on X ;

(3) fn → f and gn → f uniformly on X .

Moreover, if the convex function f is coercive on X , then (1) fn and gn are two w∗-

lower semicontinuous convex functions on X∗∗; (2) epi fn = epi fn ∩ (X ×R)
w∗

and epi gn =

epi gn ∩ (X ×R)
w∗

. For the convenience of readers, we first recall some definitions and lemmas

needed in this paper.

Definition 1.2 (see [3]) A Banach space X is called weakly locally uniformly convex if

xn
w

−→ x whenever x ∈ S(X), {xn}
∞
n=1 ⊂ S(X) and ‖xn + x‖ → 2.

Definition 1.3 (see [3]) A Banach space X is called locally uniformly convex if xn → x

whenever x ∈ S(X), {xn}∞n=1 ⊂ S(X) and ‖xn + x‖ → 2.

It is well known that if X is a locally uniformly convex space, then X is weakly locally

uniformly convex and the converse does not hold. It is well known that if the dual X∗ of X is

a locally uniformly convex space, then X is not necessarily reflexive.

Definition 1.4 (see [13]) A point x0 ∈ C is said to be an exposed point of C if there exists
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a functional x∗ ∈ X∗ such that x∗(x) > x∗(y) whenever y ∈ C \ {x}.

Definition 1.5 (see [13]) A point x0 ∈ C is said to be a weakly exposed point of C if there

exists a functional x∗ ∈ X∗ such that xn
w

−→ x whenever {xn}∞n=1 ⊂ C and x∗(xn) → σC(x
∗),

where σC(x
∗) = sup{x∗(x) : x ∈ C}.

Lemma 1.1 (see [13]) Suppose that C is a bounded closed convex subset of X and x ∈ C.

Then σC is Gâteaux differentiable at point x∗ and dGσC(x
∗) = x if and only if the point x is a

weakly exposed point of C and exposed by x∗.

Definition 1.6 (see [8]) Suppose that f is a continuous convex function on X. The sub-

differential of f , denoted by ∂f , is the set-valued mapping given by ∂f(x) = {x∗ ∈ X∗ :

〈x∗, y − x〉 ≤ f(y)− f(x) for each y ∈ X}.

It is well known that f is Gâteaux differentiable at x if and only the set ∂f(x) is a singleton.

Moreover, if the function f is a real-valued function, its epigraph is defined by

epi f = {(x, r) ∈ X ×R : f(x) ≤ r}.

It is well known that if f is convex on X , then f is lower semi-continuous on X if and only if

epi f is a closed subset of X ×R and if f is convex on X∗, then f is w∗-lower semi-continuous

on X∗ if and only if epi f is a w∗-closed subset of X∗ × R. Moreover, a convex function f is

said to be coercive if lim
‖x‖→∞

f(x) = +∞.

Lemma 1.2 (see [12]) Suppose that {fn}∞n=1 is an increasing sequence of functions on X

converging uniformly to f and gn = fn + 2 sup{f(x) − fn(x) : x ∈ X}. Then there exists

a subsequence {gnk
}∞k=1 of {gn}∞n=1 such that {gnk

}∞k=1 is a decreasing sequence converging

uniformly to f .

2 Uniform Monotone Approximation of Convex Function in Banach

Spaces

Theorem 2.1 Let the dual X∗ of X be a weakly locally uniformly convex space and the

convex function f be continuous and coercive on X. Then there exist two sequences of w∗-lower

semicontinuous convex functions on X∗∗, namaly {fn}∞n=1 and {gn}∞n=1, such that

(1) fn(x) ≤ fn+1(x) ≤ f(x) ≤ gn+1(x) ≤ gn(x) whenever x ∈ X ;

(2) the two functions fn and gn are Gâteaux differentiable on X ;

(3) epi fn = epi fn ∩ (X ×R)
w∗

and epi gn = epi gn ∩ (X ×R)
w∗

;

(4) fn → f and gn → f uniformly on X.

In order to prove the theorem, we give some lemmas.

Lemma 2.1 Suppose that X is a Banach space such that its dual X∗ is weakly locally

uniformly convex and C ⊂ X containing the origin. For r > 0, define sets D = C +B(0, r),

D∗ = {x∗ ∈ X∗ : 〈x∗, x〉 ≤ 1, x ∈ D = C +B(0, r)}
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and

D∗∗ = {x∗∗ ∈ X∗∗ : 〈x∗∗, x∗〉 ≤ 1, x∗ ∈ D∗},

respectively. If x∗∗
0 ∈ D∗∗ and x∗

0 ∈ D∗ with 〈x∗∗
0 , x∗

0〉 = 1, then x∗
0 is a weakly exposed point of

D∗ and is exposed by x∗∗
0 .

Proof Since 0 ∈ intD, we get that D∗ is a bounded set. Let x∗∗
0 ∈ D∗∗, x∗

0 ∈ D∗,

{x∗
n}

∞
n=1 ⊂ D∗ and x∗∗

0 (x∗
n) → x∗∗

0 (x∗
0) = 1 as n → ∞. Since D∗ is a bounded set, we obtain

that {x∗
n}

∞
n=1 is a bounded sequence. Since the set B(X∗∗∗) is a weak∗ compact subset of

X∗∗∗, there exists a subnet {x∗
α, α ∈ ∆} of {x∗

n}
∞
n=1 such that x∗

α

w∗

−−→ x∗∗∗
0 ∈ X∗∗∗ and the net

{x∗
α, α ∈ ∆} contains an infinite number of terms in {x∗

n}
∞
n=1. Since x

∗∗
0 (x∗

n) → x∗∗
0 (x∗

0) = 1, by

{x∗
α, α ∈ ∆} ⊂ {x∗

n}
∞
n=1 and x∗

α

w∗

−−→ x∗∗∗
0 ∈ X∗∗∗, we get that x∗∗∗

0 (x∗∗
0 ) = 1. We will complete

the proof by the following two steps.

Step 1 We will prove that x∗∗∗
0 = x∗

0. In fact, suppose that x∗∗∗
0 6= x∗

0. Since the set

cow
∗

(C) + B(0, r)
w∗

is a w∗-closed subset of X∗∗, by the formula co(C + B(0, r)) = co(C) +

B(0, r), we get that

D∗∗ = cow
∗

(C +B(0, r)) = co(C) +B(0, r)
w∗

= cow
∗

(C) +B(0, r)
w∗

⊂ X∗∗. (2.1)

Moreover, since x∗∗
0 ∈ D∗∗, by (2.1), there exists a point y∗∗0 ∈ cow

∗

(C) such that

x∗∗
0 ∈ y∗∗0 +B(0, r)

w∗

⊂ cow
∗

(C) +B(0, r)
w∗

= D∗∗ ⊂ X∗∗. (2.2)

Hence we get that ‖x∗∗
0 − y∗∗0 ‖ ≤ r. Therefore, by (2.2) and x∗∗∗

0 (x∗∗
0 ) = 1, we get that

x∗∗∗
0 (x∗∗

0 ) = sup{x∗∗∗
0 (x∗∗) : x∗∗ ∈ D∗∗}

= sup{x∗∗∗
0 (x∗∗) : x∗∗ ∈ y∗∗0 +B(0, r)

w∗

}

= x∗∗∗
0 (y∗∗0 ) + sup{x∗∗∗

0 (x∗∗) : x∗∗ ∈ B(0, r)
w∗

}.

Therefore, by the above equations, we get that

〈x∗∗∗
0 , x∗∗

0 − y∗∗0 〉 = sup{〈x∗∗∗
0 , x∗∗〉 : x∗∗ ∈ B(0, r)

w∗

} = r‖x∗∗∗
0 ‖. (2.3)

Moreover, since x∗
0 ∈ D∗ and x∗∗

0 (x∗
0) = 1, as in the previous proof, we get that

〈x∗∗
0 − y∗∗0 , x∗

0〉 = sup{〈x∗∗, x∗
0〉 : x

∗∗ ∈ B(0, r)
w∗

} = r‖x∗
0‖. (2.4)

Since ‖x∗∗∗
0 ‖ > 0 and ‖x∗

0‖ > 0, by (2.3)–(2.4), there exists a real number k ∈ (0,+∞) such

that ‖kx∗∗∗
0 ‖ = ‖x∗

0‖. Hence we get that

〈kx∗∗∗
0 , x∗∗

0 − y∗∗0 〉 = r‖kx∗∗∗
0 ‖ = r‖x∗

0‖ = 〈x∗∗
0 − y∗∗0 , x∗

0〉. (2.5)
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Since x∗∗∗
0 6= x∗

0, there exists a weak∗ neighbourhood V of origin in X∗∗∗ such that (x∗∗∗
0 +V )∩

(x∗
0 + V ) = ∅. Therefore, by the formula x∗

α

w∗

−−→ x∗∗∗
0 ∈ X∗∗∗, we may assume without loss of

generality that {x∗
α, α ∈ ∆} ⊂ x∗∗∗

0 + V . This implies that

{x∗
α, α ∈ ∆} ∩ (x∗

0 + V ) = ∅. (2.6)

Moreover, since x∗
α

w∗

−−→ x∗∗∗
0 ∈ X∗∗∗ and x∗∗∗

0 (x∗∗
0 ) = 1, we have the following formulas

lim
α∈∆

x∗∗
0 (x∗

α) = x∗∗∗
0 (x∗∗

0 ) = 1 and lim
α∈∆

〈x∗∗
0 − y∗∗0 , x∗

α〉 = 〈x∗∗∗
0 , x∗∗

0 − y∗∗0 〉. (2.7)

Since x∗
α

w∗

−−→ x∗∗∗
0 ∈ X∗∗∗, by (2.5)–(2.7), we obtain that

lim
α∈∆

〈x∗∗
0 − y∗∗0 , kx∗

α〉 = r‖kx∗∗∗
0 ‖ = r‖x∗

0‖ = 〈x∗∗
0 − y∗∗0 , x∗

0〉. (2.8)

Since y∗∗0 +B(0, r)
w∗

⊂ D∗∗ and {x∗
α, α ∈ ∆} ⊂ D∗, by (2.7), we get that

sup{x∗∗(x∗
α) : x

∗∗ ∈ y∗∗0 +B(0, r)
w∗

} ≤ 1 = x∗∗∗
0 (x∗∗

0 ).

Therefore, by (2.7) and the above inequalities, we get that

0 = lim
α∈∆

[x∗∗
0 (x∗

α)− x∗∗∗
0 (x∗∗

0 )]

≤ lim sup
α∈∆

[x∗∗
0 (x∗

α)− sup{x∗∗(x∗
α) : x

∗∗ ∈ y∗∗0 +B(0, r)
w∗

}]

= lim sup
α∈∆

[〈x∗∗
0 − y∗∗0 , x∗

α〉 − sup{x∗∗(x∗
α) : x

∗∗ ∈ B(0, r)
w∗

}]

= lim sup
α∈∆

[〈x∗∗
0 − y∗∗0 , x∗

α〉 − r‖x∗
α‖].

Therefore, by ‖x∗∗
0 − y∗∗0 ‖ ≤ r and the above inequalities, we have 〈x∗∗

0 −y∗∗0 , kx∗
α〉−kr‖x∗

α‖ → 0.

Therefore, by (2.8) and k > 0, we get that ‖kx∗
α‖ → ‖x∗

0‖. Moreover, by formula (2.8) and

‖x∗∗
0 − y∗∗0 ‖ ≤ r, we obtain that

lim
α∈∆

[r‖kx∗
α‖+ r‖x∗

0‖] ≥ lim sup
α∈∆

r‖kx∗
α + x∗

0‖

≥ lim sup
α∈∆

[‖kx∗
α + x∗

0‖ · ‖x
∗∗
0 − y∗∗0 ‖]

≥ lim sup
α∈∆

〈x∗∗
0 − y∗∗0 , kx∗

α + x∗
0〉

= lim
α∈∆

〈x∗∗
0 − y∗∗0 , kx∗

α〉+ 〈x∗∗
0 − y∗∗0 , x∗

0〉

= 2r‖x∗
0‖.

Therefore, by the above inequalities and ‖kx∗
α‖ → ‖x∗

0‖, we have the following equations

lim
α∈∆

‖kx∗
α + x∗

0‖ = ‖x∗
0‖+ lim

α∈∆
‖kx∗

α‖ = 2 lim
α∈∆

‖kx∗
α‖ = 2‖x∗

0‖.

Since {x∗
α, α ∈ ∆} ⊂ {x∗

n}
∞
n=1, by the above equations, there exists a subsequence {x∗

ni
}∞i=1 of

{x∗
n}

∞
n=1 such that

{x∗
ni
}∞i=1 ⊂ {x∗

α}α∈∆ and lim
i→∞

‖kx∗
ni

+ x∗
0‖ = lim

i→∞
2‖kx∗

ni
‖ = 2‖x∗

0‖.
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Since the space X∗ is weakly locally uniformly convex, we obtain that kx∗
ni

w
−→ x∗

0 as i → ∞.

Hence we obtain that kx∗
ni
(x∗∗

0 ) → x∗
0(x

∗∗
0 ) = 1 as i → ∞. Therefore, by x∗

n(x
∗∗
0 ) → x∗

0(x
∗∗
0 ) =

1, we obtain that x∗
ni

w
−→ x∗

0 as i → ∞. Hence we can assume without loss of generality that

x∗
ni

∈ x∗
0 + V for every i ∈ N , which contradicts (2.6). Hence we obtain that x∗∗∗

0 = x∗
0.

Step 2 We next will prove that x∗
n

w
−→ x∗

0 as n → ∞. In fact, suppose that there exists a

subsequence {x∗
nl
}∞l=1 of {x∗

n}
∞
n=1 a weak neighbourhood V of origin in X∗ such that {x∗

nl
}∞l=1∩

(x∗
0 + V ) = ∅. Since x∗∗

0 (x∗
nl
) → x∗∗

0 (x∗
0) = 1, there exists a net {x∗

β}β∈∆ ⊂ {x∗
nl
}∞l=1 such

that x∗
β

w∗

−−→ x∗∗∗
1 ∈ X∗∗∗. Therefore, from the previous proof, we get that x∗∗∗

1 = x∗
0, which

contradicts {x∗
nl
}∞l=1 ∩ (x∗

0 + V ) = ∅. Hence x∗
n

w
−→ x∗

0 as n → ∞. This implies that x∗
0 is a

weakly exposed point of D∗ and is exposed by x∗∗
0 , which finishes the proof.

Lemma 2.2 Suppose that f is a continuous convex function on X and

f0(x
∗∗) = inf{r ∈ R : (x∗∗, r) ∈ epi f

w∗

}, x∗∗ ∈ X∗∗.

Then f(x) = f0(x) whenever x ∈ X.

Proof Pick a point x0 ∈ X . Then we obtain that f(x0) ≥ f0(x0). Suppose that f(x0) >

f0(x0). Then there exists a real number r ∈ (0,+∞) such that f(x0)− r > f0(x0). Therefore,

by the definition of f0, there exists a net {(xα, rα), α ∈ ∆} in epi f such that

(xα, rα)
w

−→ (x0, f(x0)− r) ∈ X × R. (2.9)

Since (x0, f(x0)−r) /∈ epi f , by the separation Theorem, there exist a functional (x∗
0, t) ∈ X∗×R

and a real number s > 0 such that

〈(x∗
0 , t), (x0, f(x0)− r)〉 − s > sup{〈(x∗

0,−1), (x, s)〉 : (x, s) ∈ epi f},

which contradicts (2.9). Hence we have f(x0) = f0(x0), which finishes the proof.

We next will prove Theorem 2.1.

Proof Let the convex function f be coercive and continuous on X . Then we may assume

without loss of generality that f(0) = −1. Since the space X∗ is weakly locally uniformly

convex, we define the norm ‖(x∗, r)‖ =
√

‖x∗‖2 + r2 on X∗ ×R. Then we get that X∗ × R is

a weakly locally uniformly convex space. Define the w∗-lower semicontinuous convex function

f0(x
∗∗) = inf{r ∈ R : (x∗∗, r) ∈ epi f

w∗

}, x∗∗ ∈ X∗∗.

Then, by Lemma 2.2, we get that f(x) = f0(x) whenever x ∈ X . For convenience, remember

f0 as f . We will complete the proof by the following two steps.

Step 1 We will construct the function fn such that fn satisfies the conclusions (1) and (4).

Since the convex function f is w∗-lower semicontinuous on X∗∗, we get that f |X is continuous

on X . Then we get that ∂f |X(x) 6= ∅ for every x ∈ X . Since f(0) = −1, we get that

Ei =
{

x ∈ X : sup
x∗∈∂f |X(x)

‖x∗‖ < 2i + sup
z∗∈∂f |X(0)

‖z∗‖
}

6= ∅
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for all natural number i ∈ N . Moreover, by the definition of Ei, we define the set

Ci = {(x, r) ∈ X ×R : x ∈ Ei, r ≥ f(x)} for every i ∈ N.

Since f(0) = −1, by the definition of Ei, we get that (0, 0) ∈ Ci for each i ∈ N . Moreover, it

is easy to see that X =
∞
⋃

i=1

Ei. Define the set

Hi,n = Ci +B
(

(0, 0),
1

n
[

4i + sup
z∗∈∂f |X(0)

‖z∗‖
]i[

2i + sup
z∗∈∂f |X(0)

‖z∗‖+ 2
]

)

for all n ∈ N and i ∈ N . Hence, for all n ∈ N and i ∈ N , we define the function

hn,i(x) = inf{r ∈ R : (x∗∗, r) ∈ Hi,n}, x ∈ Ei.

We assert that the following inequality

f(x)− hn,i(x) ≤
1

n
[

4i + sup
z∗∈∂f |X(0)

‖z∗‖
]i
, x ∈ Ei (2.10)

holds. Indeed, suppose that there exists a point x0 ∈ Ei such that

f(x0)− hn,i(x0) >
1

n
[

4i + sup
z∗∈∂f |X(0)

‖z∗‖
]i
.

Therefore, by the definition of hn,i and the above inequality, there exists a point (x0, dn,i(x0)) ∈

Hi,n such that

f(x0)− dn,i(x0) ≥
1

n
[

4i + sup
z∗∈∂f |X(0)

‖z∗‖
]i
. (2.11)

Therefore, by the definition of Hi,n and (x0, dn,i(x0)) ∈ Hi,n, there exists a point (u0, f(u0)) ∈

Ci such that

(u0, f(u0))− (x0, dn,i(x0))

∈B
(

(0, 0),
1

n
[

4i + sup
z∗∈∂f |X(0)

‖z∗‖
]i[

2i + sup
z∗∈∂f |X(0)

‖z∗‖+ 2
]

)

. (2.12)

Pick a functional x∗
0 ∈ ∂f |X(x0). Then, for any y ∈ X , we get that 〈x∗

0, y−x0〉 ≤ f(y)− f(x0).

Hence, for every (y, t) ∈ epi f , we get that 〈x∗
0, y− x0〉 ≤ t− f(x0). This implies that x∗

0(x0)−

f(x0) ≥ x∗
0(y)− t. Hence we have

〈(x∗
0,−1), (x0, f(x0))〉 = sup{〈(x∗

0,−1), (y, t)〉 : (y, t) ∈ epi f}. (2.13)

Therefore, by (u0, f(u0)) ∈ epi f and (2.11), we get that

〈(x∗
0 ,−1), (u0, f(u0))〉 ≤ 〈(x∗

0,−1), (x0, f(x0))〉 ≤ 〈(x∗
0,−1), (x0, dn,i(x0))〉.



278 S. Q. Shang

Hence there exists a real number λ ∈ [0, 1] such that

〈(x∗
0,−1), λ(u0, f(u0)) + (1− λ)(x0, dn,i(x0))〉 = 〈(x∗

0,−1), (x0, f(x0))〉.

This implies that λ(u0, f(u0)) + (1− λ)(x0, dn,i(x0)) ∈ H(x0, f(x0)), where

H(x0, f(x0)) = {(x, r) : 〈(x∗
0 ,−1), (x, r)〉 = 〈(x∗

0,−1), (x0, f(x0))〉}.

Therefore, by λ(u0, f(u0)) + (1 − λ)(x0, dn,i(x0)) ∈ H(x0, f(x0)) and (2.12), we have

dist((x0, dn,i(x0)), H(x0, f(x0)))

≤ ‖λ(u0, f(u0)) + (1 − λ)(x0, dn,i(x0))− (x0, dn,i(x0))‖

= λ‖(u0, f(u0))− (x0, dn,i(x0))‖

≤
λ

n
[

4i + sup
z∗∈∂f |X(0)

‖z∗‖
]i[

2i + sup
z∗∈∂f |X(0)

‖z∗‖+ 2
]

.

≤
1

n
[

4i + sup
z∗∈∂f |X(0)

‖z∗‖
]i[

2i + sup
z∗∈∂f |X(0)

‖z∗‖+ 2
]

. (2.14)

Moreover, we define the hyperplane

H(0, 0) = {(x, r) ∈ X ×R : 〈(x∗
0,−1), (x, r)〉 = 0}

of X ×R. Since x0 ∈ Ei, by (2.11) and the definition of Ei, we have the following inequalities

dist((x0, dn(x0)), H(x0, f(x0)))

= dist((x0 − x0, dn(x0)− f(x0)), H(x0, f(x0))− (x0, f(x0)))

= dist((0, dn(x0)− f(x0)), H(0, 0))

=
1

√

‖x∗
0‖

2 + 1
|〈(x∗

0,−1), (0, dn(x0)− f(x0))〉|

=
1

√

‖x∗
0‖

2 + 1
[f(x0)− dn(x0)]

≥
1

√

‖x∗
0‖

2 + 1

( 1

n
[

4i + sup
z∗∈∂f |X(0)

‖z∗‖
]i

)

>
1

‖x∗
0‖+ 1

( 1

n
[

4i + sup
z∗∈∂f |X(0)

‖z∗‖
]i

)

≥
1

n
[

4i + sup
z∗∈∂f |X(0)

‖z∗‖
]i[

2i + sup
z∗∈∂f |X(0)

‖z∗‖+ 1
]

,

which contradicts (2.14). Hence we obtain that (2.10) is true. This implies that f(x)−hn,i(x) <
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1
n
whenever x ∈ Ei. Hence, for every natural number n ∈ N , we define the function

hn(x) =











































hn,1(x), x ∈ E1,

hn,2(x), x ∈ E2\E1,

· · · · · ·

hn,j(x), x ∈ Ej\
(

j
⋃

i=1

Ei

)

,

· · · · · ·

on X . Since X =
∞
⋃

i=1

Ei, by (2.10) and the definition of hi,n, we get that 0 < f(x)− hn(x) <
2
n

whenever x ∈ X . We define the w∗-lower semicontinuous convex function

fn(x
∗∗) = inf{r ∈ R : (x∗∗, r) ∈ cow

∗

(epihn)}, x∗∗ ∈ X∗∗.

Then, by the definition of hn, we get that f(x
∗∗)− fn(x

∗∗) ≥ 0 whenever x∗∗ ∈ X∗∗. Since the

convex function f is w∗-lower semicontinuous on X∗∗, by the inequality hn(x) > f(x)− 2
n
and

the definition of fn, we obtain that

epi fn = cow
∗

(epi hn

)

⊂ epi
(

f −
2

n

)

⊂ X∗∗ ×R

for all n ∈ N . Hence we get that 0 ≤ f(x∗∗) − fn(x
∗∗) < 2

n
whenever x∗∗ ∈ X∗∗. Therefore,

by Lemma 2.2, we obtain that fn → f uniformly on X and fn(x) ≤ fn+1(x) ≤ f(x) whenever

x ∈ X and n ∈ N .

Step 2 We will prove that the w∗-lower semicontinuous convex function fn are Gâteaux

differentiable at every point of X . Pick a natural number n ∈ N and pick a point (x0, fn(x0)) ∈

epi fn. Define the closed convex set

C∗
n = {(x∗, s) ∈ X∗ ×R : 〈(x∗, s), (x, t)〉 ≤ 1, (x, t) ∈ epi fn|X}. (2.15)

Pick a functional y∗0 ∈ ∂fn|X(x0). Then we get that y∗0(x0)− fn(x0) ≥ −fn(0) ≥ 1. Therefore,

by the above formula, we get that

〈(x∗
0, t), (x0, fn(x0))〉 = sup{〈(x∗

0, t), (x, r)〉 : (x, r) ∈ epi fn|X} = 1, (2.16)

where

x∗
0 =

y∗0
y∗0(x0)− fn(x0)

and t = −
1

y∗0(x0)− fn(x0)
. (2.17)

Moreover, by y∗0(x0) − fn(x0) ≥ −fn(0) ≥ 1, we obtain that t < 0. Let δn = f(x0) − fn(x0).

Then, by the definition of fn, we obtain that δn > 0. Moreover, by the definition of fn, we get

that (x0, fn(x0)) ∈ cow(epi hn) ⊂ X ×R. This implies that

(x0, fn(x0)) ∈ cow(epi hn) = co(epihn) ⊂ X ×R.
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Therefore, by (x0, fn(x0)) ∈ co(epi hn) ⊂ X×R, there exist two sequences {(z(i, j), r0(i, j))}
∞
j=1

⊂ epihn and {λ(i, j)}∞j=1 ⊂ [0, 1] such that

kj
∑

i=1

[λ(i, j) · (z(i, j), r0(i, j))] ∈ co(epihn),

kj
∑

i=1

λ(i, j) = 1,

f
(

kj
∑

i=1

λ(i, j) · z(i, j)
)

> f(x0)−
1

16
δn,

kj
∑

i=1

[λ(i, j) · r0(i, j)] < fn(x0) +
1

16
δn

and

lim
j→∞

〈

(x∗
0, t),

kj
∑

i=1

λ(i, j) · (z(i, j), r0(i, j))
〉

= 〈(x∗
0, t), (x0, fn(x0))〉 = 1.

Moreover, by the definition of hn, there exists a real number s(i, j) > 0 such that r0(i, j)) ≥

f(z(i, j))− s(i, j) = hn(z(i, j)). Therefore, by (2.16) and t < 0, we get the following formulas

kj
∑

i=1

[λ(i, j) · (z(i, j), f(z(i, j))− s(i, j))] ∈ co(epihn),

kj
∑

i=1

λ(i, j) = 1,

kj
∑

i=1

[λ(i, j) · (f(z(i, j))− s(i, j))] < fn(x0) +
1

16
δn

and

lim
j→∞

〈

(x∗
0, t),

kj
∑

i=1

λ(i, j) · (z(i, j), f(z(i, j))− s(i, j))
〉

= 〈(x∗
0, t), (x0, fn(x0)〉 = 1.

Therefore, from the previous proof and the convexity of f , we have the following inequalities

fn(x0) +
1

16
δn >

kj
∑

i=1

[λ(i, j) · (f(z(i, j))− s(i, j))]

≥ f
(

kj
∑

i=1

λ(i, j) · z(i, j)
)

−

kj
∑

i=1

[λ(i, j) · s(i, j)]

≥ f(x0)−
1

16
δn −

kj
∑

i=1

[λ(i, j) · s(i, j)].

Therefore, by the above inequalities and δn = f(x0)−fn(x0), we have the following inequalities

kj
∑

i=1

[λ(i, j) · s(i, j)] ≥ [f(x0)− fn(x0)]−
1

8
δn =

7

8
δn. (2.18)

Moreover, by (2.10), it is easy to see that ηi,n → 0 and ρi,n → 0 as i → ∞, where

ηi,n = inf{f(x)− hn,i(x) : x ∈ Ei} ≤
1

n
[

4i + sup
z∗∈∂f |X(0)

‖z∗‖
]i

= ρi,n.
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Hence there exist µn ∈ (0, 1) and i0 ∈ N such that µnρ1,n < δn
16 and ρi,n < δn

16 whenever i ≥ i0.

Since ηi,n ≤ ρi,n, ρi+1,n ≤ ρi,n and
kj
∑

i=1

λ(i, j) = 1, by max{µnρ1,n, ρi,n} < δn
16 and (2.18), there

exists a natural number kl ∈ N with kl ≤ kj such that

kl
∑

i=1

λ(i, j) > µn > 0 and s(i, j) ≥ ηi0,n > 0, where i ∈ {1, 2, · · · , kl}. (2.19)

Since the convex function f is coercive on X , from the proof of [12, Theorem 2.1], we obtain

that inf
x∈X

f(x) = m > −∞. Therefore, by the previous proof and (2.19), it is easy to see that

there exists a point (zj , f(zj)− sj) in X ×R such that

(zj , f(zj)− sj) ∈ {(z(1, j), f(z(1, j))− s(1, j)), · · · , (z(kj , j), f(z(kj, j))− s(kj , j))} ⊂ epihn,

sj ≥ ηi0,n > 0, f(zj)− sj ≤
4

µn

(2|fn(x0)|+ 8 + |2m|) (2.20)

and

lim
j→∞

〈(x∗
0, t), (zj , f(zj)− sj)〉 = 〈(x∗

0, t), (x0, fn(x0))〉 = 1. (2.21)

Therefore, by (2.10) and (2.20), we obtain that {sj}∞j=1 and {f(zj)}∞j=1 are two bounded se-

quences. Hence we can assume without loss of generality that {sj}
∞
j=1 and {f(zj)}

∞
j=1 are

two Cauchy sequences. Since lim
‖x‖→+∞

f(x) = +∞, we obtain that the sequence {zj}∞j=1 ⊂

X is a bounded sequence. Since B(X∗∗) is w∗-compact, by (2.21), there exists a subnet

{(zα, f(zα)− sα)}α∈∆ of {(zj, f(zj)− sj)}∞j=1 such that

(zα, f(zα)− sα)
w∗

−−→ (z∗∗0 , r0) ∈ epi fn ⊂ X∗∗ ×R (2.22)

and

〈(x∗
0, t), (x0, fn(x0))〉 = lim

α∈∆
〈(x∗

0, t), (zα, f(zα)− sα)〉 = 1. (2.23)

Since f(zj)− sj = hn(zj) and sj ≥ ηi0,n > 0, by (2.19)–(2.21) and the definition of hn, we may

assume that there exists a natural number k0 ∈ N such that {(zj , f(zj) − sj)}∞j=1 ⊂ Hk0,n.

Therefore, by (2.22)–(2.23), we get that

(z∗∗0 , r0) ∈ cow
∗

(Hk0,n) and 〈(z∗∗0 , r0), (x
∗
0, t)〉 = 1. (2.24)

Moreover, by the definitions of Hk0,n and fn, we have Hk0,n ⊂ epi fn|X . Therefore, by (2.16)

and (2.24), we have the following inequalities

1 = 〈(z∗∗0 , r0), (x
∗
0, t)〉

≥ sup{〈(x∗
0, t), (z, r)〉 : (z, r) ∈ epi fn|X}

≥ sup{〈(x∗
0, t), (z, r)〉 : (z, r) ∈ Hk0,n}

= sup{〈(x∗
0, t), (z

∗∗, r)〉 : (z∗∗, r) ∈ cow
∗

(Hk0,n)}
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= 〈(z∗∗0 , r0), (x
∗
0, t)〉 = 1.

Since (0, 0) ∈ int(Hk0,n), we define the weak∗ bounded closed convex set

H∗
k0,n

= {(x∗, l) ∈ X∗ ×R : 〈(x∗, t), (x, l)〉 ≤ 1, (x, l) ∈ Hk0,n}.

Therefore, by formulas Hk0,n ⊂ epi fn|X and (x∗
0, t) ∈ C∗

n, we obtain that (x∗
0, t) ∈ H∗

k0,n
.

Moreover, we define the weak∗ closed convex set

H∗∗
k0,n

= {(x∗∗, l) ∈ X∗∗ ×R : 〈(x∗, t), (x∗∗, l)〉 ≤ 1, (x∗, t) ∈ H∗
k0,n

}.

Then we get that H∗∗
k0,n

= cow
∗

(Hk0,n). Therefore, by (2.24), we obtain that (z∗∗0 , r0) ∈ H∗∗
k0,n

.

Therefore, by Lemma 2.1 and 〈(z∗∗0 , r0), (x
∗
0, t)〉 = 1, we obtain that (x∗

0, t) is a weakly exposed

point of H∗
k0,n

and is exposed by (z∗∗0 , r0). Since Hk0,n ⊂ epi fn|X , we obtain that C∗
n ⊂

H∗
k0,n

. Moreover, if there exists a sequence {(x∗
i , ti)}

∞
i=1 ⊂ C∗

n such that 〈(z∗∗0 , r0), (x
∗
i , ti)〉 →

σC∗

n
(z∗∗0 , r0) as i → ∞, then, by σC∗

n
(z∗∗0 , r0) = 〈(z∗∗0 , r0), (x

∗
0, t)〉, we get that

lim
i→∞

〈(z∗∗0 , r0), (x
∗
i , ti)〉 = σC∗

n
(z∗∗0 , r0) = 〈(z∗∗0 , r0), (x

∗
0, t)〉 = σH∗

k0,n
(z∗∗0 , r0).

Since the point (x∗
0, t) is a weakly exposed point ofH∗

k0,n
and exposed by (z∗∗0 , r0), by {(x∗

i , ti)}
∞
i=1

⊂ C∗
n ⊂ H∗

k0,n
, we get that (x∗

i , ti)
w
−→ (x∗

0, t) as i → ∞. Therefore, by (z∗∗0 , r0) ∈ C∗∗
n and

(x∗
0, t) ∈ C∗

n, we get that (x∗
0, t) is a weakly exposed point of C∗

n and is exposed by (z∗∗0 , r0),

where

C∗∗
n = {(x∗∗, s) ∈ X∗∗ ×R : 〈(x∗∗, t), (x∗, s)〉 ≤ 1, (x∗, s) ∈ C∗

n}.

We define the weak∗ bounded closed set

C∗∗∗
n = {(x∗∗∗, s) ∈ X∗∗∗ ×R : 〈(x∗∗∗, s), (x∗∗, t)〉 ≤ 1, (x∗∗, t) ∈ C∗∗

n }.

Then, by the definitions of fn and C∗∗
n , we obtain that cow

∗

(epihn) = C∗∗
n . Hence we get that

fn(x
∗∗) = inf{t ∈ R : (x∗∗, t) ∈ C∗∗

n }, x∗∗ ∈ X∗∗.

We claim that ∂fn(x0) = {y∗0}. In fact, suppose that there exists a point y∗∗∗0 ∈ X∗∗∗ such that

y∗∗∗0 ∈ ∂fn(x0) and y∗∗∗0 − y∗0 6= 0. Then, from the previous proof, we get that

〈(x∗∗∗
0 , l), (x0, fn(x0))〉 = sup{〈(x∗∗∗

0 , l), (z, r)〉 : (z, r) ∈ epi fn|X} = 1, (2.25)

where

x∗∗∗
0 =

y∗∗∗0

y∗∗∗0 (x0)− fn(x0)
and l = −

1

y∗∗∗0 (x0)− fn(x0)
.

Therefore, by y∗∗∗0 −y∗0 6= 0, we get that (x∗
0, t) 6= (x∗∗∗

0 , l). Moreover, by (2.25) and cow
∗

(epihn) =

C∗∗
n , we get that

〈(x∗∗∗
0 , l), (x0, fn(x0))〉 = sup {〈(x∗∗∗

0 , l), (z∗∗, r)〉 : (z∗∗, r) ∈ C∗∗
n } = 1.
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Hence we get that (x∗∗∗
0 , l) ∈ C∗∗∗

n . Then, by formulas C∗
n

w∗

= C∗∗∗
n and (x∗∗∗

0 , l) 6= (x∗
0, t),

there exists a weak∗ neighbourhood V of origin in X∗∗∗ such that

((x∗∗∗
0 , l) + V ) ∩ ((x∗

0, t) + V ) = ∅. (2.26)

Moreover, by formulas C∗
n

w∗

= C∗∗∗
n and (x∗∗∗

0 , l) ∈ C∗∗∗
n , there exists a sequence {(x∗

i , ti)}
∞
i=1

⊂ C∗
n such that

lim
i→∞

〈(z∗∗0 , r0), (x
∗
i , ti)〉 = 〈(z∗∗0 , r0), (x

∗
0, t)〉 and {(x∗

i , ti)}
∞
n=1 ⊂ (x∗∗∗

0 , l) + V.

Since the point (x∗
0, t) is a weakly exposed point of C∗

n and exposed by (z∗∗0 , r0), we can assume

that {(x∗
i , ti)}

∞
n=1 ⊂ (x∗

0, t)+V . Then ((x∗∗∗
0 , l)+V )∩((x∗

0, t)+V ) 6= ∅, which contradicts (2.26).

Hence the function fn is Gâteaux differentiable at point x0. This implies that the function fn

is Gâteaux differentiable on X . Moreover, we have proved that (1) fn → f uniformly on X ;

(2) fn(x) ≤ fn+1(x) ≤ f(x) whenever x ∈ X and n ∈ N . Define

gn(x
∗∗) = fn(x

∗∗) + 2 sup{f(x∗∗)− fn(x
∗∗) : x∗∗ ∈ X∗∗}

for each n ∈ N . Since the function fn is Gâteaux differentiable on X , by Lemma 1.2, we obtain

that (1) gn is Gâteaux differentiable on X ; (2) gn(x) ≥ gn+1(x) ≥ f(x); (3) gn → g uniformly

on X . Moreover, by the definition of fn and gn, it is easy to see that

epi fn = epi fn ∩ (X ×R)
w∗

and epi gn = epi gn ∩ (X ×R)
w∗

.

Hence we get that Theorem 2.1 is true, which finishes the proof.

Let f be continuous on X and f0 be a function defined by Lemma 2.1. Then, from the proof

of Theorem 2.1, we get the following theorem.

Theorem 2.2 Let the dual space X∗ be a weakly locally uniformly convex space and the

convex function f be continuous and coercive on X. Then there exist two sequences {fn}∞n=1

and {gn}
∞
n=1 of w∗-lower semicontinuous convex functions on X∗∗ such that

(1) fn(x
∗∗) ≤ fn+1(x

∗∗) ≤ f0(x
∗∗) ≤ gn+1(x

∗∗) ≤ gn(x
∗∗) whenever x∗∗ ∈ X∗∗;

(2) the two functions fn and gn are Gâteaux differentiable on X ;

(3) epi fn = epi fn ∩ (X ×R)
w∗

and epi gn = epi gn ∩ (X ×R)
w∗

;

(4) fn → f and gn → f uniformly on X∗∗.

3 Uniform Monotone Approximation of Non-convex Function in

Banach Spaces

Theorem 3.1 Let the dual space X∗ be weakly locally uniformly convex and the convex func-

tion f be continuous on X. Then there exist two sequences {fn}∞n=1 and {gn}∞n=1 of continuous

functions on X∗∗ such that
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(1) fn(x) ≤ fn+1(x) ≤ f(x) ≤ gn+1(x) ≤ gn(x) whenever x ∈ X ;

(2) the two functions fn and gn are Gâteaux differentiable on X ;

(3) fn → f and gn → f uniformly on X.

Proof Pick a point x0 ∈ S(X). Then, by the Hahn-Banach Theorem, there exists a

functional x∗
0 ∈ S(X∗) such that x∗

0(x0) = 1. Let {x∗
n}

∞
n=1 ⊂ B(X∗) and x∗

n(x0) → x∗
0(x0) = 1

as n → ∞. Then we have 〈x∗
n + x∗

0, x0〉 → 2 as n → ∞. Therefore, by x0 ∈ S(X), we get that

2 = lim
n→∞

[‖x∗
n‖+ ‖x∗

0‖] ≥ lim inf
n→∞

‖x∗
n + x∗

0‖ ≥ lim
n→∞

〈x∗
n + x∗

0, x0〉 = 2.

Since the space X∗ is weakly locally uniformly convex, we obtain that x∗
n

w
−→ x∗

0 as n → ∞.

This implies that x∗
0 is a weakly exposed point of B(X∗) and exposed by x0. Therefore, by

Lemma 1.1, we obtain that x0 is a Gâteaux differentiable point of the norm on X∗∗. Hence we

get that the norm of X∗∗ is Gâteaux differentiable on X\{0}. Pick a point x ∈ X\{0} and let

x∗ = dG‖x‖. Then, for every y∗∗ ∈ X∗∗, we have the following equations

lim
t→0

‖x+ ty∗∗‖2 − ‖x‖2

t
= lim

t→0

[‖x+ ty∗∗‖ − ‖x‖

t
(‖x+ ty∗∗‖+ ‖x‖)

]

= 2‖x‖ lim
t→0

‖x+ ty∗∗‖ − ‖x‖

t
= 〈2‖x‖dG‖x‖, y

∗∗〉 = 〈2‖x‖x∗, y∗∗〉.

Moreover, if ‖x‖ = 0, then for every y∗∗ ∈ X∗∗, we get that

lim
t→0

‖x+ ty∗∗‖2 − ‖x‖2

t
= lim

t→0

[‖ty∗∗‖2

t

]

= lim
t→0

[t‖y∗∗‖2] = 〈0, y∗∗〉.

Hence we obtain that square of norm of X∗∗ is Gâteaux differentiable on X . Since the convex

function f is continuous on X , by [8, Proposition 1.6], there exist two real numbers δ ∈ (0, 1)

and η ∈ (0,+∞) such that |f(x)| ≤ η whenever ‖x‖ ≤ δ. Since the function f is convex, we

have the following inequalities

−η ≤ f
( δx

‖x‖

)

= f
( δ

‖x‖
x+

‖x‖ − δ

‖x‖
0
)

≤
δ

‖x‖
f(x) +

‖x‖ − δ

‖x‖
f(0)

for each x ∈ X\B(X). Therefore, by the above inequalities, we get that

f(x) ≥ −
‖x‖ − δ

δ
f(0)−

η

δ
‖x‖ = −

‖x‖

δ
(f(0)− η) + f(0)

for each x ∈ X\B(X). Define the function h(x) = f(x) + ‖x‖2. Then we get that

lim
‖x‖→+∞

h(x) ≥ lim
‖x‖→+∞

[

‖x‖2 −
‖x‖

δ
(f(0)− η) + f(0)

]

= +∞.

Therefore, by Theorem 2.1, there exists a w∗-lower semicontinuous convex function hn on X∗∗

such that (1) hn(x) ≤ hn+1(x) ≤ h(x) whenever x ∈ X ; (2) the function hn is Gâteaux

differentiable on X ; (3) hn → h uniformly on X . Define fn(x
∗∗) = hn(x

∗∗) − ‖x∗∗‖2 for every
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n ∈ N . Then the function fn is a continuous function on X and fn(x) ≤ fn+1(x) ≤ f(x)

whenever x ∈ X . Moreover, since hn → h uniformly on X , by fn(x
∗∗) = hn(x

∗∗)− ‖x∗∗‖2, we

obtain that fn → f uniformly on X . Pick a point x ∈ X . Since the square of norm of X∗∗ is

Gâteaux differentiable on X , we get that

lim
t→0

fn(x+ ty∗∗)− fn(x)

t
= lim

t→0

[hn(x+ ty∗∗)− hn(x)

t
−

‖x+ ty∗∗‖2 − ‖x‖2

t

]

= lim
t→0

hn(x+ ty∗∗)− hn(x)

t
− lim

t→0

‖x+ ty∗∗‖2 − ‖x‖2

t
= 〈dGhn(x)− dG‖x‖

2, y∗∗〉

for every y∗∗ ∈ X∗∗. Hence we obtain that the function fn is Gâteaux differentiable on X .

Moreover, by Theorem 2.1, there exists a sequence of w∗-lower semicontinuous convex functions

{un}∞n=1 such that (1) h(x) ≤ un+1(x) ≤ un(x) whenever x ∈ X ; (2) the function un is Gâteaux

differentiable on X ; (3) un → h uniformly on X . Let gn(x
∗∗) = un(x

∗∗) − ‖x∗∗‖2. Then we

obtain that (1) f(x) ≤ gn+1(x) ≤ gn(x) whenever x ∈ X ; (2) gn is Gâteaux differentiable on

X ; (3) gn → f uniformly on X , which finishes the proof.

Let f be continuous on X and f0 be a function defined by Lemma 2.1. Then, from the

proofs of Theorems 2.1 and 3.1, we get the following theorem.

Theorem 3.2 Let the dual space X∗ be a weakly locally uniformly convex space and the

convex function f be continuous on X. Then there exist two sequences {fn}∞n=1 and {gn}∞n=1

of continuous functions on X∗∗ such that

(1) fn(x
∗∗) ≤ fn+1(x

∗∗) ≤ f0(x
∗∗) ≤ gn+1(x

∗∗) ≤ gn(x
∗∗) whenever x∗∗ ∈ X∗∗;

(2) the two functions fn and gn are Gâteaux differentiable on X ;

(3) fn → f and gn → f uniformly on X∗∗.
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