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Abstract It is proved that there are many (positive Lebesgue measure) Kolmogorov-
Arnold-Moser (KAM for short) tori at infinity and thus all solutions are bounded for the

Duffing equations ẍ+x
2n+1+

2n∑
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pi(t)x
j = 0 with pj(t)’s being time-quasi-periodic smooth
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1 Introduction

In mechanics one frequently encounters the Duffing equations

ẍ+ ax+ bx3 = p (t) ,

where p(t) = p(t+ 2π) is a periodic forcing function. If p = 0 and b > 0, it is well known that

all solutions are periodic, with a period depending on the amplitudes. However, even if the

exterior force p(t) 6≡ 0 is small, it is a complicated problem to decide the boundedness of all

solutions (that is, Lagrangian stability). Moser [1] proposed to investigate this problem using

Kolmogorov-Arnold-Moser theory (KAM for short) (see [2–4]).

The first result is due to Morris [5] who proved that all solutions of ẍ + 2x3 = p(t) are

bounded, that is, there exists a constant C (depending on the initial data) such that

|x(t)| + |ẋ(t)| < C, t ∈ R.

The Morris’s result was generalised by Diekerhoff-Zehhder [6] to the equation of more general

form

ẍ+ x2n+1 +

2n∑

j=0

pj(t)x
j = 0, (1.1)
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where pj(t) = pj(t+2π) (j = 0, 1, · · · , 2n) are Cν -smooth functions with ν ≥ 1+ 4
n
+ logn2 . See

[7–11] for more backgrounds.

A natural question is what happens to (1.1) when the coefficients pj(t) are quasi-periodic in

time t. We say that a function f : R → R (or C) is quasi-periodic in time with frequency ω ∈ Rd,

if there exists a function F : Td → R (or C) such that f(t) = F (ωt), where Td = Rd/(2πZ)d.

We say that F is the hull of f . (see [12] for the notations of quasi-periodic functions and their

hulls). In the following arguments, denote by Pj the hulls of the coefficients pj(t) in (1.1).

In the present paper, we will prove the following theorem.

Theorem 1.1 Assume that the hulls Pj of the coefficients pj (j = 1, 2, · · · , 2n) are real

analytic in Td, and assume that the frequency ω ∈ Rd of the coefficients Pj ’s obeys Diophantine

condition (DCγ0),

|〈k, ω〉| ≥ γ0/|k|
d+2, ∀k ∈ Z

d \ 0,

where 0 < γ0 ≪ 1 is a constant. Then (1.1) has many (positive Lebesgue measure) (d + 1)-

dimensional KAM tori clustering at infinity in the (d + 2)-dimensional extended phase space1

Td+1 ×R1, with frequency (ω, 1) ∈ Rd+1. Therefore, all solutions of (1.1) are bounded, that is,

|x(t)|+ |ẋ(t)| ≤ C for t ∈ R, where the constant C depends on the initial values (x(0), ẋ(0)).

Remark 1.1 When pj(t)’s are periodic in time t, in [6], by a series of symplectic coordinates

which are close to identity, the Hamiltonian H corresponding to (1.1) can be reduced to

H = Ia + h1(I, t) + h2(I, θ, t), a > 0, (1.2)

where (I, θ) are the action angle variables and the size of h2 is small enough. Note that the

system defined by H is periodic in time t. It follows that the Poincar’e mapping obeys the

Moser’s twist theorem (see [4]). Thus the boundedness of all solutions follows. As for our case

where pj(t)’s are quasi-periodic in time t, the Poincaré mapping could not be defined directly.

In an early work [13], the existence of many KAM tori was obtained for ẍ + x2n+1 + cx =

P (ω1t, · · · , ωdt), a special form of (1.1), but there were no results of the boundedness of all

solutions.

Remark 1.2 In the present paper, we decompose pj(t) into pj≤(t) of lower Fourier fre-

quencies (refer to (3.3)) and pj>(t) of higher Fourier frequencies (refer to (3.4)). We can choose

sufficiently high Fourier frequencies such that pj>(t) is small enough. In order to apply KAM

theorem, it suffices to eliminate all terms (3.3) involving pj≤(t). Fortunately, while removing

(3.3), the divisors are large enough instead of being small in the homological equation (3.16).

This is key point in our proof. In addition, as in [6], we also derive a reduced Hamiltonian of

the same form as (1.2) (refer to (3.41)). In our case, h1(I, t) = R̂
(M)
≤ (I, 0, ϕ) with ϕ = ωt, which

is quasi-periodic with frequency ω ∈ Rd (d > 1) in time t. So the Pioncaré mapping could not

defined directly. We will find a symplectic coordinate change which is not close to identity to

removing the dependence on time t of h1(I, t) (see (4.7)).

1See Section 2 for the extended phase space.
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Remark 1.3 We also relax the analyticity of the coefficients pj(t)’s to Cν with ν ≫ 1. We

do not pursue this end.

Proof outline In Section 2, using the periodic solution of the autonomous system, we

introduce the action and angle variables. Then we introduce an angle variable φ ∈ Td and an

artificial action variable J ∈ R
d such that the considered Hamiltonian system is transformed

into an autonomous Hamiltonian H = ω · J +H0(I)+R(I, θ, φ) with the extended phase space

T
d+1 × R

d+1 (see (2.10)–(2.11)). In Section 3, performing a series of symplectic transforms,

we change the perturbation R to a small one. When the system (1.1) is periodic in time t,

the perturbation is independent of φ, and thus we do not encounter any small divisor problem.

In the present paper, the perturbation R is indeed dependent on φ. Write R = R≤ + R>

where R≤ and R> are the part of Fourier series of R in φ with lower frequencies and one with

higher frequencies, respectively. We observe that there is no small divisor problem arising when

eliminating the R≤ of lower frequencies, when H0(I) is large. Using this crucial observation, we

change the perburbation R into a small R(M) by a series symplectic transformations without

small divisor conditions (see (3.43)). In Section 4, we further change R(M) into R(M+1) such

that the changed Hamiltonian system obeys the conditions of the Kolmogorov Theorem (KAM

theorem), by which the proof is finished.

2 Action-Angle Variable

Replacing x by Ax in (1.1) with a large constant A > 0, we get

Aẍ+A2n+1x2n+1 +

2n∑

j=0

pj (t)x
jAj = 0. (2.1)

Let

y = A−nẋ or ẋ = Any.

Then

ẏ = −Anx2n+1 −

2n∑

j=0

pj(t)x
jAj−n−1.

Thus

ẋ =
∂H

∂y
, ẏ = −

∂H

∂x
, (2.2)

where

H = An
(1
2
y2 +

1

2(n+ 1)
x2(n+1)

)
+

2n∑

j=0

pj(t)

j + 1
xj+1Aj−n−1. (2.3)

Consider an auxiliary Hamiltonian system

ẋ =
∂H0

∂y
, ẏ = −

∂H0

∂x
, H0 =

1

2
y2 +

1

2(n+ 1)
x2(n+1), (2.4)
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let (x0(t), y0(t)) be the solution to (2.4) with initial (x0(t), y0(t)) = (1, 0). Then this solution

is clearly periodic. Let T0 be its minimal positive period. By energy conservation, we have

(n+ 1)y20(t) + x2n+2
0 (t) ≡ 1, t ∈ R. (2.5)

We construct the symplectic transformation

Ψ0 :

{
x = cαIαx0(θT0),

y = cβIβy0(θT0),

where α = 1
n+2 , β = 1−α = n+1

n+2 , c =
1

αT0
, and where (I, θ) ∈ R

+×T
1 is action-angle variables.

By (2.5), we have det∂(x,y)
∂(I,θ) = 1. Thus the transformation is indeed symplectic. Clearly Ψ0(I, θ)

is analytic in (I, θ) ∈ R+ × T1.

Under Ψ0, equation (2.2) with Hamiltonian (2.3) is changed to

θ̇ =
∂H

∂I
, İ = −

∂H

∂θ
, (2.6)

where H = H0(I) +R(I, θ, t) with

H0(I) = d̃ ·An · I2β = d̃ ·An · I
2(n+1)
n+2 , d̃ =

c2β

2(n+ 1)
(2.7)

and

R(I, θ, t) =

2n∑

j=0

pj(t)

j + 1
(c

1
n+1x0(θT0))

j+1Aj−n−1I
j+1
n+2 . (2.8)

Clearly, R(I, θ, t) = O(An−1) forA → ∞. Restrict I to some compact interval, say, I ∈ [1, 2].

Let ϕ = ωt. Then (2.8) can be rewritten as

R(I, θ, ϕ) =

2n∑

j=0

pj(ϕ)

j + 1
(c

1
n+1x0(θT0))

j+1Aj−n−1I
j+1
n+2 . (2.9)

Introduce an artificial action J ∈ Rd. Then we can lift the Hamiltonian system (2.6) to an

autonomous system

θ̇ =
∂H

∂I
, İ = −

∂H

∂θ
, ϕ̇ = ω, J̇ = −

∂H

∂ϕ
, (2.10)

where

H(I, θ, ϕ) = ω · J +H0(I) +R(I, θ, ϕ). (2.11)

For (2.10), our phase space is (θ, φ, I, J) ∈ T
d+1 × R

d+1. Since J is artificial, it can fixed.

The phase space can be taken as (θ, φ, I) ∈ Td+1 × R1 which is called the extended phase

space for the quasi-periodic system (1.1). Clearly, (2.6) is a sub-system of (2.11). It suffices to

investigate the existence of KAM tori of (2.11). It is easy to see that H(I, θ, ϕ) is real analytic

in (I, θ, ϕ) ∈ [1, 2]× T× Td. Write T1+d =: T× Td. By the compactness [1, 2]× T1+d, we can

assume that H(I, θ, ϕ) is real analytic in the complex domain [1, 2] × T1+d
s0

with some s0 > 0

For a function of complex variables, we call it real analytic if it is analytic, and it is real for

real arguments.
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3 To Change Large Perturbation into Small One

For an analytic function f : [1, 2]× Ts × Td
s → C, satisfying

sup
[1,2]×T

1+d
s

|f(I, θ, ϕ)| ≤ CAα, A → +∞,

for some constant C which might depends on the dimensional number d, n and s0, we write

f = Os(A
α). In the following arguments, we will denote by C a universal constant which may

be different in different places and which may depend on d, n, s0, when we do not care about

its size. It follows from (2.9) that

R(I, θ, ϕ) = Os0(A
n−1). (3.1)

Let K = c0 logA, Z×Zd = Z1+d and T×Td = T1+d, where c0 = c0(d) is a constant depending

on only d. We will specify the constant c0 ≫ 1 in Section 4 (see (4.21)). Write

R = R≤(I, θ, ϕ) +R>(I, θ, ϕ), (3.2)

where

R≤(I, θ, ϕ) =
∑

|k|+|l|≤K

(k,l)∈Z
1+d

R̂(I, k, l)ei(kθ+l·ϕ), (3.3)

R>(I, θ, ϕ) =
∑

|k|+|l|>K

(k,l)∈Z
1+d

R̂(I, k, l)ei(kθ+l·ϕ), (3.4)

R̂(I, k, l) =
1

(2π)d+1

∫

T1+d

R(I, θ, ϕ)e−i(kθ+l·ϕ)dθdϕ. (3.5)

Then

H = ω · J +H0(I) +R≤ +R>. (3.6)

Noting that R(I, θ, ϕ) is analytic in I × T1+d
s0

, and in view of (3.1), we have

|R̂(I, k, l)| ≤ CAn−1 exp(−s0(|k|+ |l|)), ∀(k, l) ∈ Z
1+d. (3.7)

It follows

R≥ = O s0
2
(A−c0n). (3.8)

Our aim is now to find a series of symplectic coordinate changes to eliminate R≤. To this

end, let

F (I, θ, ϕ) =
∑

|k|+|l|≤K

(k,l)∈Z
1+d

k 6=0

F̂ (I, k, l)ei(k·θ+l·ϕ),
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where F̂ (I, k, l) is to be specified later on. Let Xt
F be the flow of the Hamiltonian system

θ̇ =
∂F

∂I
, İ = −

∂F

∂θ
, ϕ̇ = ω, J̇ = −

∂F

∂ϕ
. (3.9)

Then X1
F = Xt

F |t=1 is a symplectic coordinate change, and

H(1)(I, θ, ϕ) = H ◦X1
F = ω · J +H0(I) +R≤ +R> + {ω · J +H0(I), F}

+ {R≤, F}+
1

2
{{H,F}, F} ◦X1

F , (3.10)

where Poisson bracket is defined by

{X,Y } = ω · ∂ϕX − ∂JX · ∂ϕY + ∂θX · ∂IY − ∂IX · ∂θY. (3.11)

Let

{ω · J +H0(I), F} +R≤ = R̂≤(I, 0, ϕ), (3.12)

where

R̂≤(I, 0, ϕ) =
1

(2π)d

∫

Td

R≤(I, θ, ϕ)e
−ik·θdθ. (3.13)

Then (3.10) reads

H(1)(I, θ, ϕ) = ω · J +H0(I) + R̂≤(I, 0, ϕ) +R> + {R≤, F}+
1

2
{{H,F}, F} ◦X1

F . (3.14)

By (3.11), we can rewrite (3.12) as

−ω · ∂ϕF −H ′
0(I)∂θF = R̂≤(I, 0, ϕ)−R≤. (3.15)

Passing to Fourier coefficients, we have

F̂ (I, k, l) =
R̂(I, k, l)

i(〈l, ω〉+ kH ′
0(I))

, (k, l) ∈ Z
1+d, k 6= 0, |k|+ |l| ≤ K. (3.16)

We are now in position to investigate the denominator in (3.16). Fix ω ∈ DCγ0 . Let

c©k,l(w) =
{
I ∈ [1, 2] | |〈l, ω〉+H ′

0(I)k| <
Anγ

(1 + |l|)τ

}

for (k, l) ∈ Z1+d, and k ∈ Z\{0}, where γ is to be specified later on. Note,

H ′′
0 (I) =

2(n+ 1)nd

(n+ 2)2
I−

2
n+2An ≥ C0A

n, C0 =
2(n+ 1)n

(n+ 2)2
2−

2
n+2 . (3.17)

Thus
∣∣∣ d
dI

(〈l, ω〉+H ′
0(I)k)

∣∣∣ ≥ C0A
n, k 6= 0. (3.18)

It follows

Leb
⋃

|k|+|l|≤K
l 6=0

c©k,l(ω) ≤ C∗Kd+1γ, C∗ =
1

C0

∑

k∈Zd

1

(1 + |l|)d+2
. (3.19)
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Take

γ = (C∗Kd+1)−1K−40d = C∗∗(logA)−41d+1, C∗∗ = (C∗C41d+1
∗ )−1. (3.20)

Thus

Leb
⋃

|k|+|l|≤K
l 6=0

c©k,l(ω) < C(logA)−40d. (3.21)

Again by (3.18), we have that the set c©k,l (with k 6= 0) consists of, at most, 2 connected

components. So the set [1, 2] \
⋃

|k|+|l|≤K

c©k,l(ω) consists of, at most, (4K)d+1 many connected

components. Furthermore, there is a subinterval, Γ ⊂ [1, 2] \
⋃

|k|+|l|≤K

c©k,l such that

Leb(Γ) > C(logA)−50d. (3.22)

Write Γ = [Γ−,Γ+]. Then Γ+ − Γ− > C(logA)−50d). By the definition of c©k,l, we have for

∀I ∈ Γ,

|〈l, ω〉+ k H ′
0(I)| ≥

γAn

(1 + |l|)τ
, (k, l) ∈ Z

1+d, k 6= 0, |k|+ |l| ≤ K. (3.23)

It follows that

|F̂ (I, k, l)| =
|R̂(I, k, l)|

|〈l, ω〉+H ′
0(I)k|

≤
(1 + |l|)d+2

γ
A−1C exp(−s0(|k|+ |l|)).

Moreover,

sup
Γ×T

1+d
s0
2

|F (I, θ, ϕ)| ≤
∑

|k|+|l|≤K

Cγ−1(1 + |l|)−(d+2)A−1 exp
(
−

s0
2
(|k|+ |l|)

)

≤ CγKA−1

≤ (logA)CA−1. (3.24)

By (2.10), we have

∂α
I R(I, θ, ϕ) = Os0(A

n−1), |α| ≤ C. (3.25)

By (3.16) and(3.23), we have

∂α
I F (I, θ, ϕ) = O s0

2
((logA)cA−1), |α| ≤ C. (3.26)

By Cauchy estimate, we have, furthermore,

∂α
I ∂

β1

θ ∂β2
ϕ F (I, θ, ϕ) = O s0

3
((logA)cA−1), α+ β1 + β2 ≤ C. (3.27)

Note that the solution Xt
F (I, θ, ϕ) depends analytically on the initial values (I(0), θ(0), ϕ(0)) =

(I, θ, ϕ). It follows from contraction mapping principle that flow Xt
F does exist for t ∈ [0, 1], in

particular,

sup
Γ1×T

1+d
s0
3

‖X1
F (I, θ, ϕ) − (I, θ, ϕ)‖ ≤ C(logA)cA−1, (3.28)
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where Γ1 = [Γ−(logA)
−C ,Γ+(logA)

−C ], Γ := [Γ−,Γ+]. Thus X1
F (Γ1 × T

1+d
s0
3

) ⊂ Γ × T
1+d
s0
2

.

Without loss of generality, we still write Γ1 = Γ.

Again by (3.27)–(3.28), we have

R∗ := {R,F}(I, θ, ϕ) +
1

2
{{H,F}, F} ◦X1

F (I, θ, ϕ) = O s0
4
((logA)CAn−2). (3.29)

Write

R∗ =
∑

|k|+|l|≤K
l 6=0

R̂∗(I, k, l)ei(kθ+〈l,ϕ〉) +
∑

|k|+|l|>K
l 6=0

R̂∗(I, k, l)ei(kθ+〈l,ϕ〉) := R
(1)
≤ +R

(1)

> .

Letting R
(1)
> = R> +R

(1)

> , we have

H(1) = ω · J +H0(I) + R̂≤(I, 0, ϕ) +R
(1)
≤ +R

(1)
> . (3.30)

By (3.29), following the proof of (3.8), we have R
(1)

> = O s0
4
(A−c0n). By (3.8), we furthermore

have

R
(1)
> = O s0

4
(A−c0n). (3.31)

By (3.29),

R
(1)
≤ = O s0

4
((logA)CAn−2). (3.32)

Recall H(I, θ, ϕ) is real analytic. In particular, H(I, θ, ϕ) is real for real argument (I, θ, φ). It

follows that R̂(I,−k,−l) = R̂(I, k, l), for I ∈ Γ∩R. By (3.16), we have F̂ (I,−k,−l) = F̂ (I, k, l),

for I ∈ Γ ∩ R. It follows that F (I, θ, ϕ) is real analytic. Moreover, all of R̂1(I, 0, ϕ), R
(1)
≤ and

R
(1)
> are real analytic in Γ× T

1+d
s0
4

.

Now we search for a symplectic coordinate change to eliminate R
(1)
≤ . We can repeat the

previous procedure to eliminate R
(1)
≤ . Comparing (3.6) with (3.30), we see that R̂1(I, 0, ϕ) is

a new term in Hamiltonian H(1). We must be careful about that the influence of R̂≤(I, 0, ϕ)

in eliminating R
(1)
≤ . To check the effect of R̂≤(I, 0, ϕ), we introduce a new Hamiltonian of the

form

F (1) = F (1)(I, θ, ϕ) =
∑

|k|+|l|≤K

(k,l)∈Z
1+d

k 6=0

F̂ (1)(I, k, l)ei(kθ+l·ϕ).

Then

H(2) = H(1) ◦X
(1),1
F = ω · J +H0(I) + R̂≤(I, 0, ϕ) +R

(1)
> (3.33)

+ {ω · J +H0(I), F}+R
(1)
≤ (3.34)

+ {R̂≤, F} ◦X
(1),1
F (3.35)

+ {R
(1)
≤ +R

(1)
> , F} ◦X

(1),1
F +

1

2
{ω · J +H0(I) +R

(1)
≤ R

(1)
> , F (1)} ◦X

(1),1
F , (3.36)
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where X
(1),1
F = X

(1)t
F |t=1 is its time-1 map.

Let

{ω · J +H0(I), F} +R
(1)
≤ (I, θ, ϕ) = R̂

(1)
≤ (I, 0, ϕ). (3.37)

In view of (3.32), with the same procedure as the previous, we have

F (1) = O s0
8
((logA)CA−2), (3.38)

furthermore,

(3.30) = O s0
7
((logA)CAn−4) = O s0

7
((logA)CAn−3). (3.39)

Observe (3.33)–(3.34) and (3.36), the effect of the new term R̂≤(I, 0, ϕ) is {R̂≤, F
(1)}. Note

R̂≤ = O s0
5
((logA)CAn−1). It follows from (3.38), then

{R̂≤(I, 0, ϕ), F
(1)} = O s0

7
((logA)CAn−3). (3.40)

Write

(3.35) + (3.36) = R
(2)
≤ +R

(2)
>

and

R̂
(2)
≤ (I, 0, ϕ) = R̂≤(I, 0, ϕ) +R

(1)
≤ (I, 0, ϕ).

Then

H(2) = ω · J +H0(I) + R̂
(2)
≤ (I, 0, ϕ) +R

(2)
≤ +R

(2)
> .

Repeat the previous procedure M ≫ 1 many times, then

H(M) = ω · J +H0(I) + R̂
(M)
≤ (I, 0, ϕ) +R(M)(I, θ, ϕ), (3.41)

where

R̂
(M)
≤ = O s0

10M
((logA)CAn−1), (3.42)

R(M) = R
(M)
≤ +R

(M)
> = O s0

10M
((logA)CA−c0n). (3.43)

By the previews proof, we have that R̂
(M)
≤ (I, 0, ϕ), R

(M)
≤ and R

(M)
> are real analytic in Γ×T

1+d
s0

10M

.

4 KAM Theorem

In this section, we will search for a symplectic coordinate change to remove the dependence

on ϕ = ωt in R̂≤(I, 0, ϕ). To this end, let

F = F (I, 0, ϕ) =
∑

l∈Zd\{0}

F̂ (I, l)ei〈l,ϕ〉.

Let Xt
F be the flow of the Hamiltonian system defined by F. Then

H(M+1) = H(M) ◦X1
F = ω · J +H0(I) + R̂

(M)
≤ +R(M)
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+ {ω · J +H0(I), F}+ {R̂
(M)
≤ , F}+ {R(M), F}

+
1

2
{{H(M), F}, F} ◦X1

F . (4.1)

Let

{ω · J +H0(I), F}+ R̂
(M)
≤ = [R̂

(M)
≤ ], (4.2)

where

[R̂
(M)
≤ ] =

1

(2π)d

∫

Td

R̂
(M)
≤ (I, 0, φ)dφ.

Rewriting (4.2) by advantage of Poisson bracket (3.11), we have

−ω · ∂ϕF = [R̂
(M)
≤ ]− R̂

(M)
≤ . (4.3)

Passing to Fourier coefficients, we have

F =
∑

l∈Zd\{0}

R̂(I, 0, ϕ)

−i〈l, ω〉
ei〈l,ϕ〉. (4.4)

Since ω ∈ DCγ0 , we have

F = O s0
20M

((logA)CAn−1). (4.5)

Note that the size of F is not small, we should verify that the flow Xt
F exists for t ∈ [0, 1].

Observing that F does not depends on θ, we have that the system defined by F reads

θ̇ =
∂F

∂I
, İ = −

∂F

∂θ
= 0, ϕ̇ = ω, J̇ = −

∂F

∂ϕ
.

Denote by (θ(0), I(0), ϕ(0), J(0)) = (θ, I, ϕ, J) the initial values. Then

I(t) = I, ϕ(t) = ϕ+ ωt, θ(t) = θ +

∫ t

0

∂f

∂I
(I, 0, ϕ+ ωτ)dτ. (4.6)

It implies that the solution can be given out explicitly. Furthermore, the solution does exist

for t ∈ R, so X1
F is well-defined. We claim

X1
F (Γ× T

1+d
s0

30M

) ⊂ Γ× T
1+d
s0

20M

. (4.7)

Recall R̂
(M)
≤ , R

(M)
≤ and R

(M)
> are real analytic. It follows that F is real analytic in Γ×T

1+d
s0

30M

.

So, for (I, 0, ϕ) ∈ Γ× T
1+d
s0

30M

, we have

|ℑF (I, 0, θ)| = |ℑF (I, 0,Reϕ+ ℑϕ)|

≤
(

sup
ΓM×T

1+d
s0

20M

|∂F |
)
(|ℑϕ|)

≤ C(logA)CAn−1|ℑϕ|.

Let

|ℑϕ| ≤
( s0
20M

)
[C(logA)CAn−1]−1 := N.
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Then |ℑF (I, 0, ϕ)| ≤ s0
20M . By (4.7), we have

X1
F (Γ× T

1+d
N ) ⊂ Γ× T

1+d
s0

20M

. (4.8)

By (4.1)–(4.2),

H(M+1) = ω · J +H0(I) + [R̂
(M)
≤ ](I) +R(M+1), (4.9)

where

R(M+1) = R(M) + {R̂
(M)
≤ , F}+ {R(M), F}+

1

2
{{H(M), F}, F} ◦X1

F . (4.10)

By the definition of Poisson bracket (see (3.11)),

{R̂
(M)
≤ (I, ϕ), F (I, ϕ)} ≡ 0. (4.11)

By (3.43) and (4.5), we have

{R(M), F} = OΓ×T
1+d
N

((logA)CA−C0n+n). (4.12)

By (4.11),

{H(M), F} = {ω · J +H0(I) + R̂
(M)
≤ + R(M), F}

= {ω · J +H0(I), F}+ {R(m), F}

= {R̂(M)(I)− R̂(M)(I, ϕ), F (I, ϕ)} + {R(M), F}

= {R(M), F}.

Thus, by (3.43) and (4.5),

1

2
{{H(M), F}, F} ◦X1

F =
1

2
{{R(M), F}, F} ◦X1

F = OΓ×T
1+d
N

((logA)CA−C0n+2n).

Finally,

R(M+1) = OΓ×T
1+d
N

((logA)CA−C0n+2n). (4.13)

Note that R̂
(M)
≤ = O((logA)CAn−1). We have

sup
I∈Γ

|∂α
I [R̂

(M)
≤ ]| ≤ C(logA)CAn−1, |α| ≤ C. (4.14)

Recall N = ((logA)CAn−1)−1, Γ = [Γ−,Γ+] with

Γ+ − Γ− > (C+ logA)−50d, K = C+ logA, γ = C∗∗(logA)−41d+1, H0(I) = dAnI
2n+1
n+1 .

And recall Diophantine condition (3.23),

|〈l, ω〉+ kH ′
0(I)| ≥

γ

(1 + |l|)d+2
, |k|+ |l| ≤ K, k 6= 0, (k, l) ∈ Z

1+d.
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Let N1 = A−10n. By Newmann series, we have that ∀I0 ∈ Γ with [I0 −N1, I0 + N1] ∈ Γ, and

for I ∈ B(I0, N1) := {I ∈ C | |I − I0| ≤ N1},

|〈l, ω〉+ kH ′
0(I)| ≥

γ

2(1 + |l|)d+2
, |k|+ |l| ≤ K, k 6= 0, (k, l) ∈ Z

1+d. (4.15)

Moreover, all the estimates hold for I in the complex domain B(I0, N1), in particular,

sup
B(I0,N1)

|∂α
I [R̂

(M)
≤ ]| ≤ C(logA)CAn−1, (4.16)

sup
B(I0,N1)×T

1+d
N

|R(M+1)| ≤ C(logA)CA−C0n+2n. (4.17)

Recall H
′′

0 (I) =
2(n+1)nd
(n+2)2 I−

2
n+2An ≥ C00A

n, I ∈ Γ, which obeys Kolmogorov’s non-degenerate

condition. It follows that from a standard measure estimate in KAM exists a subset O0 ⊂ Γ

with LebO0 ≥ (LebΓ)(1− CN10
1 ) such that for ∀I0 ∈ O0,

|〈l, ω〉+ kH ′
0(I0)| ≥

N10
1

(1 + |l|)d+2
, ∀(k, l) ∈ Z

1+d \ {0}, (4.18)

where ω ∈ DCγ0 fixed and O0 depends on ω. Let I = I0 + ρ, ρ ∈ B(N1) := {ρ ∈ C | |ρ| < N1}

and

µ = µ(I0) = H
′

0 + ∂I [R̂
(M)
≤ ](I0)

=
(
d
2(n+ 1)

n+ 2
I

n
n+2

0

)
An +O(An−1)

∼ An, A → +∞.

By Taylor formula,

H(M+1) = H0(I0) + [R̂
(M)
≤ (I0)] + ω · J + µρ+

1

2
Ωρ2 + h(ρ) +R(ρ, θ, ϕ),

where

Ω = ∂2
I (H0(I3)) + [R̂

(M)
≤ ](I) |I=I0 ,

h(ρ) = ρ3
∫ 1

0

∫ 1

0

∫ 1

0

xy∂3
I (H0(I0 + ρxyz) + [R̂

(M)
≤ ](I0 + ρxyz))dxdydz

and

R(ρ, θ, ϕ) = RM (I0 + ρ, θ, ϕ).

Let ε−1 = An(A → +∞). Then, by (4.16)–(4.17),

µ ∼ ε−1, Ω ∼ ε−1, (4.19)

sup
B(N1)×T

1+d

N

‖RM+1‖ ≤ Cεc0−2, sup
B(N1)

|h(ρ)| ≤ ε−1ρ3. (4.20)

Recall

N1 = A−10n = ε10 and c0 ≫ max{10, C}, (4.21)

where C is taken over all the previous universal constant.
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Theorem 4.1 (KAM theorem) There exists a symplectic coordinate Ψ :

Ψ : B
(1
2
N1

)
× T

1+d
1
2N

→ B(N1)× T
1+d
N ,

such that for (ρ, θ, ϕ) ∈ B(12N1)× T
1+d
N
2

,

H̃ := HM+1 ◦Ψ = Const + ω · J + µρ+
1

2
Ω̃ρ2 + h̃(ρ) +R∞(ρ, θ, ϕ),

where

sup
B( 1

2N1)×T
1+d
N1
2

|R∞(ρ, θ, ϕ)| ≤ C|ρ|3, sup
B( 1

2N1)

|h̃(ρ)| ≤ C|ρ|3

and |Ω̃ − Ω| ≤ Cε. In particular, T
1+d × {ρ = 0} is an invariant torus of the Hamiltonian

system defined by H̃.

Proof Note ϕ = ωt and h(ρ), R(ρ, θ, ϕ) do not depend on J . While doing KAM iteration,

there is no frequency drift from ϕ. Moreover, the frequency drifts from θ can be counter-

balanced by Ω ∼ ε−1.

The remaining proof is standard. See [2, 14], for example. Let Φ =composition of all the

previous symplectic coordinate changes. Then Φ(T1+d×{ρ = 0}) is an invariant torus of (2.10)

with (2.11). Observe that (2.6) can be rewritten as

ϕ̇ = ω, θ̇ =
∂H(I, θ, ϕ)

∂I
, İ = −

∂H(I, θ, ϕ)

∂θ
, (4.22)

which is a sub-system of (2.10). Thus, Φ(T1+d × {ρ = 0}) is a KAM torus of dimension 1 + d

for (4.22) in the phase space Td+1×R. One see that the KAM torus is of co-dimension 1. Note

Φ(T1+d × {ρ = 0}) clusters at infinity when A → +∞. It follows that all solutions (1.1) are

bounded.
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