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Abstract A book embedding of a graph G is a placement of its vertices along the spine
of a book, and an assignment of its edges to the pages such that no two edges on the same
page cross. The pagenumber of a graph is the minimum number of pages in which it can
be embedded. Determining the pagenumber of a graph is NP-hard. A graph is said to be
1-planar if it can be drawn in the plane so that each edge is crossed at most once. The
anthors prove that the pagenumber of 1-planar graphs is at most 10.
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1 Introduction

The book embedding problem of graphs is motivated by several areas of computer science,

such as direct interconnection networks (see [18]), VLSI design (see [10]), fault-tolerant processor

arrays (see [24]), sorting with parallel stacks (see [13]), single-row routing (see [25]), ordered

sets (see [22]) and the like.

A book embedding of a graph G = (V,E) with n vertices consists of a (linear) layout L of

its nodes along a line (called spine) ℓ of a book (i.e., L : V → {1, 2, · · · , n}) and an embedding

of each edge to some half-planes sharing the spine as a common boundary (called pages) so

that two edges embedded on the same page do not cross. Note that two edges (a, b) and (c, d)

on the same page such that L(a) < L(b) and L(c) < L(d) in the layout L cross if and only if

L(a) < L(c) < L(b) < L(d) or L(c) < L(a) < L(d) < L(b). The minimum number of pages in

which a graph can be embedded is called the pagenumber or book thickness of the graph. A

central goal in the study of book embedding is to find the pagenumber of a graph. Determining

the pagenumber of a graph is a hard problem. It remains a difficult problem even when the

layout L is fixed, since determining whether a given layout admits a k-page book embedding is

NP-complete (see [28]).

The book embedding of graphs has been discussed for many graph families, see [5–6, 12, 21].

The most famous ones are the planar graphs. Bernhart and Kainen [5] firstly characterized the

graphs with pagenumber one as the outerplanar graphs and the graphs with pagenumber two

as the sub-Hamiltonian planar graphs (which are the subgraphs of planar Hamiltonian graphs).

Deciding whether the pagenumber of general planar graphs is two is NP-hard (see [10]). More-

over, Bernhart and Kainen [5] conjectured that planar graphs have unbounded pagenumber,
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but this was disproved in [9, 16]. Buss and Shor [9] proposed a nine-page algorithm. Heath [16]

reduced the number to seven. Istrail [17] found an algorithm that embeds planar graphs in six

pages. Later, Yannakakis [30] showed that planar graphs admit a four-page book embedding,

which can be constructed in linear-time. Yannakakis [29] claimed that four pages are necessary

without giving a formal proof for this claim. Later, Dujmovic and Wood [11] conjectured that

the pagenumber of planar graphs is four. Bekos, Kaufmann and Zielke [4] also posed the same

conjecture. In 2020, Yannakakis [31] showed that there are planar graphs that require four

pages in any book embedding. Hence, the pagenumber of planar graphs is 4.

More recently there has been a greater interest in studying non-planar graphs which extend

planar graphs by restrictions on crossings (see [19]). A famous example is 1-planar graphs

which can be drawn in the plane so that each edge is crossed at most once. Bekos, Bruck-

dorfer, Kaufmann and Raftopoulou [3] showed that the upper bound of 1-planar graphs is 39.

Alam, Brandenburg and Kobourov [2] gave an algorithm of twelve-page for 3-connected 1-planar

graphs and sixteen-page for general 1-planar graphs. In this paper, we obtain the conclusion

as follows by improving the algorithm of Alam, Brandenburg and Kobourov [2] .

Theorem 1.1 There is a linear time algorithm to construct a book embedding for general

1-planar graphs to 10 pages.

The paper is organized as follows. In Section 2, we give preliminaries and make some

necessary preparations. In Section 3, we study the book embedding of 3-connected 1-planar

graphs. The book embedding of general 1-planar graphs is considered in Section 4.

2 Preliminaries

A graph is said to be planar (1-planar, resp.) if it can be drawn in the plane so that its

edges do not cross (each edge has at most one crossing, resp.). For example, K4 is a planar

graph, and K5 and K6 are 1-planar graphs. Such a drawing of a planar (1-planar, resp.) graph

G is called a planar (1-planar, resp.) embedding of G. There are at most 3n − 6 edges for

planar graphs with n vertices, and there are at most 4n − 8 edges for 1-planar graphs with n

vertices (see [23]). However, there is a major difference in the complexity of the recognition of

planar and 1-planar graphs, which can be done in linear time for planar graphs (see [26]) while

it is NP-hard for 1-planar graphs (see [15, 20]).

An embedding specifies the faces, which are topologically connected regions. The unbounded

face is the outer face. A 1-planar embedding E(G) specifies the faces in a 1-planar drawing of

G including the outer face. Then E(G) describes the pairs of crossing edges, the faces where

the edges cross, and the planar edges (the edges that do not cross any edge of G).

For a given 1-planar embedding E(G), we obtain an embedding by adding as many edges to

E(G) as possible such that the newly added edges are planar in E(G). We call such an embedding

a planar-maximal embedding of G and the operation planar-maximal augmentation. Then each

pair of crossing edges is augmented to a K4. The planar skeleton P(E(G)) consists of the planar

edges of a planar-maximal augmentation.

The normal form for an embedded 3-connected 1-planar graph E(G) is obtained by adding

the four planar edges to form a K4 for each pair of crossing edges while routing them close

to the crossing edges and removing old duplicate edges if necessary. Such an embedding of a
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3-connected 1-planar graph is a normal embedding of it. A normal planar-maximal augmen-

tation for an embedded 3-connected 1-planar graph is obtained by finding a normal form of

the embedding and a planar-maximal augmentation. We say that an embedded 3-connected

1-planar graph is a normal maximal 1-planar graph if a normal planar-maximal augmentation

of the graph yields the same graph. Note that the parallel edges are not allowed in normal

maximal 1-planar graphs.

In a normal maximal 1-planar graph, each crossing edges pair 〈(a, c), (b, d)〉 crosses each

other either inside or outside the boundary of the quadrangle abcd of the planar edges, and

these define the so-called augmented X− and augmented B−configurations (see [1]). For a

3-connected 1-planar graph G, Alam, Brandenburg and Kobourov [1] proved the conclusions as

follows.

Lemma 2.1 (see [1]) Let G be a 3-connected 1-planar graph with a 1-planar embedding

E(G). Then the normal planar-maximal augmentation of E(G) gives a planar-maximal 1-planar

embedding E(G∗) of a supergraph G∗ of G, so that E(G∗) contains at most one augmented B-

configuration in the outer face and each augmented X-configuration in E(G∗) contains no vertex

inside its skeleton.

Lemma 2.2 (see [1]) Let G be a 3-connected 1-planar graph with a planar-maximal 1-planar

embedding E(G). Then no three crossing edge-pairs in E(G) share the same base edge.

For more detailed studies on 1-planar graphs, the readers are suggested to refer to [1, 7–8,

14, 20, 23].

A connected graph that has no cut vertices is called a block. Then blocks are 2-connected

graphs (at least three vertices) or an edge (two vertices). Particularly, we say that an edge is a

trivial block. For a connected graph G that has cut vertices, we say that a maximal connected

subgraph that has no cut vertices is a block of G. The block-cut tree T of a graph G is a graph

whose vertices correspond to blocks of G, and there is an edge u1u2 in T if and only if there is

a common vertex two blocks corresponding to u1 and u2 in G. The rooted block-cut tree T of

a graph G is a block-cut tree rooted at some vertex.

3 Book Embedding of 3-Connected 1-Planar Graphs

We first discuss the book embedding of 3-connected 1-planar graphs and then describe the

book embedding of general 1-planar graphs.

Clearly, if a graph can be embedded in a given number of pages, then the same is also true for

its subgraphs. Therefore, we can assume without loss of generality that our input 3-connected

1-planar graph G is a normal maximal 1-planar graph. Lemma 2.1 (see [1]) implies that the

planar skeleton of normal maximal 1-planar graphs contains only triangular and quadrangular

faces. Moreover, if we remove exactly one crossing edge (arbitrarily) from each pair of crossing

edges in a normal maximal 1-planar graph, then the resulting graph is a maximal planar graph.

Let X be the set of crossing edges removed. We can first use the algorithm by Yannakakis [30]

to obtain a five-page book embedding of G \X . Next, we place the crossing edges in X , under

the order of vertices in the algorithm by Yannakakis [30], to five additional pages such that two

edges embedded on the same page do not cross. Hence, we first describe the order of vertices

in the algorithm by Yannakakis [30].
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The vertices of the normal maximal 1-planar graph G are partitioned into levels according

to their distance from the outer face of the planar skeleton P(E(G)). Vertices on the outer face

of G are at level 0. Vertices on the outer face of the resulting graph by deleting vertices at

level 0 are at level 1. In general, vertices on the outer face of the resulting graph by deleting

all vertices at levels less than t are at level t. The edges of G (including the crossing edges)

are partitioned into level i edges connecting vertices at the same level i, and binding edges

connecting vertices at different levels. Note that level i vertices are only adjacent to level j

(j = i − 1, i, i + 1) vertices (i.e., binding edges connect only consecutive levels). The cycle

composed of level t vertices and edges is called a level t cycle. Furthermore, every level i vertex

lies in the interior of some level i− 1 cycle.

Level 0 vertices in the clockwise order (cw-order) as they appear on the outer cycle and the

level 0 edges are first placed. Next, level 1 vertices on each level 1 cycle in the counterclockwise

order (ccw-order) and the level 1 edges and the binding edges connecting some level 0 vertex

and some level 1 vertex are placed. Level 1 vertices are placed in the ccw-order and as well

as its interior vertices. Therefore, we consider a 2-level subgraph H of G defined as follows.

The vertices of H are the vertices on a level i cycle Ci and all the level i + 1 vertices interior

to Ci. The edges of H are all the planar and crossing edges inside the region between Ci and

the outer boundaries of all the i+1 level components inside Ci (including the edges on Ci and

the level i+ 1 boundaries). We denote this inside 2-level subgraph of H as H(Ci). We assume

that Ci has been embedded where the vertices of Ci are placed in the cw (or ccw, resp.) order

around Ci for all even (odd, resp.) i. We then extend this embedding to a book embedding of

H(Ci), by placing the remaining vertices and edges. The book embedding of G is obtained by

iteratively operating the book embeddings of H(Ci).

To formalize the idea mentioned above, we consider an arbitrary cycle Ci whose vertices

are level i. Without loss of generality, we suppose that the vertices of Ci are placed in the

cw-order (for ccw-order we flip the embedding of H(Ci)). Let v1, v2, · · · , vm be the vertices of

Ci in the cw-order around Ci (i.e., L(v1) < L(v2) < · · · < L(vm)). We call the vertices of Ci

the outer vertices and level i + 1 vertices of H(Ci) the inner vertices. For each crossing edges

pair 〈(a, b), (c, d)〉, we take one edge to be in X as follows.

Case 1 If (a, b) and (c, d) are level i edges, then we choose the edge incident to the vertex

farthest from v1 in cw-order on Ci to be in X . For example, we choose (v3, v5) to be in X for

the crossing edges pair 〈(v2, v4), (v3, v5)〉 in Figure 1.

Case 2 If (a, b) and (c, d) are binding edges, then we choose the edge incident to the vertex

farthest from v1 in cw-order on Ci to be in X . For example, we choose (v2, u1,1) to be in X for

the crossing edges pair 〈(v1, u1,4), (v2, u1,1)〉 in Figure 1.

Case 3 If one of (a, b) and (c, d) is a level i edge, and the other is a binding edge, then

we choose the binding edge to be in X . For example, we choose (v6, u2,2) to be in X for the

crossing edges pair 〈(v5, v7), (v6, u2,2)〉 in Figure 1.

Case 4 If one of (a, b) and (c, d) is a level i+1 edge, and the other is a binding edge, then

we choose the i + 1 level edge to be in X . For example, we choose (u3,4, u4,3) to be in X for

the crossing edges pair 〈(v7, u4,1), (u3,4, u4,3)〉 in Figure 1.

Case 5 If one of (a, b) and (c, d) is a level i edge, and the other is a level i+ 1 edge, then

we choose the i + 1 level edge to be in X . For example, we choose (u6,1, u6,2) to be in X for
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Figure 1 A 2-level subgraph H(Ci) of G inside the level-i cycle Ci = v1, v2, · · · , v16, which is drawn

with thick black edges. The outer boundary of the level i+ 1 component is drawn with thick blue

edges. The red dashed edges are the crossing edges taken in the set X.

the crossing edges pair 〈(v8, v12), (u6,1, u6,2)〉 in Figure 1.

Note that G is a normal maximal 1-planar graph. We have that two crossing edges cannot

be both the level i+ 1 edges by the construction of H(Ci). Therefore, the above cases contain

all possible pairs.

Remark 3.1 Case 5 mentioned above is different from the idea in [2], for example, we

choose the edge (u5,1, u5,2) to be in X for the crossing edges pair 〈(K,R), (u5,1, u5,2)〉 in Figure

2 (in [2, Figure 1]). Moreover, the edge (T, u4,2) should be in X for the crossing edges pair

〈(S, u4,1), (T, u4,2)〉 in Figure 2.

Denote by D the subgraph of H(Ci) induced by the vertices at level i+1. Assume without

loss of generality that D is a connected graph, since otherwise each connected component of

D would be inside a different cycle induced by the vertices of Ci and these can be handled

separately. By construction, each 2-connected block of D is a simple cycle. Let B1, B2, · · · , Bs

be these blocks of D. We describe how to place all the level i+ 1 vertices as follows on H(Ci).

We say that a vertex x sees an edge yz if xyz forms a triangular face in H − X . And an

outer vertex x sees a block Bj if x sees an edge of Bj . The third node u1,1 of the triangular

face containing the edge (v1, vm) is called the first inner vertex. If the third node u of the

triangular face containing the edge (v1, vm) is a level i+1, then we choose the level i+1 vertex

that satisfies the third node of the triangular face containing the edge (vi−1, vi), where vi is the

closet to v1, is called the first inner vertex. For example, if v1vm forms a triangle with a level i

vertex vx, and v2v1 forms a triangle with a level i+ 1 vertex u, then we choose that u is called

the first inner vertex. The block B1 containing u1,1 is the first block. Assume that u1,1 lies in

a unique block, otherwise, add a vertex u inside the triangular face v1vmu1,1 and edges uv1,
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Figure 2 A 2-level subgraph H(Ci) of G inside the level-i cycle Ci = AB · · ·Z, which is drawn with

thick black edges. The outer boundary of the level i+ 1 component is drawn with thick blue edges.

The red dashed edges are the crossing edges taken in the set X.

uvm and uu1,1. Then u is the first inner vertex of the resulting graph and belongs to only one

trivial block uu1,1 seen by v1. Let T be the rooted block-cut tree rooted at B1 of D.

The leader of a block Bj is the first vertex of Bj in any path from u1,1 to Bj in D. Note

that the leader of B1 is u1,1, and the leader of Bj (j 6= 1) is the common vertex between Bj

and its parent in T . Although there is an inner vertex u (in particular a cut vertex of D) which

may belong to more than one block, we assign u to a unique block by assigning it to the highest

(i.e., closest to B1) block that contains it in T . Therefore, B1 contains all its vertices, and Bj

(j 6= 1) contains all its vertices except its leader. The first vertex of a block Bj is the first

vertex except its leader from leader of the block Bj in the ccw-order. The dominator of a block

Bj is the first vertex of Ci (in the order v1, v2, · · · , vm) adjacent to some vertex assigned to Bj .

If an inner vertex u is assigned to a block dominated by the outer vertex vk, then L(vk) <

L(u) < L(vk+1). Note that there are no blocks dominated by vm. Further, Yannakakis [30]

proved the following conclusion.

Lemma 3.1 (see [30]) The blocks dominated by the same outer vertex form a directed path

in the tree T .

Suppose that vk dominates a unique block B, then the vertices assigned to B are placed in

the ccw-order around its boundary from its first vertex. Suppose that vk dominates more than

one block. Lemma 3.1 (see [30]) implies that these blocks form a directed path in T . Then the

vertices assigned to each block are placed consecutively in ccw-order around its boundary; the

blocks are ordered one after the other in top-down order of T : First the vertices assigned to

the highest block, then the ones assigned to its child, and so on.

Let w1, w2, · · · , wm be the vertices of arbitrary level i+1 cycle Ci+1 in the ccw-order around

Ci+1 (i.e., L(w1) < L(w2) < · · · < L(wm)). Let B be the block with the cycle Ci+1 as its outer

boundary in H(Ci). If B is the first block of H(Ci), then there are no vertices of level j < i+1

between wk and wk+1 (k = 1, 2, · · · , t). Otherwise, there are no vertices of level j < i+1 between

wk and wk+1 (k = 2, 3, · · · , t), and there may be some vertices of level j < i + 1 between w1
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and w2. In this case, we place the vertices assigned to level i + 2 blocks dominated by w1 in

H(Ci+1) to go next to w2. In either case, the vertices on each level i + 2 cycles are placed in

an interval with no vertices of level j ≤ i in between. Call this Algorithm Order-Vertices.

Lemma 3.2 (see [30]) Let L be the vertex order for a normal maximal 1-planar graph G,

obtained by Algorithm Order-Vertices. Let Ci = v1 → · · · → vr → v1 be some level i cycle in G.

Then all vertices of level i + 1 inside Ci are placed strictly between two level i vertices v1 and

vr, and all edges incident to a level i+ 2 vertex have no crossing to level j edges (j ≤ i) in L.

Next, we describe placement of edges in X . We first assign the edges in X to the three

pages c1, c2 and c3 on H(Ci) as following. Assume that (a, b) is in X for each crossing edges

pair 〈(a, b), (c, d)〉.

Case 1 If (a, b) is a level i edge, then we assign it to page c1.

Case 2 Assume that (a, b) is a binding edge. (a, b) is called forbidden for some block B if

it connects the leader of B and vk+1, where vk is the dominator of B and is not of any child

block of B in T . If (a, b) is not forbidden for any block, then assign it to page c1. If (a, b) is

forbidden for some block B at the even (odd, resp.) level in T , then we assign it to page c2 (c3,

resp.).

Case 3 If (a, b) is a level i+1 edge, then (c, d) is a level i edge or a binding edge. Suppose

(c, d) is a binding edge, where c is an outer vertex and d is an inner vertex. Let B1 and B2

be the two blocks of D containing a and b, respectively. Without loss of generality, we assume

that the vertices of B1 are all placed before the vertices of B2 except for its leader. Then B1 is

the parent of B2, or B1 and B2 have a common parent block B in T and d as their common

leader, moreover, B1 comes directly before B2 in the cw-order from B around d. Note that G

is a normal maximal 1-planar graph. We have that b is adjacent to the leader of B2. Thus b is

either the first or the last vertex (except for its leader) of B2 in L. We say (a, b), the first (last,

resp.) crossing edge of B2 if b is either the first (last, resp.) vertex of B2 in L.

Note that for each block, there is at most one the first crossing edge and at most one edge,

which is either the last crossing edge or the forbidden binding edge. Moreover, if the edge (a, b)

are both the first crossing edge of B1 and the last crossing edge of B2, then we say that the

edge (a, b) is the last crossing edge of B2. We have the following lemma by the fact that G is a

normal maximal 1-planar graph.

Lemma 3.3 (i) If (a, b) is the first crossing edge of B2 (a ∈ V (B2) and b ∈ V (B1)), then

B1 is the parent of B2 in T .

(ii) If (a, b) is the last crossing edge of B2 (a ∈ V (B2) and b ∈ V (B1)), then either B1 is the

parent of B2 in T , or B2 and B1 have a common leader d, moreover, B1 comes directly before

B2 in the cw-order from their common parent block around their common leader. In either case,

the vertices of B1 are all placed before the vertices of B2 except for its leader.

If (a, b) is the first crossing edge of B2, then place it to page c1. If (a, b) is the last crossing

edge of B2, then (a, b) is assigned to page c2 or c3, opposite to the last crossing edge of its parent

block assigned if B2 is i-th encountered (i is even) in the cw-order from the parent block of B2

around leader of B2, same as the last crossing edge of its parent block assigned if B2 is j-th

encountered (j is odd) in the cw-order from the parent block of B2 around leader of B2. Note

that if (c, d) is a level i edge, then (a, b) is a trivial block of D and it is the last crossing edge
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of B2 whose leader is a (i.e., B1 is the parent of B2). We have that B2 is second encountered

in the cw-order from B1 around a. Then (a, b) is assigned to page c2 or c3, which opposites to

assign the last crossing edge of B1. For example, Figure 3 is a 3-page book-embedding of the

graph shown in Figure 1, where the last edge of the first block is assigned to page c3.

Figure 3 Book embedding of the crossing edges in X for the 2-level graph H(Ci) in Figure 1 on the

three pages c1, c2, c3. The black edges are assigned to page c1. The red edges are assigned to page c2.

The blue edges are assigned to page c3.

Remark 3.2 There are two flaws in the algorithm due to Alam [2]. Firstly, a binding edge

(x, vx) and a level i edge (a trivial block) may be crossing on page c1, where x is assigned to a

block dominated by vk (k < r < x) (see Figure 4 (1)). Since L(vk) < L(x) < L(vr) < L(vx),

(x, vx) and (vk, vr) (in region II) are crossing (for example, the edges (T, u4,2) and (K,R) in

Figure 2). Secondly, there may be crossing on page c2 for the following case. Let the edges

(x2, y2) and (x3, y3) be the first crossing edges of Bj2 and Bj3 , respectively, where x2 ∈ V (Bj1),

y2, x3 ∈ V (Bj2 ), and y3 ∈ V (Bj3). Moreover, Bj1 , Bj2 and Bj3 have common leader dB and

Bj2 (Bj1 , resp.) comes directly before Bj3 (Bj2 , resp.) in the cw-order from their parent block

Bj around dB (see Figure 4(2)). Since L(x2) < L(x3) < L(y2) < L(y3), (x2, y2) and (x3, y3)

are crossing.

Figure 4 Illustrations for the proof of Remark 3.2.

Clearly, there are no edges incident with v1 on page ci (i = 1, 2, 3). Next, we will show that

the edges assigned to page ci (i = 1, 2, 3) do not corss each other. We firstly prove the case of

the page c1.

Lemma 3.4 There is no crossing between edges assigned to page c1.
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Proof The edges assigned to c1 consist of the level i edges, the binding edges not forbidden

for any block in X , and the first crossing edges in X . We show that there is no crossing for any

two of them as follows. Note that the vertices of C are placed in the cw-order of its boundary,

and there is no crossing between edges of X in the embedding of H(Ci). Therefore, there is no

crossing between two level i edges in X .

Figure 5 Illustrations for the proof of Lemma 3.4.

Next, we show that no binding edges in X are in conflict with any other binding edges or

level i edges in X on page c1. Consider a binding edge (vx, x) assigned to page c1, where vx is

an outer vertex and x is an inner vertex assigned to the block B whose dominator and leader

are vk and d, respectively (see Figure 5(1)). Also consider a path P from the first inner vertex

u1,1 to d in the planar skeleton of H(Ci). According to the block B, the two edges (x, vx)

and (d, vk), along with the path P and the two edges (u1,1, v1), (u1,1, vm), we partition the

interior of Ci into three parts as follows: (i) The interior of B, (ii) the interior of the triangle

(u1,1, v1, vm), and (iii) the three regions marked by I, II and III in Figure 5(1). Since the path

P and the boundary of B belong to the planar skeleton of H(Ci) and since the edge (vx, x) is

a crossing edge, each edge assigned to page c1 is embedded in the interior of one of the three

regions I, II or III.

All the level i vertices in region I are placed on or before vk in L. Since vk is the dominator

of B, it is placed before any vertex assigned to B, including x. Thus for any level i edge in

X placed in region I, both its end-vertices are placed before both x and vx. Hence there is no

crossing between these level i edges and (vx, x). Note that all level i + 1 vertices u in region

I including the ones on P are also placed before x, that is, L(u) < L(x). If u is assigned to

the block B
′

, then B
′

is dominated by either an outer vertex placed before vk or the outer

vertex vk. However the vertices on B
′

are placed before those of B for both case, following the
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consecutive method of placement. Then both end-vertices of any binding edge in X lying in

region I are placed before x and vk. Hence binding edges in X lying in region I do not create

any conflict with (vx, x).

All the level i vertices in region II, except for vk, are placed after x and before vx. Similarly,

all the level i + 1 vertices in region II, except for d, are placed on or after x and before vx.

Hence, there is no binding edge or level i edge, except for a level i edge, that conflicts with a

trivial block of D lying in region II incident to vk. The level i edges, that conflict with a trivial

block of D are not assigned to X according to Case 5 of the placement of edges in X , that is,

these level i edges are not assigned to page c1. Furthermore, no binding edges incident to d

are assigned to page c1. Thus all the binding edges and level i edges assigned to page c1 have

end-vertices placed between x and vx; hence they create no conflict with (vx, x).

All the level i vertices in region III are placed on or after vx. Then all level i edges in X lying

in region III have both their end vertices placed after both x and vx, and hence they create no

conflict with (vx, x). On the other hand, the level i + 1 vertices on P or on the boundary of

B lying region III are placed before x and the binding edge incident to them does not create

conflict with (vx, x). Moreover, all the level i + 1 blocks strictly in region III are dominated

by the vertices placed on or after vx. Indeed, the only possible planar edge crossing the region

boundary would have been incident to the level i vertex vx just before vx, and it would have

crossed the edge (vx, x). However in that case, the other end vertex of such an edge would have

been on a block dominated by vx and x would have been its leader, which is a contradiction

since the edge (vx, x) is assigned to page c1. Thus all the binding edges in region III incident

to some level i + 1 vertex neither on P nor B, have both the end-vertices placed after x and

vx. Hence they do not create conflict with (vx, x).

Finally, we show that the first crossing edges of blocks are not in conflict with any other

edge on page c1. Let (a, b) be the first crossing edge of some block B assigned to page c1,

where a is assigned to block B and b is assigned to block B′. Then B′ is the parent block of

B, that is, L(b) < L(a). Assume that B and B′ are dominated by the vertex vp and the vertex

vl, respectively. Then L(vp) ≥ L(vl), L(vp) < L(a) < L(vp+1) and L(vl) < L(b) < L(vl+1).

Note that G is a normal maximal 1-planar graph. We have that its leader and its dominator

are adjacent for each block. Then that there are no level i edges so that whose one end is vx

(p+ 1 ≤ x ≤ l) and the other end is vy (1 ≤ y ≤ p or l+ 1 ≤ y ≤ t) in the layout L. Moreover,

there are no binding edges so that whose one end is vr (p + 1 ≤ r ≤ l − 1) and the other end

is assigned to some block dominated by the vertex vz (1 ≤ z ≤ p − 1), or whose one end is

vr (l + 1 ≤ r ≤ t) and the other end is assigned to some block dominated by the vertex vz

(p + 1 ≤ z ≤ l − 1) (see Figure 5(2)). Therefore there is no crossing between (a, b) and the

binding edges and the level i edges assigned to page c1.

Let (c, d) be the first crossing edge of some block C assigned to page c1, where c is assigned

to block C and d is assigned to block C′. Then C′ is the parent block of C, that is, L(d) <

L(c). Assume that C and C′ are dominated by vertex vp′ and vertex vl′ , respectively. Then

L(vp′) ≥ L(vl′), L(vp′) < L(c) < L(v(p′+1)) and L(vl′) < L(d) < L(v(l′+1)). If B′ = C′, then

L(d) < L(a) and L(b) < L(c). However, L(b) < L(d) or L(b) < L(d) is possible. We can also

assume without loss of generality that L(b) < L(d). Since G is a normal maximal 1-planar

graph, L(a) > L(c), that is, L(b) < L(d) < L(c) < L(a) (see Figure 5(3)). Therefore there is
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no crossing between (a, b) and (c, d). If B′ 6= C′ (we can assume without loss of generality that

L(vl) < L(vl′), i.e., L(b) < L(d)), then L(vp′) < L(vp), that is, L(b) < L(a) < L(d) < L(c)

(see Figure 5(4)). Therefore there is no crossing between (a, b) and (c, d), that is, there is no

crossing between the first crossing edges assigned to page c1.

To sum up, there is no crossing between edges assigned to page c1.

Next, we prove the case for pages c2 and c3.

Lemma 3.5 There is no crossing between edges assigned to pages c2 and c3.

Proof The edges assigned to page c2 consist of the forbidden edge and the last crossing

edge of some blocks.

We firstly consider the forbidden edge (a, b) of some block Bj dominated by vk, where a is

assigned to the block Bj . Since the forbidden edge (a, b) of the block Bj joints its leader to

vk+1, b = vk+1 and L(a) < L(b). Note that there is at most a forbidden edge or a last crossing

edge for a block B. Note that G is a maximal 1-planar graph and vk is not the dominator of

any child block of Bj in T . Then there are no binding edges or i+1 level edges (a′, b′) satisfying

L(a) < L(a′) < L(b) < L(b′) or L(a′) < L(a) < L(b′) < L(b). Therefore, there are no edges

crossing to (a, b) on page c2, that is, no forbidden edge of any block is in conflict with any other

edge on page c2.

Next, we show that there is no crossing between any two the last crossing edges assigned

to page c2. Consider the last crossing edge (c, d) of some block B, where c and d are assigned

to the block B and B′, respectively. Assume we know that if B′ is the parent of B in T , then

L(d) < L(c). Otherwise, L(c) < L(d). Assume that L(c) < L(d). Since G is a maximal 1-planar

graph, there is no last crossing edge (c′, d′) of any block satisfying L(c′) < L(c) < L(d′) < L(d)

or L(c) < L(c′) < L(d) < L(d′) except for the edges which are either the last crossing edge

e1 = fg of B′′ coming directly before B, or the last crossing edge e2 of B′, or the trivial block

e3 incident to some vertex h of B so that L(a) < L(h) < L(f). We have that e1 and e2 are

assigned to page c3 according to the assignment of edges in X . Therefore, (c, d) and other last

crossing edges on page c2 are not crossing. Assume that L(d) < L(c). Then we can prove that

there is no crossing between (c, d) and other last crossing edges on page c2 similar to the case

of L(c) < L(d).

We can prove that there is no crossing between edges assigned to page c3 similar to c2.

Lemmas 3.4–3.5 imply the following lemma.

Lemma 3.6 The edges of H(Ci) in X can be assigned to three pages c1, c2 and c3 so that

there is no crossing between edges assigned to the same page.

We next describe a lemma as following for the block B with an arbitrary cycle Ci+1 (Ci+1 :

w1 → · · · → wt → w1) as its outer boundary in H(Ci). Without loss of generality, we assume

that if there is a forbidden edge or a last crossing edge for the block B, then it is assigned to

page c3.

Lemma 3.7 On page c3, there are no edges incident to vertices of B except for w1, w2 and

wt.

Proof Note that the edges assigned to page c3 consist of the forbidden edges and the last
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crossing edges for the blocks. We distinguish two cases to discuss as follows.

Case 1 Assume that there exists no forbidden edge and last crossing edge for the block

B. Clearly, no forbidden edges are incident to vertices of B according to the definition of the

forbidden edge. Then we also distinguish two subcases to discuss.

Subcase 1.1 There are no last crossing edges incident to vertices of B. It is obvious that

there are no edges incident to vertices of B on page c3.

Subcase 1.2 There are last crossing edges incident to vertices of B. Let one of these last

crossing edges be the last crossing edge the block B′. Then B′ is either a child of B, or B′ and

B have common leader d, moreover, B comes directly before B′ in the cw-order around d from

their parent block according to Lemma 3.3. If B′ is a child of B, then the last crossing edge of

B′ is assigned to page c2 according to the assignment of edges in X . If B′ and B have common

leader, then the last crossing edge of B′ is also assigned to page c2 according to the assignment

of edges in X . Hence, there are no edges incident to last crossing edges of B on page c3.

Case 2 Assume that there exists a forbidden edge or a last crossing edge for the block B.

Then it is assigned to page c3.

Subcase 2.1 Suppose that there is a forbidden edge for the block B. Then the forbidden

edge is between its leader w1 and vk+1, where vk is the dominator of B. Note that w1 is placed

before vk+1 and no edges on page c3 cross each other. Therefore, there are no edges incident

to vertices of B except for w1 on page c3.

Subcase 2.2 There is a last crossing edge for the block B. According to Lemma 3.3, one

end of the last crossing edge is wt, and the other end is some vertex of the block B′, where B′

is either the parent of B, or B′ and B have common leader d. Moreover, B′ comes directly

before B in the cw-order around d from their parent block. Therefore, the vertices of B′ are

all placed before the vertices of B except for its leader w1. Note that no edges on page c3 cross

each other and there are no last crossing edges incident to last crossing edges of B except for

wt on page c3 according to Subcase 1.2. We obtain that there are no edges incident to vertices

of B except for wt on page c3. Therefore, the result holds.

Theorem 3.1 3-connected 1-planar graphs can be embedded in 10-page books.

Proof Let G be a 3-connected 1-planar graph. Then G is a spanning subgraph of some

normal planar maximal 1-planar graph G′. The vertices of G′ are assigned level-by-level using

the Algorithm Order-Vertices. In fact, this order of vertices is the same as the order of vertices

in algorithm by Yannakakis [30]. Let p1, · · · , p5, c1, · · · , c5 denote 10 pages. We use the pages

p1, p2, p3, p4, p5 to embed edges of G \X by the algorithm of Yannakakis [30]. Assume that

edges in X inside H(Ci) have been embedded in pages c1, c2 and c3 using Lemma 3.6. Lemma

3.7 implies that for each block B inside H(Ci), there is at least one page of c1, c2, c3, so that no

edges are incident to its vertices except for its leader, first vertex and last vertex. We assume

without loss of generality that it is c3. Since the vertices of H(Ci+1) are assigned to the first

vertex and the last vertex of Ci+1, we place edges in X inside H(Ci+1) to page c3, c4 and c5,

where Ci+1 is the outer boundary of B. Lemma 3.2 implies that with this vertex order, no level

i+1 edge in G′ conflicts with any level j edge with j < i. Therefore, we can iteratively use the
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algorithm to obtain a 9-page book embedding of G′. The claim holds.

4 Book Embedding of General 1-Planar Graphs

If a graph can be embedded in a given number of pages, then the same is also true for its

subgraphs. Then for the general 1-planar graphs we may assume that the input graph is a

maximal 1-planar graph G, that is, it is 2-connected.

We first normalize the maximal 1-planar graph similarly to the case of a 3-connected 1-

planar graph. Lemma 2.2 (see [1]) implies that a pair of vertices {u, v} of G shares more

than two crossing edge pairs if and only if {u, v} forms a separation pair in G. During the

normalization, for any separation pair {u, v}, we route the edge (u, v) such that all the crossing

edge pairs with u, v as end-vertices fall on the same side of (u, v) (see Figure 5).

Assume that there is a separation pair {u, v} with a decomposition G−{u, v} = H0, · · · , Hk

for some k ≥ 1. For a component Hj (1 ≤ j ≤ k), let H∗

j be the subgraph of G induced by

the vertices of Hj and {u, v}, that is, H∗

j = G[V (Hj) ∪ (u, v)]. We have that there is at most

one component Hj such that u and v are not on the outer face of H∗

j . Then assume without

loss of generality that H∗

1 , · · · , H
∗

k all have u, v on the outer face. Then H0 and H∗

0 are called

the main component and the extended main component for {u, v}, respectively. H1, · · · , Hk

and H∗

1 , · · · , H
∗

k are called the inner components and the extended inner components for {u, v},

respectively. The edge (u, v) is called separating edge. Note that the inner components can be

arbitrary permuted and flipped at {u, v}. Moreover, in a normalized planar maximal embedding

E(G) of G, the inner components H1, · · · , Hk are attached to (u, v) and are embedded on one

side of (u, v), say in this ccw-order at u. The components are separated by one or two pairs of

crossing edges (see Figure 6). And they may also be separated by copies of the separation edge

(see [7–8]). We know that the boundaries of the inner components are triangles and quadrangles

according to the definition of B- or W-configurations in [27].

We now extend our 10-page book embedding of 3-connected 1-planar graphs to general

1-planar graphs.

Theorem 4.1 1-planar graphs can be embedded in 10-page books.

Proof We proceed as in the case of 3-connected graphs. However we extend the peeling

technique here to deal with the inner components for the separation pairs. Let the main graph

G0 be obtained from G by deleting all the inner components for all the separation pairs. Clearly,

G0 is 3-connected. For each separation pair {u, v}, the edge (u, v) is a planar edge and if (u, v)

is an edge of the main graph, then by the peeling technique, u, v are on the same level or

on consecutive levels. Let H1, · · · , Hk be the inner components for u, v. We then assign the

vertices on the outer boundary Oj for each inner component Hj on the higher (i.e., deeper)

of the two levels for u and v. For the remaining vertices of Hj we proceed with the peeling

technique recursively and assign them to subsequent levels. Let u, v belong to some 2-level

subgraph H(Ci) of the main graph, where Ci is a level i cycle. Then the vertices on the outer

boundary for each inner component and the edges between these outer vertices and u, v are
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Figure 6 A separation pair and the corresponding components.

on the 2-level subgraph for G. We now show how to place these vertices and assign the edges

to augment the book embedding of G0. Let p1, · · · , p5, c1, · · · , c5 denote 10 pages. Without

loss of generality, we can assume that the edges of the 2-level subgraph H(Ci) are embedded

into pages p1, p2, p3, c1, c2, c3, and uv is embedded in page p1. And the edges of the 2-level

subgraph H(Oj) are embedded into pages p3, p4, p5, c3, c4, c5, where Oj is the outer boundary

Oj for some inner component Hj .

For each separating edge (u, v) on the main graph G0, with L(v) < L(u), insert the vertices

on the outer boundary of each inner component for u, v consecutively, to the immediate left of

v (in cw-order and ccw-order if v is on odd and even level, respectively). If there is more than

one inner component for separating edge (u, v), then the order of their placement is arbitrary. If

there is more than one separating edge incident to v, with the other end-vertex, say w1, · · · , wq,

all placed before v and L(w1) < L(w2) < · · · < L(wq), insert the vertices of the corresponding

inner components in reverse order (i.e., the inner components for wq, · · · , the inner components

for w1). Since they form simple cycles of length 3 or 4 and the vertices are consecutive, they

do not create conflicts.

For each inner component Hj for separation pair {u, v}, the edges from u to the vertices on

Oj are assigned to page p1, and the edges from v to the vertices of Oj are assigned to one of

pages p2, c1, c2.

Since the edges are all incident with v, the edges do not create conflicts with each other.

Since they are all placed immediately before v and the edges of H(Oj) are embedded into pages

p3, p4, p5, c3, c4, c5, they do not create conflicts with other edges on this page. Similarly, the

edges incident with u do not cross each other on q1.
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We recursively place the vertices inside each inner component during the computation for

2-level subgraphs on subsequent levels. Thus, 1-planar graphs can be embedded in 10-page

books.

The proof of above Theorem 4.1 is similar to the proof of [2, Theorem 3]. Since the article

[2] is unpublished, the proof is written again. This paper concludes with proof of Theorem 1.1.

Proof of Theorem 1.1 Given a 1-planar graph with n vertices and its 1-planar embedding,

the computation of the normal planar maximal augmentation, removing the crossing edge,

algorithm of Yannakakis for planar graphs, the assignment of removed edges can be obtained

by linear time in the size of the graph. Since there are at most 4n− 8 edges for 1-planar graphs

with n vertices, the algorithm takes linear time for the order of the graph.
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