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Regularity of the p-Gauss Curvature Flow with
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Abstract The authors study the regularity of the p-Gauss curvature flow with flat sides.
In their previous paper [Huang, G. G., Wang, X.-J. and Zhou, Y., Long time regularity of
the p-Gauss curvature flow with flat side, https: //arxiv.org/abs/2403.12292], they obtained
the regularity of the interface, namely the boundary of the flat part. In this paper, they
study the regularity of the convex hypersurface near the interface.
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1 Introduction

Let My be a closed convex hypersurface in R"T!, parametrized by Xo(w), w € S™. In this

paper we study the Gauss curvature flow with power p > 0,

X (w,0) = Xo(w), (1)

where K is the Gauss curvature of M; = X (w, t), 7 is the outer unit normal of M, at X (w,?).

The Gauss curvature flow has been extensively studied if the initial hypersurface M is
strictly convex (see [1, 3-4, 6, 9]). Here we are concerned with the regularity in the case when
the initial hypersurface M contains a flat side, a question first studied by Hamilton [12]. In
this case, the solution will become strictly convex instantly when ¢ > 0if p < L (see [2, 6]), but
the flat side will persist for a while before M, becomes strictly convex if p > L (see [5, 12]).

In the latter case, the local C*° regularity of the strictly convex part of M; was proved in
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[6, 19], and the C1® regularity across the interface I'y were obtained in [11], where T'; denotes
the boundary of the flat side F;, C M.

When p = 1, the regularity of I'; was obtained in [8] for small time ¢ > 0, and the long time
regularity of I'; in the case n = 2 was obtained in [10], under certain non-degenerate conditions
on the initial hypersurface Mg. The results in [10] were extended to p € (3,1] in [16] when
n = 2. For general n > 2 and p > %, the long time regularity of I'; was recently obtained by
the authors (see [14]). We proved that the interface I'; is smooth until it disappears.

In this paper, we study the regularity of the strictly convex part of M; near the interface I';.
The regularity of M; near I'; does not follow directly from the regularity theory of parabolic
equations, as the flow (1.1) is strongly degenerate near I';, even though the regularity of I'y has
been obtained (see [14]). For simplicity we assume that Mg has only one flat part. Choosing
the coordinates properly, we may assume that My C {y,+1 > 0} and the flat side lies on the
plane {y,+1 = 0}. Then, locally M; can be represented as the graph of a nonnegative function

v,

Yn+1 = ’U(yla e 7yn7t)

over a bounded domain €, such that T'; is strictly contained in €, |[Dv| — oo near 92, and
v satisfies the equation

(det D?v(y, t))P
(1+ Do) 5"

ve(y,t) = y € Qy, t>0. (1.2)

By the C1@ regularity (see [11]), we have |Dv(y,t)| — 0 as y — Ty.
For the short time smoothness of the interface I'y, it is necessary to assume certain non-
degeneracy conditions on the initial hypersurface My (see [7-8, 10]). Denote

o

op+1 o1

= | —v s Up =n —
Op

1 (1.3)
p
The following non-degeneracy conditions were introduced in [7-8, 10].

(I1) The level set {v(y,0) = e} is uniformly convex for £ > 0 small, i.e., its principal
curvatures have positive upper and lower bounds.

(I2) There exists a constant \g € (0, 1) such that
Mo <[Dg(y,0)| < A" onTo.
Note that condition (12) implies that

optl

v(y,0) = dist(y,To) 77 .

We also assume the following (I3).

(I3) My is locally uniformly convex and smooth away from the flat region, and

9(y,0) € C2**({v > 0}),
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where C77* will be introduce in (1.9) below.

We have the following regularity for the function g near the interface I';.

Theorem 1.1 Assume conditions (11)~(13). Then if p > £, we have g(-,t) € C2F({v > 0})
on 0 <t<T* for some 8 € (0,1). Moreover,

(1) if = l € 7T, g is C*®-smooth up to 'y for 0 <t < T*;

2

(2) if = ¢Z+,g€C[ b2 ({ > 0}) for 0 <t < T*, where Bo = min {1, ——2[ }}

We remark that the regularity for g in Theorem 1.1 is optimal, due to the term g(y, t)ﬁ R
dist(y, Ft)% in the equation (3.3). As usual we use [a] to denote the greatest integer less than
a.

From Theorem 1.1, it follows the regularity of the height function v.

Corollary 1.1 Assume conditions (11)—(I3) and assume p > +

(1) If Ul—p € 27, v is C*-smooth up to 'y for 0 <t <T*;
PRSP :

(2)sz¢Z,UEO cpdorLond ({o > 0}) for 0 <t < T

Moreover, we have the following intermediate estimate:

Dko+2 , Dk0+2 i
sup sup dy,g(t) @ | 9,8) - @ %) <C (1.4)
te€[o,T] y ge{o<v(-,t)<1} ly — y|"P

for all0 <o <T < T*, where d, ;(t) :== min{dist(y, I';), dist(y,I'¢)}, ko is the greatest integer

strictly less than U—Qp and C' is a positive constant depending only on Mo, n,p,o,T.

For intermediate estimate to uniformly elliptic and parabolic equations, we refer the readers
to [17, Chapter IV].
To prove Theorem 1.1, we introduce the Hodograph transformation h, given in (3.4), which
satisfies the evolution equation
(det H)P

hy = - e in {yn+1 > 0}, (1.5)
(hn+1 + yn+1(1 + h +oeee hn 1)) 2

where the matrix H is given in (3.8). Note that equation (1.5) is a degenerate fully nonlinear
parabolic equation without the concavity condition, and the coefficient yil is only Holder
continuous when p > —. Hence the regularity theories, such as [15, 17], do not apply. Here
we make use of some estlmates in [13].

The paper is organized as follows. In Section 2, we recall the short time regularity and some
basic estimates. We then derive the equations for g, h and prove the regularity (Theorem 1.1)

in Section 3.

Notation 1.1 Given two positive quantities a and b, we denote a < b if there is a constant
C > 0, depending only on My, n,p,T, such that a < Cb, where T € (0,7*) is any given

constant. We also denote a =~ b if a < b and b < a.
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Let k& > 0 be an integer and « € (0,1]. Let ©Q be a domain in R™. As usual, we define the

norm || - ||ck,a(§) by

DU () — D)

Ul ko) = sup |D7U(z)| + sup 1.6
|| ||Ck Q) |'y\§k| ( )l Dk |$ _y|a ( )
z,ye
In the parabolic case, we denote
[
D)D:U(x,t) — DYD:U (y,t'
= s DI+ sp PP OZ DDVl g
[y +2s<k Iyl +2s=F (le —y2+ [t —t])=2
(z,t)EQ (z,t),(y,t")eQ
where @ is a domain in R” x R'. If o € (0,1), we will write || -| . kta _ as [ llgr+ag) for
Con (Q)

brevity.
To study the regularity of g, we introduce Holder spaces with respect to the metric p in

R?”~! x Rt x R as in [8, 10],

pl(, 1), (y, 9)] = 2" =y’ + [VEn = Vynl + V]t = 5.

Let Q be a domain in R™* x R, where R™* := R"~! x RT = {z € R" | x,, > 0}. We denote

|U(p1) — U(p2)l
Ul o =sup|U(p)| + sup ————— (1.8)
(@) PER p1,P2€Q N[plvpﬂa

n—1 n—1
Ul czreg) = lznUnnllcoo gy + D_IVEnUnillcoog) + D_ IViillesg)

i=1 ij=1

+_Uillcpe@ + 10l cge @) + 101l cg= ) (1.9)

=1
and

Ul gm2+a gy = Y IIDIDiU| 2+ gy (1.10)

|y[+2s<m

2 Some Estimates

First we recall the short time existence and regularity in [8], where Daskalopoulos and

Hamilton proved the following result.

Proposition 2.1 (see [8, Theorem 9.1]) Assume conditions (I1)—(I3). Then, there exists
a time Ty > 0 such that (1.1) admits a solution My for 0 < t < Ty, and at any given time
t € (0,To], My satisfies the conditions (11)—(13).
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Remark 2.1 Proposition 2.1 is proved in [8] for n = 2. The proof also holds for high
dimension case n > 3. Moreover, for 0 < t < T}, the proof also implies the following condition
(see [8, Theorem 9.2]):

(I4) gijTig; € L>®({v > 0}), where 7 = (7,--- ,7,) is any tangent vector field of the level
set of g, i.e., 7- Vg = 0.

Therefore, choosing a sufficiently small ¢y > 0 as the initial time, we may assume that (14)
holds at ¢t = 0.

To prove Theorem 1.1, we then tap into some estimates obtained in previous work [14].

Let u(-,t) be the Legendre transformation of v(-,t), i.e.,
u(z,t) =sup{y -z —v(y,t) |y € X}, =z € Dyo()=R" (2.1)

Then u(z,t) satisfies the equation
1

det D%y = -
(—ue)? (1 + |z[?)

o=+ ¢tdos (2.2)
3

P

where ¢; is the volume of the flat part. Hence ¢; > 0 for ¢ € [0, 7*). Without loss of generality,
we assume that the origin is an interior point of the convex set {v(-,¢) = 0} for all ¢t € [0, T*).

Then for any given 7' € (0,7), there is a positive constant py such that
B, (0) CC {y € R" | o(y,t) =0}, vt e [0,T]. (2.3)
Lemma 2.1 (see [14]) Assume conditions (I11)—(14). Then

—Ut(ZII, t) ~ |$|,
U (2, 1) ~ |2" (2.4)

u§§($,t) ~ |$|_1

for any = € By (0)\{0}, t € [0,T] and any unit vector € L of:, where u,,(z,t) == %xixjuij(x,t),

|z
Denote r = |z|. Let

0,58 = U0 (2.5)
T

where (0,7) is the spherical coordinates for . Then ( satisfies the parabolic Monge-Ampere

type equation (see [14]):

p
Css + 2—5%% Csel e Can,l
9p
Irg _
—¢, det Css o0, + ¢+ F5Cs 016, _T(s), (26)
<59n71 <919n71 t <9n719n71 + C =+ U_QPSCS
4 _(n+2)p—1
P

in {s > 0}, where F(s) = 470, % (1+ 577 )
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Lemma 2.2 (see [14, Theorem 6.3]) Assume the conditions (11)—(14). We have
<l e2taosn-1x0a)xjer) S C; VO<o<T <TF, (2.7)

where the constants ap € (0,1) and C > 0 depend only on Mo, n,p,o,T.

Next we quote the C“ and C%® estimates for degenerate linear parabolic equations which

are needed later. Given a point py = (2o, t0) = (2(, Zo,n, to) € R™* x R, denote
Q;(p()) = {(J?,t) | Tp > 07 |$I - $6| < 12 |$n B ZIIO,n| < pzvtO - p2 <t S tO}a (28)

which is a cylinder in R™* x R. When po = (0,0), we simply write Q= Q}(po).

Consider the following linear degenerate operator

n—1 n—1 n
L U :=-U;+ ALy Onn U + 220@”\/1'7161'71[] + Z aijaijU + ZblﬁzU (29)
=1 i,j=1 i=1

with variable coefficients a;;, b; defined in the cylinder Q;;.

Lemma 2.3 Assume that the coefficients a;j,b; are measurable and satisfy

ai;&& > NE®,  VEER™,

i, [bi] < A7

and

for some constants \,v € (0,1). Let U € C?(Q,) be the solution to L.U = f. Then there
exists o € (0,1) such that for any p' € (0, p), it holds

_1
llcgiay < C(suplt+ ([ 171t ara) ™). (210)
u i\, Q:, Q:,

where the positive constant C depends only on n, p, p', \ and v.

For the proof of Lemma 2.3, we refer the readers to [9, Theorem 3.1] or [18, Theorem 3.3].

Lemma 2.4 (Schauder estimate) (see [8]) Assume that the coefficients a;;,b; € C5(Q%)
for some a € (0,1) and satisfy

aij&i&j > MEP®,  VEER™,
-1
laijllca@e:  Nbillea@e <A

and

b, > X\ at {x, =0}
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for some constant A € (0,1). Let U € Cﬁ+°‘(Q;) be the solution to L, U = f. Then for any
given p' € (0, p), it holds
|\U|\cg+ﬂ(Q_:,) < CUl Ly + 1 flleg@n): (2.11)

where the positive constant C depends only on n,a, p, p’ and .

3 The Regularity for the Graph

In this section, we will first derive the evolution equations of g and h. Then, we utilize the
a priori estimates of u and ( to obtain the CE*B regularity of g and h, which allows us to prove

Theorem 1.1 and Corollary 1.1.

3.1 Derivation of equations

Recall that the function v satisfies equation (1.2) and ¢ is defined in (1.3). A direct compu-
tation yields that, for 1 <i,5 < n,

1 1
Vi =g Gi, V¢ =gor Gt (3.1)
and
1 1 14
Vij =9 Gij +—9g7  gig;- (3.2)
Op

Then, g satisfies

2 | P
(gdet (D g9+ —g Dg®Dg))
)4
gt = " _ ) (33)
(1-+ 97 | Dgf2) =5

where Dg ® Dg is a matrix with (i, j)-entries g;g;.

Then, we perform the following Hodograph transformation mentioned in Section 1. Let
Po = (To, to) be a point on the interface T', with 0 < 7o < T*. By a rotation of the coordinates,
we may assume that e, = (0,---,0,1) is the unit outer normal of the flat part {v(y,%y) = 0}

at Dy, so that at the point, we have

9i(0y) =0, i=1,---.,n—1, g¢,(By) > 0.

The above condition can be guaranteed by the initial conditions on ¢(y,0) and later by the
a priori estimates on |Dg| (see (3.12) below). Hence, we can solve the equation y,+1 =

9(y1,- -, Yn,t) with respect to y,, around the point p, and yield a map

Yn = _h(yla oy Yn—1yYn+1, t)7 (34)

defined for all (y1,---,Yn—1,¥yn+1,t) sufficiently close to Gy = (Fo.1,- - ,¥o.n_1,0,t0). Then,
direct computations give that
1 hy

Dg = — n—71, = —
g hn+1(h17 7h 1 ) gt I

(3.5)
n+1
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and for 1 <id,j <mn—1,

1 hi hi hih;
ij — — h’L_h’Ln —J_h'n — hn n #)
Gij hn—‘,—l( j ., +1thrl 3, +1hn+1 + Apy, +1hi+1 ;
1 h;
Gin = —(hm 1= P11 )
h%+1 + +1,n+ Tori
and
L h
Inn = — 373 NMn+in+1-
hy 41
According to (3.3), h satisfies
nt1det H)P
hy = _ (y +1d€ ) (36)

= (n42)p—1
(hi-i-l +yn+1(1 +h%+ "'+h%—1)) 2"

where H is an n X n matrix with entries

h; hi hihj oy thih;

Hij = hij — hins1—— — hjnt1—— + Pt nt1 79— P d
hn-i—l hn-i—l
hi oy th

hn+1 Yn+1

2 - ’
hn-i—l Yn+1 hn+1

Hi 1 = hint1 — hngins1

and —1
" —h _ Tp fmtn
n+1,n+1 n+1,n+1 .

Yn+1

By the elementary properties of determinants, equation (3.6) can be transformed into

det H)P
ht = 2 ( ) (nt2)p—1 9 (37)
(hpy1 T Y1 (L+ [Dyh[2) =2
where
hi1 hl,n—l \/yn+1hl,n+1
ET: (38)
hl,n—l hn—l,n—l \/yn+1hn—1,n+l
\/yn+lh1,n+l te \/yn+lhn—l,n+1 yn+1hn+1,n+1 - a;lhn+1

One can calculate that the linearized operator of (3.7),

n—1 n—1
L= _hitat i z';lpﬁija iYj + Z;pﬁim—’—l%ayiynﬂ +pyn+1ﬁn+l"n+18@/n+1yn+1
n—1 =
+ann+1 _ Z [(n +2l)p — 1y, %4 hid,,, (3.9)
=t hy 1 + Y21 (1+ [Dyhf?)
where H, Hin+1l Fntlntl i — 1 ... p—1 are the elements of the inverse matrix of H
and
by yns1.t) = —( (4 Dp = Uhns | L pprstntr), (3.10)

s 1
h121+1 + yn+l(1 + |Dy’h|2) P
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3.2 Regularity for g and h

Lemma 3.1 Assume the conditions (I1)—(14). Then for some B € (0,1), it holds that

tgﬁ% Hg('at)||cﬁ+5(m) < C(Mo,n,p,0,T) (3.11)

forall0 <o <T <T*.

Proof Step 1 First order derivative estimates.
By (2.1) and (2.4), we have

v=x-Du—u=ru,—u
= / (pup — u)pdp = / puppdp = 7t
0 0
Hence g =~ r77. It follows from (3.1) and Lemma 2.1 that
ge~1, |Dg|=1, (3.12)

uniformly near the interface 'y for ¢ € (0,7]. Note that estimate (3.12) allows us to perform
the local coordinate transform (3.4).
Fix a point B, = (¥y,%0) on the interface I'; , where Zo € (0,T]. By a rotation of the

coordinates, we may assume that the unit outer normal of the flat part {v(y,%o) = 0} at p, is

en = (0,---,0,1), ie., % = e,. By [10, Lemmas 4.7-4.8], there exist positive constants
n > 0 and y9 > 0, depending only on the initial data and pg, such that
D _
en |Dng§| >, Yp=(y,t) with g(p)>0 and [|p—pol<n, t€(0,f].  (3.13)
g\p

From (3.5) and (3.12)—(3.13), one knows, for a small constant n > 0,

ht ~ 1a _hn+1 ~ \/ 1+ |Dy/h|2 ~ 17 v (y/vyn—Flat) S ny(%)a (314)

where the cylinder @y is defined in (2.8).
Step 2 Second order derivative estimates.

Now, we fix a point (yo,%0) € {(y,t) | g(y,t) > 0,[(y,t) — Ty, to)| < n,T0 —n* <t <o} for
g

small constant n > 0. Let 1), ... ¢n=1 ¢(n) — ‘:%g be n vectors at the point (yo,tp) with
€0 = [ufi=gita j=1,---,n— 1 Note that €D 1M for i =1,--- ,n — 1. From (3.13), one
gets
det(), - g0, gy > (L )"‘2 ~1. (3.15)
e e =g

At point (yo,to), consider the following matrix

Jeew 0 Jegtn-1) V99e e

Je@em)  tt Je@gtn-) V99e@ g

G = (3.16)

1 2
V99cme 0 \/GGetmgmn-1  GGetmgn) + g_p|D9|
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Then, (3.15) gives that

1
det G = g det (DQQ b=
p

g7'Dg ® Dg) (det(§M), -+ "D, ¢())2

~ g det (D2g—|— Uipg—lpg@ng). (3.17)
The first aim in this part is to show that
G ~ Lyxn, (3.18)

where I, «,, is the identity matrix. For this, let v be the unit eigenvector which corresponds to
the smallest eigenvalue of D?*u. Recall that zo = Dyv(yo,to). Then r = |zg| can be arbitrary

small if we take 1 > 0 small.
Claim: [ .y —1| <ror, €@ .y STUTP, i=1,---,n—1.

By estimate (2.4) and

£ — Dg(yo,to) _ Du(yo,to) _ @0 _ o
|Dg(yo,to)l  |Dv(yo,to)l  |wol 7

we have Ugmgm) = Upe & 77771 at the point (zo,t9) (see [14]). Suppose the first part of the
Claim fails, i.e., |€™ - v — 1] >> r7». Denote

¢ = 7y + 7€ for some unit vector € L v,
where 7, = €™ .y and 75 = (™ . £, Then, it holds
In|=11> ", m>rT,
which yields

op—1 2 2
ror R Ug(n) g(n) —Tluyy+2T1T2qu+T2U§

= 7—2\/ |Tl|\/uuu

> rorT 1.

This contradiction proves the first part of the Claim.
It then follows that

€ — v =2 w1 17
Hence
|§(i) v = |§(i) . (g(n) —v)| 570%” i=1,---,n—1,

which proves the second part of the Claim.
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By the above Claim and Lemma 2.1, for £ 1 v, we get

_ (1 +op
Jeg) = o

=r W E D) 4 20 @€Y €)1 (- 60

<r et o o) <

~

ito _1 (2) ¢(4)
’U) ’Uf(i)f(i) =T uf £

fori=1,---,n—1, and

1+o0,

1 T Ito
9Gemrgn) + O,—|Dg|2 = 9( U) pUg(n)g(n)
p

P
~ ro.p_luf(n)f(n)
< ror=lpl=on o,
Then from equation (3.3) and estimates (3.12), (3.17), one knows G & I, x,.
We next claim that the matrix H, defined in (3.8), satisfies

H & Lxn  in Q(T@0), (3.19)

where g, = (7(,,0,). Indeed, by the definition of h, one has

g(’i):ei_h’ie”’ 7::1,"',7'1,—1,
V1+h?
£ — (Dyh, 1)
1+ |Dyh|?

at the point (y{, 9(yo,0),%0). Then a direct computation implies

hij .
Jetet) = — 2 ;o 1<i,j<n-1,
Bty /(14 h3)(1 + h3)
1 hih; 1+ |D, h|?
Jergn) = (— RTlik + |2 Y | hi7n+1), 1<i<n-—1, (3.20)
' V(1 +h2)(1+ Dy h[?) hnta Wi
_ hihihi 2l (14 | Dy h|?) hpt1,n41
e = T LA D) R, B '

Here the subscripts k, [ obey the Einstein summation convention from 1 to n — 1. From (3.14),
(3.18) and (3.20), it follows that

n—1
Z (|hij| + |\/ yn+1hi7n+1|) + |yn+1hn+17n+1| S 1, (3'21)
ij=1

which gives (3.19) by (3.7) and the arbitrariness of (yo, to).

Step 3 C2*/-estimate.

Now we refine the estimates of ggemem) and /gge¢n) according to the regularity of ¢. By
Lemma 2.2, ¢(0,s,t) € C*Teo(S"~1 x [0,1] x (0,77]). At the point (zo,to) = (Dyv(yo,to),to),
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where (yo, o) is a fixed point in {(y,t) | g(y,t) > 0,](y,t) — (Yo, to)| < n,T0 —n* <t <1y} for

small constant n > 0, one knows that

o,—1 209p
Ugmygmy = 1777 (ag +O(r~2 ")),
sme ( =) (3.22)

|ué(i)§(")|§TUp_1a Zzlv ,Tl—l,
where £ .= ¢ {£)1n i an orthonormal basis of R” and
PLo
Upp (wa tO)
p—0+ por—t
Then, by Lemma 2.1 and (3.22), we get

(n) ¢(n) (n) g(n)
e US™E e
wEE™ — _

Cdet D2 g US™E™ 4 O(ugo g g gonr==2)

— [1 0(”smgwU5<j)5<n>7“_(”_2) )} -1
’U,E(n)f(n) ’u/&.(n)&.(n) Uf(n)ﬁ(n)

1 O TQUp—n —1
— [+ ( )} . 3.23
Ug(n)g(n) [ Ugim emuf €™ det D2u (3:23)

Here we denote by UE€Y the elements of the adjoint matrix of {ugmgu‘) }?,jzl.

Since

1 1
det D?u ~ (—uy) "7 ~ 17,
> 1
Ugn)ygn) Z Wa

(3.23) implies

n) e (n 1
T ——— Y TP (3.24)
Ug(n)g(n)

As a result, by (3.1)—(3.2), (3.22) and (3.24), we have

(1 + o, )—ﬁ Ly
gGenygn) = @ v Ve(n)g(n) — ——Gen)
e(n)g o IS op 3
1 1 + _% n n
— —( Upv) e ((op + 1) (ru, — u)ug( e _ r?)
Op Op
2 14+ _% _
= Z(E20) T (o 4 0 2 (14 07y 1)
Op Op T Ug(n) g(n)

[

B _(1+Upv)_1+ap( (op + 1)/0 Puppdp
Op Op T‘UP""l((lo + 0(7‘ =P ))

(op + 1)/0 Puppdp

agrortl

<

(1+0(r)) — 1)

Q

(14005 - 1) < o5t (3.25)
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and for j=1,--- ,n—1,

l+0, \~ 55 b1, E@) e
|\/§9§<J‘>5<n)|=\/§( pv) " v §J)£<">|<7’2 Hug” €™

Ip
. |U§(])f(n) n—1 . |’Uf(i) o |T.—(n—2)
<pz 1 Z S I S S
~ “det D?u — r=i/p
<re (3.26)

According to estimates (3.14) and (3.19), by scaling, we can apply interior estimates for

uniformly parabolic equations (see [17]) to get

|ht,n+1(yla yn+17t)| S yr:—il-lv V(ylvyn—i-la t) € Q;@o)a G = (g(/)v 0,%0). (327)

By the relationship between D?h and D?%g in (3.20), the refined estimates (3.25) and (3.26)
give that

@0
Ynt1hnt1n+1 S Y Nhint1l S, =1, ,n—1 in Q;(q). (3.28)
We claim that (3.27) and (3.28) imply h,41 € CE(Q;;@O)) for some 8 € (0,2 ). In fact, for

all (ylvyn-i-la t)v (glvgn—i-laftv) € Q;ky(a())’ one has

Yn+1
|hn+1(yla Yn+1, t) - hn-i-l(ylu Yn+1, t)' < } /~ hpg1,n41 (ylv A, t)d)“

Yn+1

~ fale) = &0
S |yn+1 - yn-i-ll EEDS |\/ Yn+1 — / yn+1| R
and

|hn+1 (y/ayn—i-lat) - hn+1 (’glayn-i-lat)l S |,g/ - y/|

Also for |t —ﬂ <yl .

~ 1
|hn+l(y/ayn+lut) - hn+l(y/7yn+lat)| S |t - t|yn+1 < |t - |2

for |t _ﬂ > 9721-1-1,

|hns1 (Y Ynt15 ) = b1 (Y Ynga, 1)
<N (0 | =7, 8) = B (4 Y1, )]

A+ nga (|t =115, 8) = B (3, [t — 87, 9)]

g1 (' 1= 105, 8) = Pogr (8, g, D)
SE— 7 = yora| T+ [t — ]2
<t — |T0'

The above estimates conclude that h,41 € Cﬁ(Q;‘,(ﬁO)).
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Moreover, the estimate (3.28) also gives that

By,0,0) = — (— 0t D= ey ﬁﬁ"“’"*l)
B2y +unia (L4 Dyh2) P e
_ _(tlp-1.,
hn_l,.l ~ ’
which yields that the coefficient of 9y, . ,,
by ynrst) 210 VY g1, ) € Q5 (@0)- (3.29)

By (3.14), (3.19) and (3.28), there holds

b/(pH"™ ™ > 1 in Q) (q,)-

Hence, by Lemma 2.3, we obtain hy,- -, h,_1,hs € C’ff(Q*g (4o)) for some 8 € (0,1).

Consequently, by the proof in [14, Lemma 4.4] or the argument in [10, Section 6], we obtain
h e Cﬁ*ﬁ (m) Therefore the coefficients of the operator £ belong to C[f (m), for a
small positive constant 1 depending only on Mg, n,p,T. By (3.12),

9(y,t) = dist(y, 0T) (3.30)

near the interface I'y for ¢ € (0,7]. Hence g is C2*P-smooth up to the interface I'y,, and the

desired a priori estimate (3.11) follows.

Proof of Theorem 1.1 We still consider equation (3.7) in Q;(gy) with Gy = (7,0, %0),
where T = (70, ¥o.n) € I3, to € (0,T%). Differentiating the equation with respect to ¢ gives

‘C(ht) = 07

where £ is the linearized operator in (3.9). Since the coefficients of the operator £ all belong

to CP(Q3 (@) and b > 1 in Q3 (@), by Lemma 2.4, one gets hy € C2+%(Q%(q,)). Similarly,
2 2

differentiating equation (3.7) in y;, i = 1,--,n — 1, we have hy, € C277(Q%(q,)). It follows
e 2

by the Schauder estimate that Dy, h € C2P(Q%(qy)) for each k € N, after differentiating
& 2
equation (3.7) with respect to t,y; up to k times.

2
As for the regularity of h in y,11, we need to take care of the term y % | in equation (3.7),

which is not smooth if a%) is not an integer.
2
Case 1 % € N*. Then y,,%, is smooth. In this case, one can differentiate equation (3.7)

in y,+1 to obtain higher regularity as above.
Case 2a % ¢ 7% and U—Qp < 1. Let
21 =Y1, °, Zn—1 = Yn—1, Zn = ZM,
then h(z,t), he,(2,t), hi(z,t) € C**P(Q,(Ty)), i = 1,--- ,n — 1. Here Q,, (o), To = (Tb,0,70), is
the cylinder given by

Qu(@0) = {(2,t) ER™ X R | 2z > 0, |z — (o, 0)| < 1,80 —0* <t <To}- (3.31)
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Hence, one can rewrite equation (3.7) in coordinates (z,t) as

op+2h,,
Op  Zn

4
LA h

= op ’ Zn ’ .

= f(zn 7htaDZ h, e 7Dz Dzh), (3 32)

n

hzn Zn

where f is C1*# smooth in its all arguments. Moreover, by (3.29),

B )

o)

To prove the regularity of h., ., in z,, we take a fixed point (zo,t0) = (24,0,%0) € Qy(qy), and

denote

4
ap e,

0(z0) = (01(z0), £2(20)) = (=7

) with (20, zn, to) € Qn(To)
(20,2nt0)

Zn

and
— 4

?(Q(Zn)) = f(Ql(Zn)7 Q?(ZTL)) = f(zgp ) htaDz/ha hzﬁaDz'Dzh)

n

(26;Zn7t0)
We also define two constants:

hs,

Zn

__or

_ _op 2
(Zo,to)’ 0 892

0=(0,k0) Op

Ko = > 0,

which are well-defined as h(z,t) € C?**#(Q,(q,)). Then, equation (3.32) can be regarded as an

ODE of the variable z,, and rewritten as

h.. _ _ )
0| b , = f(o(zn)) = f 0, (0, Ko)02(2n) =2 f(e(2n)); (3.33)
(ZO,Zn,to) Zn (ZO,Zn,to)
which yields that
R A I
(2,2n,to0) 0
and
h. b1 A - 1 ,
Tl =N / p°f(9(p))dp:/ P f(o(Ap))dp
Zn, (26, t0) 0 0

Note that dgsf(0(0)) = 0. Then, for (24, A, to), (zh, M\ to) € Qr(Ty), we get

hz,

Zn

< / F(01000). 02000)) — Flo1 (0, 02(\o))ldp

_hZ

(z(,)7>\;t0) Zn

n

T .
S/ P | f(e(Ap)) = fo(Mp))|dp
0

(267X,t0)

1 ~ o ~ ~
4 /0 P21 F (1 (), 0200)) — Flea () 02(3))ldp
h.

(z(,Apyto) Zn

n

~ 4 o~ ~ h.,
< Dfllpe - [A77 = Ao [+ 0y ()| fllcrs - sup
p€l0,1] " An

. (3.34)

(24, 2p;t0)
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where 0,(1) < O(n pmin{l, 57 1) = 0 as ) — 0. Therefore, for 7 > 0 small, one gets

ha| e

Zn (z(’),)\7t0) Zn

<A — amintha) (3.35)

(24 ,Xﬂfo)

h. 0,min{1,
hay jg @Omintliz )

This implies = -smooth with respect to z,, so is h, ., from (3.32). Recall that

1 2+m1n{170 e
Yn+1 = 125, We obtain h(y', yni1,t) € Oy ! (Q%(%))-

Case 2b 0—2;’ & 7" and U% > 1. Differentiating equation (3.7) in yn4+1 up to kg = [%}
times, one gets
V= D§2+1h(y/7yn+la t) € C;%Jrﬁ(Q*g@o))
by Lemma 2.4. Similarly, V;,V,, € Cﬁ*ﬁm), i=1,--,n—1.
Let
21=Y1, sy Znel = Y1, Zn = 2v/Yntls
then V,V,,, V; € O2+5m) as a function in (z,¢t) for i = 1,--- ,n—1. Consider the equation
for V' in coordinates (z,t) as
Ip F2Ven _ f(z,;’i VDV, Ve DD, V) (3.36)

O'p Zn Zn

‘/zn Zn

where fis a C'*8 smooth function of all its arguments. Hence, one obtains V (', yn+1,t) €
24min{l,* —2ko} ——— .
M ? (Q%(q,)) by the same argument as in Case 2a.
4

From the arbitrariness of g, we obtain Theorem 1.1.

Proof of Corollary 1.1 Fix a point py = (7o, f0) on the interface I'; , to € (0,T]. By
a rotation of the coordinates, we may assume that the unit outer normal of the flat part
{v(y,to) = 0} at py is e, = (0,--+,0,1).

If i € Z*, by Theorem 1.1, g is C*-smooth up to the interface 'y for 0 < ¢ < T*. Hence

‘TP
crp+1g

Next we consider the case - ¢ Z*.
D

1
*75 is also C> smooth.

If Ui € (O, %], then Gl € (0,1] and ko = 0, where kg is the greatest integer strictly less
than 0—% By Theorem 1.1, we have g € C2+%({v > 0}), where £y := min {1, O_i‘p —2ko }. Hence
g€ C% ({v>0})and Dyg € C’O"é({v > 0}) as Gl—p < 1. Hence,

Dyv = g%Dyg € CO’% ({v>0}), (3.37)

which yields v € o ({v > 0}).

If U—lp € (3,1), then % € (1,2) and ko = 1. By Theorem 1.1, g € C}/Q*"@O(m), and so
g, Dyg € C%' ({v > 0}). Hence, (3.37) gives v € Clé(m)

If Gl—p > 1. Denote [y := [U—lp], then U% > 2lp > 2. In this case, by Theorem 1.1, g is at least
of class Cﬁlm?*‘g(m) for some small ¢ > 0. Hence g, D, g, D2g, - -- ,Déf“g e C% ({v > 0})
as lgp +1 < 2ly. Differentiating Dyv = g# D,g ly times in space variables y, we get Dé‘)*lv €
% 70 (Tu > 0}). It follows that v € O 7 ~0(Ty > 01).
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As for the estimate (1.4), we fix {y € [0, T] and take (y,%o), (¥, %) € {0 < v(-, o) < 1} with

dy 5(to) := min{dist(y, 'y, ), dist (7, I;)} = dist(y,T'y,).
If Gl < 1, then kg = 0. By Theorem 1.1 and (3.2), it holds

1

1 0y .

q ”P’U,L'j :gglj+0__glgj GO# p({U>O}), 1 Sl,j STL
p

In the case |y — y| > dist(y, 'z, ), (3.30) and (3.38) give that

21t i (y, to) — i (8, o)

_ 1 _ =
d, 5(Fo) e < Cdist(7, T3, )"~ 77 |vij (9, To) — vi5 (7, Fo)| < C.
y—y|°r

In the case |y — y| < dist(y,I';,), by (3.12), (3.30) and (3.38), we have

_ e |vii(y, to) — i (9, to
dy,gj(to) +5 | 13(9 ) ~’Llj(y )
ly =yl

R I - - 11— ~ =
2 to) v iy, o) — g(y, o) v vy (7,
< Cdy717(t0)‘72?’ |g(ya 0) pvlj(y’ 0) Nggv 0) PU”(y, 0)|
ly —yl°»

- 1—--L - ~ = \1--L ~ =
a2 l9(y,to) P vii(yto) — g(U,t0) 7P vi(Ysto)|
< Cdym(tO) P — - 2 — 2

1l(y,to), (9, to)°» - |\/Yn + /Un|7»
~ = - 1-L - - \1—--L
-2 vy to)lgly, to) 7 —g(y,t0) 7|
(tO) r 2
ly —y|»

+Cdy 5

2 _1 12
<C+ de?(to)”? Uij(yvtﬂ) ’ (gng or )|()\y+(l—k)§,fo) ’ |y - y| v (/\ € [Oa 1])

< C + Cdist(7, Fgo)l_%vij (¥,t0) < C.

Hence, (1.4) holds when % <1.

(3.38)

(3.39)

(3.40)

1
If glp > 1, then ko > 1. By differentiating equation D,v = g°» D, g with respect to y ko + 1

times and by Theorem 1.1, we have

_ 1 0,2 ko ——
gko-’_l op D§°+2’U ceC, O({U > 0}).

Therefore, by similar computations as in (3.39)—(3.40), it follows that

ko+2 7 ko+2,, (77
142 |Dyot2u(y, to) — Do u(y, to)| <C

0

2 _5
ly —ylo»

As a result, (1.4) follows.
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