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Abstract In this paper, the authors give a characterization of finite Blaschke products
with degree n. The main results are: (1) An n-dimensional complex vector can be the first
n Taylor coefficients of a finite Blaschke product with degree no more than n−1 if and only
if the vector induces a lower triangular Toeplitz matrix with norm 1; (2) an n-dimensional
complex vector can be the first n Taylor coefficients of an inner function if and only if
the vector induces a lower triangular Toeplitz matrix with norm no more than 1. Möbius
transformations acting on contraction matrices play an important role in the proofs.
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1 Introduction and Preliminaries

Let D be the unit open disc. In the study of analytic functions on D, it plays an important

role of inner functions (we refer to the books [6, 9]), which are analytic functions on D with

unimodular radial limits almost everywhere on the boundary of D. Moreover, a Blaschke

product is an inner function of the form

B(z) = λzm
∏

n

|zn|

zn

zn − z

1− znz
,

where m is a nonnegative integer, λ is a complex number with |λ| = 1, and {zn} is a finite

or infinite sequence of points in D \ {0} satisfying the Blaschke condition
∑
n

(1 − |zn|) < ∞.

In particular, if λ = 1, we say that B is normalized. The number of zeros of the Blaschke

product is called its degree. For convenience, we say that a constant inner function f(z) ≡ eiθ

is a Blaschke product with degree 0. Denote by B the collection of all Blaschke products, and

denote by Bfin the collection of all finite Blaschke products.

Denoted by I the set of all inner functions on D. For each ϕ ∈ I, we could write

ϕ(z) =

∞∑

n=0

cnz
n.
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Then the Taylor coefficients {cn} determine the function ϕ. The inner function ϕ also induces

a Toeplitz operator Tϕ on the classical Hardy space H2. Under the orthonormal base {zn}∞n=0,

the Toeplitz operator Tϕ could be written as following lower triangular infinite dimensional

matrix



c0 0 0 · · · 0 · · ·
c1 c0 0 · · · 0 · · ·
c2 c1 c0 · · · 0 · · ·
...

...
...

. . .
...

...
cn−1 cn−2 cn−3 · · · c0 · · ·
...

...
...

...
...

. . .




.

As well known, Beurling’s celebrated theorem (see [2]) states that every nonzero invariant

subspace M of the multiplication operator f(z) → zf(z) on H2 is of the form ϕH2 for some

inner function ϕ. Moreover, one can see that the orthogonal projection pM is just TϕT
∗
ϕ. Notice

that T ∗
ϕTϕ is the identity. Then for any ϕ(z) =

∞∑
n=0

cnz
n, ϕ ∈ I if and only if the following two

conditions hold:

(1)
∞∑
n=0

|cn|
2 = 1,

(2)
∞∑
n=0

cncn+k = 0 for all k = 1, 2, · · · .

This provides a characterization of inner functions by the corresponding Toeplitz operators or

Taylor coefficients. Furthermore, a natural question is how to characterize Blaschke products

by the corresponding Toeplitz operators or Taylor coefficients.

Newman and Shapiro gave some descriptions of the Taylor coefficients of inner functions in

[15]. Moreover, Ahern and Kim [1], Verbitskii [18], Dallakyan and Hovhannisyan [4] considered

the Taylor coefficients of Blaschke products, respectively. This topic is also related to the

reducing subspace of corresponding Toeplitz operator. Zhu [19] showed that for each Blaschke

product B of degree 2, TB has precisely two different minimal reducing subspaces. Furthermore,

a conjecture is that for a finite Blaschke product of degree n, TB has at most nminimal reducing

subspaces. It has been known that the conjecture is true for n = 3, 4 and in these cases there

is a characterization of the minimal reducing subspaces (see [13, 17] for instance). Following

from [5, 11], one can see that the conjecture is also true for n = 5, 6, 7, 8. In [12], Guo and

Huang showed that the Toeplitz operators of thin Blaschke products are irreducible under some

mild conditions, and constructed an example of such products. They also provided a geometric

characterization of those thin Blaschke products for which the corresponding multiplication

operator has a nontrivial reducing subspace.

In this paper, we will use finite truncations of the corresponding Toeplitz operators to give

a characterization of finite Blaschke products with degree n. Note that an inner function could

be seemed as a power series, a vector and a Toeplitz operator. Let us introduce some notations

to represent the finite truncations of inner functions.
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Let P be the set of all formal power series with complex coefficients. For every n ∈ N, define

Pn : P → C
n by

Pn(f) = (c0, c1, · · · , cn−1) for every f(z) =

∞∑

n=0

cnz
n ∈ P.

Denote by Tn the set of all n-dimensional lower triangular Toeplitz matrices. Moreover, define

Qn : P → Tn by

Qn(f) = Qn

( ∞∑

n=0

cnz
n
)
=




c0 0 0 · · · 0
c1 c0 0 · · · 0
c2 c1 c0 · · · 0
...

...
...

. . .
...

cn−1 cn−2 cn−3 · · · c0



,

which is the n-truncations of the Toeplitz operator Tf . Obviously, there is a natural bijection

h : Cn → Tn defined by

h(c0, c1, c2, · · · , cn−1) =




c0 0 0 · · · 0
c1 c0 0 · · · 0
c2 c1 c0 · · · 0
...

...
...

. . .
...

cn−1 cn−2 cn−3 · · · c0



,

and we have

Qn(f) = h(Pn(f)).

2 Finite Blaschke Products and Toeplitz Matrices

In this section, we will give a characterization of finite Blaschke products with degree n by

the norms of the n-truncations of the corresponding Toeplitz operators. Denote by Tcontr
n the

set of all lower triangular Toeplitz contraction matrices, i.e.,

Tcontr
n := {T ∈ Tn; ‖T ‖ ≤ 1}.

For convenience, given any Φn = (ϕ0, ϕ1, · · · , ϕn−1) ∈ Cn, we always denote

Φm = (ϕ0, ϕ1, · · · , ϕm−1) ∈ C
m for any 1 ≤ m ≤ n.

We also use TΦn
to denote the lower triangular Toeplitz matrix corresponding to Φn, i.e.,

TΦn
= h(Φn).

Firstly, one can see that each element in Qn(I) is a contraction from [3, 16].

Theorem 2.1 Let ϕ(z) =
∞∑

n=0
ϕnz

n be an analytic function on the unit disk with
∞∑

n=0
|ϕn|

2 =
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1. Then ϕ(z) is an inner function if and only if the corresponding Toeplitz operator

Tϕ =




ϕ0 0 0 · · · 0 · · ·
ϕ1 ϕ0 0 · · · 0 · · ·
ϕ2 ϕ1 ϕ0 · · · 0 · · ·
...

...
...

. . .
...

...

ϕn−1 ϕn−2 ϕn−3 · · · ϕ0 · · ·
...

...
...

...
...

. . .




has norm 1 on ℓ2. Furthermore, Qn(I) ⊆ Tcontr
n .

Next, we will obtain Qn(I) = Tcontr
n and some more results. We need to make some prepa-

rations with regard to Möbius transformations acting on the spaces of inner functions and

contraction matrices, respectively.

For any α ∈ D, the Frostman shift (see [8]) is a map Fα : I → I defined by

Fα(ϕ)(z) =
α− ϕ(z)

1− αϕ(z)
for any ϕ ∈ I.

Similarly, we can define an analogue of the Frostman shift on Tcontr
n ,

F̃α(T ) =
α− T

1− αT
for any T ∈ Tcontr

n .

The map F̃α : Tcontr
n → Tcontr

n being well defined is based on the study of the norms of

analytic functions of a contraction. The research of this aspect dates back to the von Neumann

inequality in 1951. A certain analytic function of a contraction is again a contraction (see [14]),

and it was further refined by Fan to an analogous assertion for strict contractions (see [7]). In

particular, if A is a contraction and B(z) is a finite Blaschke product of degree n, then B(A) is

also a contraction. Moreover, to consider when the norm of B(A) is equal to 1, Gau and Wu

obtained a result in [10] as follows.

Theorem 2.2 (see [10]) Let A be a contraction on Hilbert space H and let B(z) be a

Blaschke product with k zeros counting multiplicity. Then

(a) dimker(I −B(A)∗B(A)) = dimker(I − (Ak)∗Ak), and

(b) ‖B(A)‖ = 1 if and only if ‖Ak‖ = 1.

In particular, by (b) in the above theorem, one can see when the norm of F̃α(T ) is 1 for

T ∈ Tcontr
n .

Lemma 2.1 Let α ∈ D and T ∈ Tcontr
n . Then ‖F̃α(T )‖ = 1 if and only if ‖T ‖ = 1.

Notice that Qn : P → Tn is a homomorphism between two rings, and Qn maps I into Tcontr
n

by Theorem 2.1. Since

Fα(ϕ)(z) = α− (1− |α|2)

∞∑

k=1

αk−1(ϕ(z))k



A Characterization of Finite Blaschke Products with Degree n 411

and

F̃α(TΦn
) = αI − (1− |α|2)

∞∑

k=1

αk−1T k
Φn
,

we have the following commutative diagram

I
Fα−→ I

↓ Qn ↓ Qn

Tcontr
n

F̃α−→ Tcontr
n .

In addition, Fα is a bijection since F−1
α = Fα, and F̃α is a bijection since F̃−1

α = F̃α.

Denote

Tα,contr
n = {TΦn

; ‖TΦn
‖ ≤ 1,where Φn = (α, ϕ1, · · · , ϕn−1) ∈ C

n}

and

Tα,u
n = {TΦn

; ‖TΦn
‖ = 1,where Φn = (α, ϕ1, · · · , ϕn−1) ∈ C

n}.

Then F̃α is a bijection from Tα,contr
n to T0,contr

n . Furthermore, by Lemma 2.1, F̃α is also a

bijection from Tα,u
n to T0,u

n .

Now, let us consider finite Blaschke products.

Theorem 2.3 Let B(z) be a finite Blaschke product with degree m−1. Then for any n ≥ m,

‖Qn(B)‖ = 1.

Proof Let B(z) be a finite Blaschke product with degree m− 1 and

Pm(B) = Φm = (ϕ0, ϕ1, · · · , ϕm−1).

Obviously, when m = 1, B(z) is just the constant inner function and consequently,

‖TΦn
‖ = 1 for any n ≥ 1.

Suppose that the above conclusion holds when the degree is less than m. Now let B̃(z) be a

finite Blaschke product with degree m and

Pm+1(B̃) = Φm+1 = (ϕ0, ϕ1, · · · , ϕm).

Then by the definition of Frostman shift, F
B̃(0)(B̃) is also a finite Blaschke product with degree

m and it has a factor z, i.e.,

F
B̃(0)(B̃)(z) = z · A(z),

where A(z) is a finite Blaschke product with degree m− 1. It follows from the assumption in

mathematical induction with respect to the degree of the Blaschke product that

‖Qm+1(FB̃(0)(B̃))‖ = ‖Qm(A)‖ = 1.
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Then, by Lemma 2.1,

‖Qm+1(B̃)‖ = 1.

Furthermore, by Theorem 2.1,

‖Qn(B̃)‖ = 1 for any n ≥ m+ 1.

This finishes the proof.

Theorem 2.4 For any n ∈ N, let

Φn = (ϕ0, ϕ1, · · · , ϕn−1).

If ‖TΦn
‖ = 1, then there exists a unique inner function B(z) such that Pn(B) = Φn. More

precisely, if m ≤ n is the first positive integer such that ‖TΦm
‖ = 1, then the unique inner

function B(z) is a finite Blaschke product whose degree is m− 1.

Proof Without loss of generality, it suffices to consider Φn = (ϕ0, ϕ1, · · · , ϕn−1) with

‖TΦn
‖ = 1 and ‖TΦk

‖ < 1 for 1 ≤ k ≤ n− 1.

Obviously, when n = 1, there exists a unique finite Blaschke product B(z) ≡ ϕ0 whose degree

is 0 such that Pn(B) = Φn.

Suppose that the above conclusion holds for all k ≤ n− 1. Denote

F̃ϕ0
(TΦn

) =




0 0 0 0 · · · 0
ψ0 0 0 0 · · · 0
ψ1 ψ0 0 0 · · · 0
ψ2 ψ1 ψ0 0 · · · 0
...

...
...

...
. . .

...
ψn−2 ψn−3 ψn−4 ψn−5 · · · 0




and

Ψn−1 = (ψ0, ψ1, · · · , ψn−2).

By Lemma 2.1,

‖TΨn−1
‖ = ‖F̃ϕ0

(TΦn
)‖ = 1.

Consequently, there exists a unique finite Blaschke product B̂(z) whose degree is no more than

n− 2 such that

Pn−1(B̂) = Ψn−1.

Furthermore, the finite Blaschke product zB̂(z), whose degree is no more than n− 1, satisfies

Qn(zB̂) = F̃ϕ0
(TΦn

).
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Therefore, F−1
ϕ0

(zB̂(z)) is the unique finite Blaschke product with degree no more than n − 1

such that

Pn(B) = Φn.

Moreover, by Theorem 2.3 and Lemma 2.1,

‖TΦk
‖ < 1 for 1 ≤ k ≤ n− 1

implies that the degree of the unique finite Blaschke product F−1
ϕ0

(zB̂(z)) is just n − 1. This

finishes the proof.

Remark 2.1 Together with Theorems 2.3–2.4, we establish the relationship between a

finite Blaschke product with degree n− 1 and the n-truncations of the corresponding Toeplitz

operators (or its first n Taylor coefficients). In particular, it is computable to determine whether

an inner function is a finite Blaschke product with degree n− 1 by its Taylor coefficients.

By Theorems 2.1 and 2.3, one can see that an n-dimensional complex vector is the first

n Taylor coefficients of an inner function, if and only if it induces a lower triangular Toeplitz

matrix with norm no more than 1. More precisely, by Theorem 2.4, we obtain the following

result.

Theorem 2.5 For any n ∈ N,

Pn(I) = h−1(Tcontr
n ) = Pn(B) = Pn(B

fin).

Proof It is obvious that Pn(B
fin) ⊆ Pn(B) ⊆ Pn(I). By Theorem 2.1, one can see

that Pn(I) ⊆ h−1(Tcontr
n ). For each element Φn = (ϕ0, ϕ1, · · · , ϕn−1) ∈ h−1(Tcontr

n ), there

is a complex number ϕn ∈ C such that ‖TΦn+1
‖ = 1, where Φn+1 = (ϕ0, ϕ1, · · · , ϕn−1, ϕn).

Then, by Theorem 2.4, there exists a finite Blaschke product B(z) such that Pn+1(B) = Φn+1.

Consequently, we have Pn(B) = Φn, which means h−1(Tcontr
n ) ⊆ Pn(B

fin). This finishes the

proof.
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