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Abstract In this paper, the authors investigate exceptional sets in the Waring-Goldbach

problem for unlike powers. For example, estimates are obtained for sufficiently large in-

tegers below a parameter subject to the necessary local conditions that do not have a

representation as the sum of a square of prime, a cube of prime and a sixth power of prime

and a k-th power of prime. These results improve the recent result due to Brüdern in the

order of magnitude. Furthermore, the method can be also applied to the similar estimates

for the exceptional sets for Waring-Goldbach problem for unlike powers.
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1 Introduction

Let N , k1, k2, · · · , kr be natural numbers such that 2 ≤ k1 ≤ k2 ≤ · · · ≤ kr. The Waring-

Goldbach problem for unlike powers concerns the representation of N as the form

N = pk1
1 + pk2

2 + · · ·+ pkr
r .

Not very much is known about results of this kind if 1
k1

+ · · ·+ 1
kr

< 2. However, these topics

have attracted mathematicians’ attentions.

Schwarz [14] considered the exceptional set of expressing a positive even number as the sum

of a square of prime, a cube of prime, a sixth power of prime and a k-th power of prime, i.e.,

n = p21 + p32 + p63 + pk4 , (1.1)

where p1, p2, p3, p4 are primes. Let E1(k,N) be the number of positive even integers n up to

N which cannot be written in the form (1.1). Exactly, Schwarz [14] showed that E1(k,N) ≪

N(logN)−A for any fixed A > 0. Recently, Brüdern [4] improved this result and established

that E1(k,N) ≪ N1− 1
8k2 +ε. In this paper, we further improve the result of Brüdern by giving

the following theorem.

Theorem 1.1 Let E1(k,N) be defined as above. We have

E1(k,N) ≪ N1−θ1(k)+ε,
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among which

θ1(k) =


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54
, k = 6,

1

81
, k = 7,

1

54x
, k ≥ 8,

where

x =


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













⌈(k

6
+ 1−

[k

6

])

2[
k
6 ]−1

⌉

, 8 ≤ k ≤ 23,

⌈7k

6
− 20

⌉

, 24 ≤ k ≤ 29,

⌈(k

6
−

1

2

[k

6

])([k

6

]

+ 1
)⌉

, k ≥ 30.

(1.2)

Here ⌈a⌉ means the smallest integer no smaller than a and [a] means the biggest integer no

bigger than a.

Remark 1.1 We can compare the results of Theorem 1.1 with those of Brüdern [4]. For

example, we obtain E1(6, N) ≪ N1− 1
54+ε and E1(7, N) ≪ N1− 1

81+ε. Meanwhile, Brüdern’s

results indicated that E1(6, N) ≪ N1− 1
288+ε and E1(7, N) ≪ N1− 1

392+ε. In addition, for large

value k, Theorem 1.1 gives that E1(k,N) ≪ N
1− 1

3
4
k2+O(k)

+ε
, whereas Brüdern’s result (see [4])

showed that E1(k,N) ≪ N1− 1
8k2 +ε.

In the same paper [14], Schwarz also considered the problem of representing a large even

integer n in the form

n = p21 + p42 + p43 + pk4 , (1.3)

where p1, p2, p3, p4 are primes. Let E2(k,N) denote the number of positive even integers n up

to N which cannot be written in the form (1.3). In fact, Schwarz [14] proved that E2(k,N) ≪

N(logN)−A for any fixed A > 0. Using the similar method to treat Theorem 1.1, we obtain

the following result.

Theorem 1.2 Let E2(k,N) be defined as above. We have

E2(k,N) ≪ N1−θ2(k)+ε,

here

θ2(k) =


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1
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1
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1
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, k ≥ 9,
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where

x =















⌈(k

4
+ 1−

[k

4

])

2[
k
4 ]−1

⌉

, 9 ≤ k ≤ 19,

⌈(k

4
−

1

2

[k

4

])([k

4

]

+ 1
)⌉

, k ≥ 20.

Remark 1.2 For example, we obtain that E2(4, N) ≪ N1− 1
32+ε and E2(6, N) ≪ N1− 1

64+ε.

Meanwhile, Brüdern’s method in [4] indicated that E2(4, N) ≪ N1− 1
128+ε and E2(6, N) ≪

N1− 1
288+ε. In addition, for large value k, Theorem 1.2 gives that E2(k,N) ≪ N

1− 1
3
2
k2+O(k)

+ε
,

whereas Brüdern’s method in [4] showed that E2(k,N) ≪ N1− 1
8k2 +ε.

Another related problem is to study for the diophantine equation

n = p21 + p32 + p53 + pk4 , (1.4)

where p1, p2, p3, p4 are primes. Let E3(k,N) be the number of even integers n ≤ N that cannot

be represented in the form (1.4). In 1953, Prachar [11] proved that E3(4, N) ≪ N(logN)−
30
47+ε.

This has been improved by a number of authors (see [1–2, 12–13]). The latest result is

E3(4, N) ≪ N1− 1
16+ε

given by Zhao [16]. For general k ≥ 5, Lu and Shan [10] proved that E3(k,N) ≪ N(logN)−c

for some c > 0. Lately, it was improved to E3(k,N) ≪ N
1− 1

3k×2k−2 +ε
by Liu [9]. The current

best result was given by Hoffman and Yu [5] which is

E3(k,N) ≪ N1− 47
420·2s +ε (1.5)

where s =
[

k+1
2

]

. In this paper, we established the following result which improves (1.5).

Theorem 1.3 Let E3(k,N) be defined as above. We have

E3(k,N) ≪ N1−θ3(k)+ε,

here

θ3(k) =


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⌉

, 7 ≤ k ≤ 23,

⌈7k
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⌉

, 24 ≤ k ≤ 29,

⌈(k

6
−

1
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[k
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])([k

6
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+ 1
)⌉

, k ≥ 30.
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Remark 1.3 Our results indeed improve the result of Hoffman and Yu [5]. For example,

we obtain that E3(5, N) ≪ N1− 1
24+ε and E3(7, N) ≪ N1− 1

72+ε. Meanwhile, Hoffman and Yu’s

results indicated that E3(5, N) ≪ N1− 47
3360+ε and E3(7, N) ≪ N1− 47

6720+ε. In addition, for large

value k, E3(k,N) ≪ N
1− 1

θ(k)
+ε, Hoffman and Yu [5] showed that θ(k) grows exponentially,

whereas, Theorem 1.3 implicates that θ(k) = k2

2 +O(k) with polynomial growth.

Finally, we consider the problem of representing a large odd integer n in the form

n = p31 + p32 + p33 + p34 + pk5 , (1.6)

where p1, p2, p3, p4 and p5 are primes. Let E4(k,N) denote the number of positive odd integers

n up to N which cannot be written in the form (1.6). In the following result, we will give an

up bound for E4(k,N) for k ≥ 4.

Theorem 1.4 Let E4(k,N) be defined as above. We have

E4(k,N) ≪ N1−θ4(k)+ε,

here

θ4(k) =




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














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
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

1

24
, k = 4,

1

54
, k = 5,

1

9x
, k ≥ 6,

where

x =















⌈14k

3
− 20

⌉

, k = 6, 7,

⌈(2k

3
−

1

2

[2k

3

])([2k

3

]

+ 1
)⌉

, k ≥ 8.

As usual, we abbreviate e2πiα to e(α). The letter p, with or without indices, is prime number.

The letter ε denotes a sufficiently small positive real number, and the value of ε may change

from statement to statement. Let N be a real number sufficiently large in terms of ε and k. We

use ≪ and ≫ to denote Vinogradov’s well-know notation, while implied constant may depend

on ε and k.

2 Preliminaries and Lemmas

We will prove Theorems 1.1–1.4 by using the circle method. Now the treatment for major

arcs of Hardy-Littlewood method are standard nowadays, for example Liu and Zhan [8]. We

need the following lemmas to control the minor arcs of circle method.

Lemma 2.1 Let

Sk(α) =
∑

N
4 <pk≤N

(log p)e(αpk).

Then for 1 ≤ j ≤ k, we have

∫ 1

0

|S2j

k (α)|dα ≪ N
1
k
(2j−j)+ε
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and
∫ 1

0

|S
j(j+1)
k (α)|dα ≪ N

j2

k
+ε.

In fact, Lemma 2.1 is the classical result of Hua [6] and the recent work of Bourgain [3].

The next lemma is a generalization of Lemma 2.1.

Lemma 2.2 Let Sk(α) be defined as Lemma 2.1. For 0 < δ ≤ 1,

∫ 1

0

|S2x
k (α)|dα ≪ N

2x
k
−δ+ε,

where

x =















⌈(kδ + 1− [kδ])2[kδ]−1⌉, [kδ] ≤ 3,

⌈7kδ − 20⌉, [kδ] = 4,
⌈(

kδ −
1

2
[kδ]

)

([kδ] + 1)
⌉

, [kδ] ≥ 5.

(2.1)

Proof For δ = 1, this is Lemma 2.1. Next, we consider the case 0 < δ < 1.

For [kδ] ≤ 3, clearly by (2.1) we have

2[kδ] ≤ 2x ≤ 2[kδ]+1.

Applying Hölder’s inequality and Hua’s lemma, one has

∫ 1

0

|S2x
k (α)|dα ≪

(

∫ 1

0

∣

∣S2[kδ]

k (α)|dα
)a(

∫ 1

0

|S2[kδ]+1

k (α)|dα
)b

≪N
2x
k
−c+ε,

where

a = 2−
x

2[kδ]−1
, b =

x

2[kδ]−1
− 1, c =

[kδ] + 2x
2[kδ] − 1

k
.

Recall that x ≥ (kδ + 1− [kδ])2[kδ]−1, so we have c ≥ δ. Thus this lemma holds for [kδ] ≤ 3.

For [kδ] = 4, obviously by (2.1) we have

16 < 2x ≤ 30.

Applying Hölder’s inequality and Lemma 2.1, one has

∫ 1

0

∣

∣S2x
k (α)|dα ≪

(

∫ 1

0

|S16
k (α)|dα

)
15
7 − x

7
(

∫ 1

0

|S30
k (α)|dα

)
x
7−

8
7

≪N
2x
k
−x+20

7k +ε.

This combining with x ≥ 7kδ − 20 gives x+20
7k ≥ δ. Thus this lemma holds for [kδ] = 4.

For [kδ] ≥ 5, by (2.1) we have

[kδ]([kδ] + 1) ≤ 2x ≤ ([kδ] + 1)([kδ] + 2).

Applying Hölder’s inequality and Lemma 2.1, one has

∫ 1

0

|S2x
k (α)|dα ≪

(

∫ 1

0

|S
[kδ]([kδ]+1)
k (α)|dα

)a(
∫ 1

0

|S
([kδ]+1)([kδ]+2)
k (α)|dα

)b
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≪N
2x
k
−c+ε,

where

a = 1−
x

[kδ] + 1
+

[kδ]

2
, b =

x

[kδ] + 1
−

[kδ]

2
, c =

x
[kδ]+1 + [kδ]

2

k
.

Then we have c ≥ δ because of x ≥
(

kδ− [kδ]
2

)

([kδ]+1). This lemma holds for [kδ] ≥ 5. Hence,

this lemma holds for 0 < δ ≤ 1.

Lemma 2.3 For k ≥ 3, we have

∫ 1

0

|S2
2(α)S

2x
k (α)|dα ≪ N

2x
k
+ε,

where

x =















⌈(k

2
+ 1−

[k

2

])

2[
k
2 ]−1

⌉

, 3 ≤ k ≤ 9,

⌈(k

2
−

1

2

[k

2

])([k

2

]

+ 1
)⌉

, k ≥ 10.

Proof
∫ 1

0
|S2

2(α)S
2x
k (α)|dα is no more thanNε times the number of solutions of the equation

t21 − t22 = yk1 + yk2 + · · ·+ ykx − ykx+1 − · · · − yk2x

with N
1
2 < t1, t2 ≤ 2N

1
2 and N

1
k < y1, y2, · · ·, y2x ≤ 2N

1
k . If t1 6= t2, the contribution is

bounded by N
2x
k
+ε. If t1 = t2, the contribution is bounded by N

1
2+ε

∫ 1

0 |S2x
k |dα. Thus

∫ 1

0

|S2
2(α)S

2x
k (α)|dα ≪ N

2x
k
+ε +N

1
2+ε

∫ 1

0

|S2x
k (α)|dα.

What we need is
∫ 1

0

|S2x
k (α)|dα ≪ N

2x
k
− 1

2+ε.

Hence this lemma holds by Lemma 2.2 with δ = 1
2 .

Lemma 2.4 For k ≥ 4, we have

∫ 1

0

|S2
2(α)S

2
4 (α)S

2x
k (α)|dα ≪ N

2x
k
+ 1

2+ε,

where

x =















⌈(k

4
+ 1−

[k

4

])

2[
k
4 ]−1

⌉

, 4 ≤ k ≤ 19,

⌈(k

4
−

1

2

[k

4

])([k

4

]

+ 1
)⌉

, k ≥ 20.

Proof
∫ 1

0 |S2
2(α)S

2
4 (α)S

2x
k (α)|dα is no more than Nε times the number of solutions for the

equation

t21 − t22 = y41 − y42 + zk1 + zk2 + · · ·+ zkx − zkx+1 − · · · − zk2x
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with P2 < t1, t2 ≤ 2P2, P4 < y1, y2 ≤ 2P4 and Pk < z1, z2, · · · , z2x ≤ 2Pk, where N
4 <

P 2
2 , P

4
4 , P

k
k ≤ N. If t1 6= t2, the contribution is bounded by P 2+ε

4 P 2x
k . If t1 = t2, y1 6= y2,

the contribution is bounded by P2P
2x+ε
k . If t1 = t2, y1 = y2, the contribution is bounded by

P 1+ε
2 P4

∫ 1

0
|Sk(α)|

2xdα. Thus

∫ 1

0

|S2
2(α)S

2
4 (α)S

2x
k (α)|dα ≪ NεP 2+ε

4 P 2x
k +NεP2P4

∫ 1

0

|Sk(α)|
2xdα.

What we need is
∫ 1

0

|S2x
k (α)|dα ≪ N

2x
k
− 1

4+ε.

Hence this lemma holds by Lemma 2.2 with δ = 1
4 .

Lemma 2.5 For k ≥ 3, we have

∫ 1

0

|S2
2(α)S

2
3 (α)S

2x
k (α)|dα ≪ N

2x
k
+ 2

3+ε,

where

x =































⌈(k

6
+ 1−

[k

6

])

2[
k
6 ]−1

⌉

, 3 ≤ k ≤ 23,

⌈7k

6
− 20

⌉

, 24 ≤ k ≤ 29,

⌈(k

6
−

1

2

[k

6

])([k

6

]

+ 1
)⌉

, k ≥ 30.

Proof The proof is similar as the proof of Lemma 2.4 with δ = 1
6 .

Lemma 2.6 For k ≥ 3, we have

∫ 1

0

|S4
3(α)S

2x
k (α)|dα ≪ N

2x
k
+ 1

3+ε,

where

x =































⌈(2k

3
+ 1−

[2k

3

])

2[
2k
3 ]−1

⌉

, 3 ≤ k ≤ 5,

⌈14k

3
− 20

⌉

, k = 6, 7,

⌈(2k

3
−

1

2

[2k

3

])([2k

3

]

+ 1
)⌉

, k ≥ 8.

Proof We have

∫ 1

0

|S4
3(α)S

2x
k (α)|dα ≪ Nε

∫ 1

0

|f4
3 (α)S

2x
k (α)|dα, (2.2)

where

f3(α) =
∑

t∼P3

e(αt3).
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By [15, Lemma 2.3], one has

|f3(α)|
4 ≪ P3

∑

|h1|<P3

∑

|h2|<P3

∑

x∈J

e(α∆(t3;h)),

where J = J (h) is a subinterval of [P3, 2P3) and ∆(t3;h) is the second-order forward difference

of the function t → t3 with steps h1, h2, that is,

∆(t3;h) = 3h1h2(2t+ h1 + h2).

Thus, we deduce from (2.2) that

∫ 1

0

|S4
3(α)S

2x
k (α)|dα ≪ P3J(P3),

where J(P3) is the number of solutions of the diophantine equation

∆(t3;h) = 3h1h2(2t+ h1 + h2) = pk1 + pk2 + · · ·+ pkx − qk1 − qk2 − · · · − qkx (2.3)

subject to

P3 ≤ t ≤ 2P3, |hi| < P3, Pk < p1, · · · , px, q1, · · · , qx ≤ 2Pk,
N

4
< P 3

3 , P
k
k ≤ N. (2.4)

The number of solutions of (2.3)–(2.4) with ∆(t3;h) = 0 is bounded by P 2+ε
3

∫ 1

0 |S2x
k (α)|dα.

The number of solutions of (2.3)–(2.4) with ∆(t3;h) 6= 0 is bounded by N
2x
k
+ε. Then

∫ 1

0

|S4
3(α)S

2x
k (α)|dα ≪ N1+ε

∫ 1

0

|S2x
k (α)|dα +N

1
3+

2x
k
+ε.

Thus we just need
∫ 1

0

|S2x
k (α)|dα ≪ N

2x
k
− 2

3+ε.

Hence it establishes this lemma by Lemma 2.2 with δ = 2
3 .

3 Proof of Theorem 1.1

The purpose of this section is to concentrate on proving Theorem 1.1. We establish Theorem

1.1 by means of the Hardy-Littlewood method. We will give the proof of Theorem 1.2 in Section

4 and will describe the straight forward modifications needed for Theorem 1.3 in Section 5. In

Section 6, we will give the outline of the proof of Theorem 1.4.

Let Sk(α) be defined as in Lemma 2.1. We denote

r(n) =
∑

p2
1+p3

2+p6
3+pk

4=n
N
4 <p2

1,p
3
2,p

6
3,p

k
4≤N

(log p1)(log p2)(log p3)(log p4), (3.1)

where p1, p2, p3, p4 are primes. Let Q = N
2
5k , and write M(Q) for the union of the intervals

{α ∈ [0, 1] : |qα− a| ≤ QN−1}
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with 1 ≤ a ≤ q, (a, q) = 1 and 1 ≤ q ≤ Q. We define M = M(Q), m = [0, 1]\M. Thus the

formula (3.1) becomes

r(n) =
{

∫

M

+

∫

m

}

S2(α)S3(α)S6(α)Sk(α)e(−nα)dα.

Whenever B ⊂ [0, 1] is measurable, we put

rB(n,N) =

∫

B

S2(α)S3(α)S6(α)Sk(α)e(−nα)dα.

Then we have

r(n) = r[0,1](n,N) =

∫ 1

0

S2(α)S3(α)S6(α)Sk(α)e(−nα)dα.

Next we will deal with the integral of major arcs and minor arcs, respectively. Applying the

now standard methods of enlarging major arcs (see [8]), we can get the following result.

Lemma 3.1 For all even integer n with N < n ≤ 2N , one has rM(n,N) ≫ N
1
k
−ε.

To estimate the integral of the minor arcs, we split the minor arcs in two part. Let 1 ≤ Y ≤

N
1
8 , and denote N the union of the pairwise disjoint intervals

Nq,a(Y ) =
{

α ∈ [0, 1] : |qα− a| ≤
Y

N

}

with 1 ≤ a ≤ q, (a, q) = 1 and 1 ≤ q ≤ Y . We write N = N(N
1
8 ) and n = m\N.

Lemma 3.2 For α ∈ n, we have

S2(α) ≪ N
1
2−

1
16+ε, S3(α) ≪ N

1
3−

1
36+ε, S4(α) ≪ N

1
4−

1
96+ε.

Proof For any given α ∈ N, by Dirichlet’s approximation theorem, there exists a ∈ Z and

q ∈ N with

(a, q) = 1, 1 ≤ q ≤ N
5
12 and |qα− a| ≤ N− 5

12 .

Then by [7, Theorem 1], one has

S2(α) ≪ N
1
2−

1
16+ε +

N
1
2+ε

(q +N |qα− a|)
1
2

and

S4(α) ≪ N
1
4−

1
96+ε +

N
1
4+ε

(q +N |qα− a|)
1
2

,

and by [17, Lemma 2.3], one has

S3(α) ≪ N
1
3−

1
36+ε +

N
1
3+ε

(q +N |qα− a|)
1
2

.

If α ∈ n, then

q > N
1
8 or q ≤ N

1
8 , N− 7

8 ≤ |qα− a| < N− 5
12 .

In any case, we have

q + |qα− a| ≫ N
1
8 ,
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then this lemma clearly holds.

Proof of Theorem 1.1 By Bessel’s inequality, we have

∑

N<n≤2N

∣

∣

∣

∫

m

S2(α)S3(α)S6(α)Sk(α)e(−nα)dα
∣

∣

∣

2

≤

∫

m

|S2
2(α)S

2
3 (α)S

2
6 (α)S

2
k(α)|dα.

To prove Theorem 1.1, it suffices to show that
∫

m

|S2
2(α)S

2
3 (α)S

2
6 (α)S

2
k(α)|dα ≪ N1+ 2

k
−θ1(k)+ε, (3.2)

where θ1(k) is defined in Theorem 1.1.

Obviously, we know that
∫

m

|S2
2(α)S

2
3 (α)S

2
6 (α)S

2
k(α)|dα ≪

∫

N\M

|S2
2(α)S

2
3 (α)S

2
6(α)S

2
k(α)|dα

+

∫

n

|S2
2(α)S

2
3 (α)S

2
6 (α)S

2
k(α)|dα.

By the estimate on [4, p. 80], one has

∫

N\M

|S2
2(α)S

2
3 (α)S

2
6 (α)S

2
k(α)|dα ≪ N1+ 2

k
− 1

4k+ε ≪ N1+ 2
k
−θ1(k)+ε (3.3)

since 1
4k > θ1(k) for all k ≥ 6.

Next we estimate
∫

n
|S2

2(α)S
2
3(α)S

2
6 (α)S

2
k(α)|dα.

For k = 6, by Lemmas 2.3 and 3.2, one has
∫

n

|S2
2(α)S

2
3 (α)S

4
6 (α)|dα

≪ sup
α∈n

|S3(α)|
2
3

(

∫ 1

0

|S2
2(α)S

8
6 (α)|dα

)
1
3
(

∫ 1

0

|S2
2(α)S

2
3(α)S

2
6 (α)|dα

)
2
3

≪ N1+ 1
3−

1
54+ε. (3.4)

For k = 7, by Lemmas 2.3 and 3.2, we have
∫

n

|S2
2(α)S

2
3 (α)S

2
6 (α)S

2
7 (α)|dα

≪ sup
α∈n

|S3(α)|
4
9

(

∫ 1

0

|S2
2(α)S

8
6 (α)|dα

)
1
18
(

∫ 1

0

|S2
2(α)S

12
7 (α)|dα

)
1
6

×
(

∫ 1

0

|S2
2(α)S

2
3 (α)S

2
6 (α)|dα

)
7
9

≪ N1+ 2
7−

1
81+ε. (3.5)

For k ≥ 8 and x in the form (1.2), by Lemmas 2.3 and 3.2, we have

∫

n

|S2
2(α)S

2
3 (α)S

2
6 (α)S

2
k(α)|dα

≪ sup
α∈n

|S3(α)|
2
3x

(

∫ 1

0

|S2
2(α)S

8
6 (α)|dα

)
1
3x
(

∫ 1

0

|S2
2(α)S

2
3 (α)S

2x
k (α)|dα

)
1
x
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×
(

∫ 1

0

|S2
2(α)S

2
3(α)S

2
6 (α)|dα

)1− 4
3x

≪ N1+ 2
k
− 1

54x+ε. (3.6)

By (3.4)–(3.6), we have

∫

n

|S2
2(α)S

2
3 (α)S

2
6 (α)S

2
k(α)|dα ≪ N1+ 2

k
−θ1(k)+ε. (3.7)

Thus, it establishes (3.2) by (3.3) and (3.7). Hence, Theorem 1.1 holds.

4 Proof of Theorem 1.2

Suppose that N is a large positive integer. Let Sk(α) be defined as in Lemma 2.1. Let

r(n) =
∑

p2
1+p4

2+p4
3+pk

4=n
N
4 <p2

1,p
4
2,p

4
3,p

k
4≤N

(log p1)(log p2)(log p3)(log p4),

where p1, p2, p3, p4 are primes and the major arcs M, minor arcs m, N and n be defined as

in Section 3. Then the weighted number of representations of n in the form of (1.3) equals

r(n) =

∫ 1

0

S2(α)S
2
4 (α)Sk(α)e(−nα)dα =

∫

M

+

∫

m

.

Whenever B ⊂ [0, 1] is measurable, we put

rB(n,N) =

∫

B

S2(α)S
2
4 (α)Sk(α)e(−nα)dα.

Then we have

r(n) = r[0,1](n,N) =

∫ 1

0

S2(α)S
2
4 (α)Sk(α)e(−nα)dα.

Next we will deal with the integral of major arcs and minor arcs, respectively. Applying the

now standard methods of enlarging major arcs (see [8]), we can get the following result.

Lemma 4.1 For all even integer n with N < n ≤ 2N , one has rM(n,N) ≫ N
1
k
−ε.

Lemma 4.2 For α ∈ M(2K)\M(K), N
2
5k ≪ K ≪ N

1
8 , one has

S2(α) ≪ N
1
2+εK− 1

2 ,

S3(α) ≪ N
1
3+εK− 1

2 ,

S4(α) ≪ N
11
80+εK

1
2 +N

1
4+εK− 1

2 ,

S5(α) ≪ N
11
100+εK

1
2 +N

1
5+εK− 1

2 .

Proof The [7, Theorem 2] implies that, if 1 ≤ q ≤ H, (a, q) = 1, |qα − a| < HN−1 with

H ≪ N
1
k , then

∑

p∼N
1
k

e(αpk) ≪ H
1
2N

11
20k+ε +

N
1
k
+ε

(q +N |qα− a|)
1
2

. (4.1)
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If α ∈ M(2K)\M(K), N
2
5k ≪ K ≪ N

1
8 , then this lemma clearly follows by (4.1).

Proof of Theorem 1.2 By Bessel’s inequality, we have

∑

N<n≤2N

∣

∣

∣

∫

m

S2(α)S
2
4 (α)Sk(α)e(−nα)dα

∣

∣

∣

2

≤

∫

m

|S2
2(α)S

4
4 (α)S

2
k(α)|dα.

Thus, to prove Theorem 1.2, it suffices to show that
∫

m

|S2
2(α)S

4
4 (α)S

2
k(α)|dα ≪ N1+ 2

k
−θ2(k)+ε, (4.2)

where θ2(k) is defined in Theorem 1.2.

Obviously, we know that
∫

m

|S2
2(α)S

4
4 (α)S

2
k(α)|dα ≪

∫

N\M

|S2
2(α)S

4
4 (α)S

2
k(α)|dα

+

∫

n

|S2
2(α)S

4
4 (α)S

2
k(α)|dα.

First, we show that
∫

N\M

|S2
2(α)S

4
4 (α)S

2
k(α)|dα ≪ N1+ 2

k
−θ2(k)+ε. (4.3)

It suffices to prove that
∫

M(2K)\M(K)

∣

∣S2
2(α)S

4
4 (α)S

2
k(α)

∣

∣dα ≪ N1+ 2
k
−θ2(k)+ε

for N
2
5k ≪ K ≪ N

1
8 . By [5, Lemmas 4.2 and 5.2 ], we have

∫

M(2K)\M(K)

|S2
2(α)S

4
4 (α)S

2
k(α)|dα

≪ sup
α∈M(2K)\M(K)

|S2
2(α)S

4
4 (α)|

∫

M(2K)

|S2
k(α)|dα

≪
N1+ε

K
(K2N

11
20+ε +N1+εK−2)(N−1K(N

1
kK +N

2
k ))

≪N
11
20+

1
k
+εK3 +N

11
20+

2
k
+εK2 +N1+ 1

k
+εK−1 +N1+ 2

k
+εK−2

≪N1+ 2
k
− 4

5k+ε ≪ N1+ 2
k
−θ2(k)+ε,

since 4
5k > θ2(k) for all k ≥ 4.

Next we show that
∫

n

|S2
2(α)S

4
4 (α)S

2
k(α)|dα ≪ N1+ 2

k
−θ2(k)+ε. (4.4)

For k ≥ 9 and x in the form in Theorem 1.2, by Lemmas 2.3–2.4 , one has
∫

n

|S2
2(α)S

4
4 (α)S

2
k(α)|dα

≪
(

∫ 1

0

|S2
2(α)S

4
4 (α)|dα

)1− 1
x
(

∫ 1

0

|S2
2(α)S

2
4 (α)S

2x
k |dα

)
1
x

sup
α∈m

|S4(α)|
2
x
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≪N1+ 2
k
− 1

48x+ε.

We use Zhao [18, Lemma 3.1] to prove (4.4) for 4 ≤ k ≤ 8, since the methods are same, we only

give the proof for k = 5 for simplicity.

For k = 5, by [18, Lemma 3.1] with g(α) = S4(α) and h(α) = S5(α), one has
∫

n

|S2
2(α)S

4
4(α)S

2
5 (α)|dα

≪N
1
4J

1
4
0

(

∫

n

|S4
2(α)S

6
4(α)S

2
5 (α)|dα

)
1
4
(

∫

n

|S2
2(α)S

3
4 (α)S

2
5 (α)|dα

)
1
2

+N
1
4 (1−2−4)+ε

∫

n

|S2
2(α)S

3
4 (α)S

2
5 (α)|dα, (4.5)

where

J0 ≪ N− 3
5+ε

by [18, Lemma 2.2].

By Hölder’s inequality, Lemmas 2.3 and 2.5, one has
∫

n

|S2
2(α)S

3
4 (α)S

2
5 (α)|dα

≪
(

∫

n

|S2
2(α)S

4
4 (α)S

2
5(α)|dα

)
1
4
(

∫ 1

0

|S2
2(α)S

4
4 (α)|dα

)
1
2
(

∫ 1

0

|S2
2(α)S

6
5 (α)|dα

)
1
4

≪N
4
5+ε

(

∫

n

|S2
2(α)S

4
4 (α)S

2
5 (α)|dα

)
1
4

. (4.6)

By Lemma 3.2,
∫

n

|S4
2(α)S

6
4 (α)S

2
5(α)|dα ≪ sup

α∈n

|S2(α)S4(α)|
2

∫

n

|S2
2(α)S

4
4 (α)S

2
5 (α)|dα

≪N
65
48+ε

∫

n

|S2
2(α)S

4
4 (α)S

2
5 (α)|dα. (4.7)

By (4.5)–(4.7), we have
∫

n

|S2
2(α)S

4
4 (α)S

2
5 (α)|dα ≪ N1+ 2

5−
1
48+ε.

Thus, it establishes (4.2) by (4.3)–(4.4).

5 Proof of Theorem 1.3

Suppose that N is a large positive integer. Let Sk(α) be defined as Lemma 2.1. Denote

r(n) =
∑

p2
1+p3

2+p5
3+pk

4=n
N
4 <p2

1,p
3
2,p

5
3,p

k
4≤N

(log p1)(log p2)(log p3)(log p4)

and let the major arcs M, minor arcs m, N and n be defined as in Section 3. Then the weighted

number of representations of n in the form of (1.4) equals

r(n) =

∫ 1

0

S2(α)S3(α)S5(α)Sk(α)e(−nα)dα =

∫

M

+

∫

m

.
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Whenever B ⊂ [0, 1] is measurable, we put

rB(n,N) =

∫

B

S2(α)S3(α)S5(α)Sk(α)e(−nα)dα.

Then we have

r(n) = r[0,1](n,N) =

∫ 1

0

S2(α)S3(α)S5(α)Sk(α)e(−nα)dα.

Next we will deal with the integral of major arcs and minor arcs, respectively. Applying the

now standard methods of enlarging major arcs (see [8]), we can get the following result.

Lemma 5.1 For all even integer n with N < n ≤ 2N , one has rM(n,N) ≫ N
1
30+

1
k
−ε.

Proof of Theorem 1.3 By Bessel’s inequality, we have

∑

N<n≤2N

∣

∣

∣

∫

m

S2(α)S3(α)S5(α)Sk(α)e(−nα)dα
∣

∣

∣

2

≤

∫

m

|S2
2(α)S

2
3 (α)S

2
5 (α)S

2
k(α)|dα.

Thus, to prove Theorem 1.3, it suffices to show that
∫

m

|S2
2(α)S

2
3 (α)S

2
5 (α)S

2
k(α)|dα ≪ N

16
15+

2
k
−θ3(k)+ε, (5.1)

where θ3(k) is defined in Theorem 1.3. Obviously, one has

∫

m

|S2
2(α)S

2
3 (α)S

2
5 (α)S

2
k(α)|dα ≪

∫

N\M

|S2
2(α)S

2
3 (α)S

2
5(α)S

2
k(α)|dα

+

∫

n

|S2
2(α)S

2
3 (α)S

2
5 (α)S

2
k(α)|dα.

First, we show that
∫

N\M

|S2
2(α)S

2
3 (α)S

2
5 (α)S

2
k(α)|dα ≪ N

16
15+

2
k
−θ3(k)+ε. (5.2)

It suffices to prove that
∫

M(2K)\M(K)

|S2
2(α)S

2
3(α)S

2
5 (α)S

2
k(α)|dα ≪ N

16
15+

2
k
−θ3(k)+ε

with N
1
5k ≪ K ≪ N

1
8 . By [5, Lemmas 4.2 and 5.2], one has

∫

M(2K)\M(K)

|S2
2(α)S

2
3 (α)S

2
5 (α)S

2
k(α)|dα

≪
N1+ε

K

N
2
3+ε

K
(N

11
50+εK +N

2
5+εK−1)(N−1K(N

1
kK +N

2
k ))

≪N
16
15+

2
k
− 4

5k+ε ≪ N
16
15+

2
k
−θ3(k)+ε,

since 4
5k > θ3(k) for all k ≥ 5. This establishes (5.2).

Next, we show that
∫

n

|S2
2(α)S

2
3 (α)S

2
5 (α)S

2
k(α)|dα ≪ N

16
15+

2
k
−θ3(k)+ε. (5.3)
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For k = 5, by [18, Lemma 3.1] with g(α) = S3(α) and h(α) = S5(α), one has
∫

n

|S2
2(α)S

2
3 (α)S

4
5 (α)|dα

≪N
1
3J

1
4
1

(

∫ 1

0

|S4
2(α)S

2
3 (α)S

6
5 (α)|dα

)
1
4
(

∫ 1

0

|S2
2(α)S3(α)S

4
5 (α)|dα

)
1
2

+N
1
3 (1−2−3)

∫ 1

0

|S2
2(α)S3(α)S

4
5 (α)|dα, (5.4)

where

J1 ≪ N− 3
5+ε

by [18, Lemma 2.2]. By Hölder’s inequality, Lemmas 2.3 and 2.5, one has
∫

n

|S2
2(α)S3(α)S

4
5 (α)|dα ≪

(

∫ 1

0

|S2
2(α)S

2
3 (α)S

2
5 (α)|dα

)
1
2
(

∫ 1

0

|S2
2(α)S

6
5 (α)|dα

)
1
2

≪N
17
15+ε. (5.5)

Also,
∫

n

|S4
2(α)S

2
3 (α)S

6
5 (α)|dα ≪ sup

α∈n

|S2
2(α)S

2
5 (α)|

∫ 1

0

|S2
2(α)S

2
3 (α)S

4
5 (α)|dα

≪N
19
15+ε

∫ 1

0

|S2
2(α)S

2
3 (α)S

4
5 (α)|dα. (5.6)

Thus, by (5.4)–(5.6), we obtain that
∫

n

|S2
2(α)S

2
3 (α)S

4
5 (α)|dα ≪ N1+ 7

15−
1
24+ε.

It establishes (5.3) for k = 5.

For k = 6, applying Hölder’s inequality, Lemmas 2.3 and 2.5, one has
∫

n

|S2
2(α)S

2
3(α)S

2
5 (α)S

2
6 (α)|dα

≪ sup
α∈n

|S3(α)|
8
9

(

∫ 1

0

|S2
2(α)S

6
5 (α)|dα

)
1
3
(

∫ 1

0

|S2
2(α)S

8
6 (α)|dα

)
1
9

×
(

∫ 1

0

|S2
2(α)S

2
3 (α)S

2
6 (α)|dα

)
5
9

≪N1+ 2
5−

2
81+ε.

It establishes (5.3) for k = 6.

For k ≥ 7 and x in the form in Theorem 1.3, by Lemmas 2.3, 2.5 and 3.2, one has
∫

n

|S2
2(α)S

2
3 (α)S

2
5 (α)S

2
k(α)|dα

≪ sup
α∈n

|S3(α)|
1
x

(

∫ 1

0

|S2
2(α)S

6
5 (α)|dα

)
1
2x
(

∫ 1

0

|S2
2(α)S

2
3 (α)S

2
5 (α)|dα

)1− 3
2x

×
(

∫ 1

0

|S2
2(α)S

2
3 (α)S

2x
k (α)|dα

)
1
x

≪N
16
15+

2
k
− 1

36x+ε.

It establishes (5.3) for k ≥ 7. Hence, (5.1) holds by (5.2)–(5.3), and it establishes Theorem 1.3.
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6 Proof of Theorem 1.4

Suppose that N is a large positive integer. Let Sk(α) be defined as in Lemma 2.1. Let

r(n) =
∑

p3
1+p3

2+p3
3+p3

4+pk
5=n

N
5 <p3

1,p
3
2,p

3
3,p

3
4,p

k
5≤N

(log p1)(log p2)(log p3)(log p4)(log p5)

and the major arcsM = M(Q), minor arcs m, N and n be defined as in Section 3 with Q = N
1
2k .

Then the weighted number of representations of n in the form of (1.6) equals

r(n) =

∫ 1

0

S4
3(α)Sk(α)e(−nα)dα =

∫

M

+

∫

m

.

Whenever B ⊂ [0, 1] is measurable, we put

rB(n,N) =

∫

B

S4
3(α)Sk(α)e(−nα)dα.

Then we have

r(n) = r[0,1](n,N) =

∫ 1

0

S4
3(α)Sk(α)e(−nα)dα.

Next we will deal with the integral of major arcs and minor arcs, respectively. Applying the

now standard methods of enlarging major arcs (see [8]), we can get the following result.

Lemma 6.1 For all odd integer n with N < n ≤ 2N , one has rM(n,N) ≫ N
1
k
+ 1

3−ε.

Proof of Theorem 1.4 By Bessel’s inequality, we have

∑

N<n≤2N

∣

∣

∣

∫

m

S4
3(α)Sk(α)e(−nα)dα

∣

∣

∣

2

≤

∫

m

|S8
3(α)S

2
k(α)|dα.

Thus, to prove Theorem 1.4, it suffices to show that
∫

m

|S8
3(α)S

2
k(α)|dα ≪ N

5
3+

2
k
−θ4(k)+ε, (6.1)

where θ4(k) is defined in Theorem 1.4. Obviously, one has
∫

m

|S8
3(α)S

2
k(α)|dα ≪

∫

N\M

|S8
3(α)S

2
k(α)|dα +

∫

n

|S8
3(α)S

2
k(α)|dα.

First, we show that
∫

N\M

|S8
3(α)S

2
k(α)|dα ≪ N

5
3+

2
k
−θ4(k)+ε. (6.2)

It suffices to prove that
∫

M(2K)\M(K)

|S8
3(α)S

2
k(α)|dα ≪ N

5
3+

2
k
−θ4(k)+ε

with N
1
2k ≪ K ≪ N

1
8 . By [5, Lemmas 4.2 and 5.2], one has

∫

M(2K)\M(K)

|S8
3(α)S

2
k(α)|dα ≪N

8
3+εK−4(N−1K(N

1
kK +N

2
k ))
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≪N
5
3+

2
k
− 3

2k+ε

≪N
5
3+

2
k
−θ4(k)+ε,

since 3
2k > θ4(k) for all k ≥ 4. This establishes (6.2).

Next, we show that
∫

n

|S8
3(α)S

2
k(α)|dα ≪ N

5
3+

2
k
−θ4(k)+ε. (6.3)

For k = 4, by [18, Lemma 3.1] with g(α) = h(α) = S3(α), one has
∫

n

|S8
3(α)S

2
4 (α)|dα ≪N

1
3J

1
4

(

∫

n

|S12
3 (α)S4

4 (α)|dα
)

1
4
(

∫

n

|S7
3(α)S

2
4 (α)|dα

)
1
2

+N
1
3 (1−2−3)

∫

n

|S7
3(α)S

2
4 (α)|dα, (6.4)

where

J ≪ N− 1
3+ε

by [18, Lemma 2.2]. By Hölder’s inequality and Lemma 2.6, one has
∫

n

|S7
3(α)S

2
4 (α)|dα ≪

(

∫ 1

0

|S8
3(α)|dα

)
3
4
(

∫ 1

0

|S4
3(α)S

8
4 (α)|dα

)
1
4

≪ N
11
6 +ε. (6.5)

Also,
∫

n

|S12
3 (α)S4

4 (α)|dα ≪ sup
α∈n

|S3(α)|
6
(

∫ 1

0

|S8
3(α)|dα

)
1
2
(

∫ 1

0

|S4
3(α)S

8
4 (α)|dα

)
1
2

≪ N
23
6 +ε. (6.6)

Thus, by (6.4)–(6.6), we obtain that
∫

n

|S8
3(α)S

2
4 (α)|dα ≪ N

5
3+

1
2−

1
24+ε.

It establishes (6.3) for k = 4.

For k ≥ 5 and x in the form in Theorem 1.4, by Hölder’s inequality, Lemmas 2.6 and 3.2,

one has
∫

n

|S8
3(α)S

2
k(α)|dα ≪ sup

α∈n

|S3(α)|
4
x

(

∫ 1

0

|S8
3(α)|dα

)1− 1
x
(

∫ 1

0

|S4
3(α)S

2x
k (α)|dα

)
1
x

≪N
5
3+

2
k
−θ4(k)+ε.

This establishes (6.3) for k ≥ 5. Hence, (6.1) holds by (6.2)–(6.3). Thus it establishes Theorem

1.4.
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