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Abstract As a continuation of [Li, J. and Wang, Y. N., Structural stability of steady
subsonic Euler flows in 2D finitely long nozzles with variable end pressure, J. Differential

Equations, 413, 2014, 70–109], in this paper, the authors study the structural stability of
three dimensional axisymmetric steady subsonic Euler flows in finitely long curved nozzles.
The reference flow is a general subsonic shear flow in a three dimensional regular cylin-
drical nozzle with general size of vorticity and without stagnation points. The problem is
described by the well-known steady compressible Euler system. With a class of admissi-
ble physical conditions and prescribed pressure at the entrance and the exit of the nozzle
respectively, they establish the structural stability of this kind of axisymmetric subsonic
shear flow with no-zero swirl velocity. Due to the hyperbolic-elliptic coupled form of the
Euler system in subsonic regions, the problem is reformulated via a twofold normalized pro-
cess, including straightening the lateral boundary of the nozzle under the natural Cartesian
coordinates and reformulating the problem under the cylindrical coordinates. Accordingly,
the Euler system is decoupled into an elliptic mode and three hyperbolic modes with some
artificial singular terms under the cylindrical coordinates. The elliptic mode is a mixed
type boundary value problem of first order elliptic system for the pressure and the radial
velocity angle. Meanwhile, the hyperbolic modes are transport type to control the total
energy, the specific entropy and the swirl velocity, respectively. The estimates as well as
well-posedness are executed in a Banach space with optimal regularity under the natural
Cartesian coordinates in place of the cylindrical coordinates. The authors develop a sys-
tematic framework to deal with the artificial singularity and the non-zero swirl velocity in
three dimensional axisymmetric case. Their strategy is helpful for other three dimensional
problems under axisymmetry.
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1 Introduction

As the continuation of [20], in this paper, we consider the unique existence and structural

stability of three dimensional axisymmetric steady compressible subsonic flows in finitely long

and slightly curved nozzles with a class of admissible physical boundary conditions. The flow
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is governed by the following three dimensional steady compressible Euler system





∂x1
(ρu1) + ∂x2

(ρu2) + ∂x3
(ρu3) = 0,

∂x1
(ρu1u1) + ∂x2

(ρu1u2) + ∂x3
(ρu1u3) + ∂x1

P = 0,

∂x1
(ρu1u2) + ∂x2

(ρu2u2) + ∂x3
(ρu2u3) + ∂x2

P = 0,

∂x1
(ρu1u3) + ∂x2

(ρu2u3) + ∂x3
(ρu3u3) + ∂x2

P = 0,

∂x1
(ρu1E) + ∂x2

(ρu2E) + ∂x3
(ρu3E) = 0,

(1.1)

where u = (u1, u2, u3), ρ and s are independent unknowns of x = (x1, x2, x3), standing for

the velocity field, the density and the specific entropy of the flow, respectively. The pressure

P = P (ρ, s), the internal energy e = e(ρ, s) and the total energy

E =
1

2
|u|2 + e+

P

ρ
(1.2)

are smooth with respect to their arguments and ∂ρP > 0, ∂ρe > 0 for ρ > 0. As usual, we

use the quantity c(ρ, s) =
√
∂ρP to denote the local sound speed. It is well known that, in

regions where |u| < c(ρ, s), the flow is subsonic and the Euler system (1.1) is hyperbolic-elliptic

coupled.

In this paper, we just consider the flow as polytropic gas and the corresponding equations

of state are

P (ρ, s) = A(s)ργ , e(ρ, s) =
P (ρ, s)

(γ − 1)ρ
, ρ > 0, (1.3)

where γ ∈ (1, 3) is the adiabatic exponent and A(s) is a positive smooth function of s.

1.1 Structural stability issue in 3D axisymmetric case

For the aim of structural stability issue, the reference steady subsonic flow is considered as

shear flow with general size of vorticity, moving in a three dimensional regular cylindrical nozzle

Nb as

Nb = {(x1, x
′) ∈ R

3 : x′ = (x2, x3) ∈ B1(0), 0 < x1 < ℓ}

for any fixed ℓ > 0 and B1(0) being the unit disk in R
2. Here, we use

Σ0 = {(0, x′) : x′ ∈ B1(0)}, Σℓ = {(ℓ, x′) : x′ ∈ B1(0)}, Γ0 = ∂Nb\(Σ0 ∪ Σℓ) (1.4)

to denote the entrance, the exit and the lateral boundary of Nb, respectively.

We use ub = (u1b, u2b, u3b), sb and ρb to denote the velocity, the specific entropy and the

density of the reference subsonic shear flow respectively, which satisfy
{
u1b = vzb(|x′|), u2b = u3b = 0,

sb, ρb are positive constants
(1.5)

with the subsonic restriction 0 < vzb(|x′|) < c(ρb, sb) for x
′ ∈ B1(0). Here, vzb(|x′|) > 0 means

that the reference subsonic flow has no stagnation point.
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Structural stability issue in 3D axisymmetric case Is the reference subsonic flow

(1.5) structurally stable under the perturbations on at least one of the following parts: (1) The

total energy, the specific entropy and the velocity angle at Σ0, (2) the pressure at Σℓ, (3) the

lateral boundary Γ0?

1.2 Mathematical formulation and main results

We consider the possible perturbed flows moving in the following three dimensional nozzle

N = {(x1, x
′) ∈ R

3 :
√
x22 + x23 ≤ g(x1), 0 < x1 < ℓ}. (1.6)

Here, the nozzle N is a small perturbation of Nb, i.e.,

g(0) = g(ℓ) = 1, ‖g − 1‖2,α ≤ ε (1.7)

for some α ∈ (0, 1) and ε > 0 to be specific later. Hereafter, ‖ · ‖k,α stands for the usual Ck,α

norm on the related domain. We still use Σ0,Σℓ in (1.4) and Γ = ∂N\(Σ0 ∪ Σℓ) to denote the

entrance, the exit and the lateral boundary of the nozzle N , respectively.

On the lateral boundary Γ, the flow satisfies the usual slip boundary condition for com-

pressible flow

−g(x1)g
′(x1)u1(x) + x2u2(x) + x3u3(x) = 0, x ∈ Γ. (1.8)

At the entrance Σ0, we pose a class of admissible physical boundary conditions for the

axisymmetric case





( x2
|x′|

u2

u1
+

x3

|x′|

u3

u1

)
(0, x′) = vr0(|x

′|),

(
−

x3

|x′|
u2 +

x3

|x′|
u3

)
(0, x′) = vθ0(|x

′|), x′ ∈ B1(0)

E(0, x′) = E0(|x′|), s(0, x′) = s0(|x′|),

(1.9)

with the naturally continuous constraint vr0(1) = g′(0) due to (1.7)–(1.8). Here, (1.9)1 is the

flow angle of the radial component of the velocity and (1.9)2 is the swirl component of the

velocity while u1 is usual called as the axis component of the velocity.

At the exit Σℓ, the end pressure is prescribed as

P (ℓ, x′) = Pℓ(|x
′|), x′ ∈ B1(0). (1.10)

Additionally, in order to avoid the elaborate framework of weight Hölder spaces, we pose

the following conditions to simplify the proof process appropriately,

vθ0(1) = g′(ℓ) = g′′(ℓ) = P ′
ℓ(1) = 0. (1.11)

Under the presentations above, the structural stability issue in 3D axisymmetric case can

be formulated mathematically as the well-posedness of the problem (1.1) with (1.2)–(1.3) and

(1.8)–(1.10) in N , which can be roughly stated as the following result.
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Theorem 1.1 Under the assumption (1.11), when ‖vzb‖2,α is bounded, there exist two

positive constants ε0 and c0 depending on the state of the reference subsonic flow in (1.5), if

‖(E0, s0, vr0, vθ0)− (Eb, sb, 0, 0)‖1,α;Σ0
+ ‖Pℓ − P b‖1,α;Σℓ

≤ ε (1.12)

with P b = P (ρb, sb) and 0 < ε ≤ ε0, then the problem (1.1) with (1.2)–(1.3) and (1.8)–(1.11)

has a unique axisymmetric subsonic solution (u, ρ, s) ∈ [C1,α(N)]5, which satisfies

‖(u, ρ, s) ◦m−1 − (ub, ρb, sb)‖1,α;Nb
≤ c0ε, (1.13)

where the invertible transformation m : N → Nb is defined as

m(x) =
(
x1,

x2

g(x1)
,
x3

g(x1)

)
, x ∈ N,

and its inverse is denoted as m−1 : Nb → N .

Remark 1.1 The assumption (1.11) can be compared with the following two facts: (1) In

three dimensional axisymmetriy, one can consider the vanish of swirl velocity. The assumption

vθ0(1) = 0 is the more general case than vθ0(|x′|) ≡ 0. (2) In the case of the straight nozzle

of N , i.e., g(x1) = 1, the P ′
ℓ(1) = 0 is the necessary compatible condition for C1,α-Hölder

regular solution. Thus, the assumption g′(ℓ) = g′′(ℓ) = P ′
ℓ(1) = 0 is also the more general

case. Actually, the assumption (1.11) can be removed if we consider Theorem 1.1 in the weight

Hölder spaces as in [20].

Remark 1.2 Except (1.11) for the simplification, Theorem 1.1 (Theorem 2.1) does not

need any more compatible conditions on the boundary conditions. In this situation, we establish

the main result in C1,α(N) space, which is with the optimal regularity.

Remark 1.3 To realize the optimal regularity, we reformulate the main problem via

a twofold normalized process. The first process is to straight the lateral boundary of the

nozzle under the natural Cartesian coordinates and translate the problem to the domain Nb.

Continuously, the second process is to formulate the problem under the cylindrical coordinates.

In this way, the Euler system can be decoupled into a first order elliptic system for the pressure

P and the flow angle of the radial velocity, and three transport equations for the total energy,

the specific entropy and the swirl velocity. This decomposition has a good intrinsic structure

for the construction of the contractive iteration scheme for the nonlinear problem in a Banach

space with optimal regularity.

Remark 1.4 In our twofold normalized process, the cylindrical coordinates are an auxiliary

process to decompose the hyperbolic-elliptic coupled form of the Euler system in a good manner.

As a price, the artificial singularity 1
r
will appear in the new nonlinear problem. Therefore, we

use the natural Cartesian coordinates as working space instead of the cylindrical coordinates.

This is our main strategy, which will be also benefit for other three dimensional problems under

axisymmetry.
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1.3 Literatures, comments and organization

In the steady Euler system (1.1), M = |u|
c(ρ,s) is usually called as Mach number. In regions

where M > 1, the flow is supersonic and the Euler system (1.1) is hyperbolic. In this situation,

when posed smooth enough “initial data” away from vaccum on the space-like surface, the

system (1.1) is at least locally well-posed. In regions where M < 1, the flow is subsonic and

the Euler system (1.1) is hyperbolic-elliptic coupled. In this case, the nature question is: What

kind of admissible boundary conditions can guarantee the well-posedness of boundary value

problems of the system (1.1)?

This question was answered in a great variety of settings, such as subsonic outflows, subsonic

flows in infinitely long nozzles, subsonic flow in finitely long nozzles, and so on. The subsonic

outflows were studied in [1, 9, 15–16, 25] for the potential flow equation when the flow is

irrotational, which show that the well-posedness of the subsonic outflow problem described by

the potential flow equation can be determined by the constant subsonic velocity at infinity.

With respect to case of subsonic Euler flow, one can see [3, 6] for the well-posedness results

when the flows past a wall or are in half plane with the give subsonic states at infinity. Another

interesting setting is subsonic flows in infinitely long nozzles. In [2], Bers conjectured that a

global irrotational subsonic flow uniquely exists in an infinite-long nozzle as long as the incoming

mass flus is less than a critical value. This conjecture was achieved in [8, 10, 12, 29–30] for two

dimensional case and [5, 13, 31–32] for three dimensional case. The detailed explanation for

this part can be found in [20] and the references therein.

For subsonic flow in bounded nozzle, as introduced in [7], it is expected the end pressure

condition. This is very different from the case in the infinitely long nozzle. In [11], Du-Weng-

Xin established the well-posedness of subsonic potential flow in two dimensional finitely long

flat nozzle with the given mass flux as well as the end pressure and the zero vertical velocity

at the inlet. In [21, 23] and the references therein, in the subsonic region, the two dimensional

Euler system is decoupled into the elliptic mode and the two hyperbolic modes. The elliptic

mode is a quasilinear first order elliptic system to control the flow angle and the pressure. The

hyperbolic modes are transport types to control the total energy and the entropy. Due to this

hyperbolic-elliptic coupled form, the admissible conditions for the subsonic Euler flow in finitely

long nozzle can be posed as the end pressure and the velocity angle, the total energy and the

entropy and the inlet. One can see [17, 20, 26] for dealing with this kind of admissible boundary

conditions.

In current paper, we devote to establishing the structural stability of the reference shear

flow in the three dimensional finitely long and slightly curved nozzle under the above mentioned

admissible boundary conditions and axisymmetry. One can see the related works [4, 14, 22, 24,

27–28] for three dimensional Euler flow in finitely long nozzles with and without axisymmetry.

In [22], Li and his coauthors considered three transonic Euler flows in finitely long nozzles

under axisymmetry in the natural Cartesian coordinates. The Euler system is decoupled into
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an elliptic mode and other hyperbolic modes under the spherical coordinates. Our current paper

extends this idea to deal with subsonic axisymmetric flow. One can see [14, 24] for treating

the transonic shock under the three dimensional symmetric case via the methods of Lagrange

transformation and/or stream function. In [4, 27], the authors used the div-curl decomposition

to decouple the Euler system and established the structural stability results of subsonic flow

in three dimensional finitely long nozzle with periodic cross section. Very recently, the result

in [4] with the mass flux condition was extended to three dimensional finitely long nozzle with

compact cross section by [28].

Motivated by [22], our strategy is to formulate the nonlinear problem via a twofold nor-

malized process, including straightening the lateral boundary of the nozzle under the natural

Cartesian coordinates y = (y1, y
′) ∈ R

3 and reformulating the problem under the cylindrical

coordinates (z, r, θ). Accordingly, the Euler system is decoupled into an elliptic mode and three

hyperbolic modes with some artificial singular terms under the cylindrical coordinates. The el-

liptic mode is a mixed type boundary value problem of first order elliptic system for the pressure

and the radial velocity. Meanwhile, the hyperbolic modes are transport type to control the total

energy, the specific entropy and the swirl velocity. With the delicate analysis on the possible

artificial singularity and the characteristic of the transport operator, the iteration scheme is

executed under the natural Cartesian coordinates (y-coordiantes). Based on this strategy, our

main result is established with the optimal C1,α regularity and without additional compatible

conditions.

The rest is organized as follows. In Section 2, we reformulate the main nonlinear problem via

a twofold normalized process, including straightening the lateral boundary of the nozzle under a

new natural Cartesian coordinates and reformulating the problem under the three dimensional

cylindrical coordinates. Section 3 prepares some preliminary conceptions and estimates, related

to the methods to deal with the artificial singularities, the methods of the specific characteristics

and the Campanato spaces and its relevance to the Hölder spaces. In Section 4, we establish the

well-posedness for a kind of boundary value problems of a first order elliptic system, which is an

fundamental model in our analysis. Finally, in Section 5, we construct a contractive iteration

scheme for the nonlinear problem and establish the main stability result.

2 Reformulation Under 3D Axisymmetry

Our reformulation is executed in the following twofold normalized process: The first step is

to straighten the lateral boundary under the new Cartesian coordinate. Actually, the solvability

and the estimates for the nonlinear problem are obtained under this new coordinate. For the

consideration of three dimensional axisymmetry, the second step, as an auxiliary process, is to

reduce the problem under the cylindrical coordinate. In this way, we can construct an iteration

scheme naturally and effectively.
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2.1 Straighten the lateral boundary

The transformation m in (1.13) is to straighten the lateral boundary Γ of N , i.e.,

m : N → Nb, x 7→ y = m(x) := (y1, y
′) =

(
x1,

x2

g(x1)
,
x3

g(x1)

)
. (2.1)

It is not difficult to find that the transformation m is invertible since ‖g− 1‖2,α ≤ ε in (1.7) for

ε > 0 suitably small. Then, under the transformation (2.1), the Euler system (1.1) is converted

equivalently into





[g(y1)∂1 − y2g
′(y1)∂2 − y3g

′(y1)∂3](ρu1) + ∂2(ρu2) + ∂3(ρu3) = 0,

[g(y1)∂1 − y2g
′(y1)∂2 − y3g

′(y1)∂3](ρu1u1 + P ) + ∂2(ρu1u2) + ∂3(ρu1u3) = 0,

[g(y1)∂1 − y2g
′(y1)∂2 − y3g

′(y1)∂3](ρu1u2) + ∂2(ρu2u2 + P ) + ∂3(ρu2u3) = 0,

[g(y1)∂1 − y2g
′(y1)∂2 − y3g

′(y1)∂3](ρu1u3) + ∂2(ρu2u3) + ∂3(ρu3u3 + P ) = 0,

[g(y1)∂1 − y2g
′(y1)∂2 − y3g

′(y1)∂3](ρu1E) + ∂2(ρu2E) + ∂3(ρu3E) = 0

(2.2)

with ∂i = ∂yi
(i = 1, 2, 3). Hereafter, we always use the notation f(y) := f ◦m−1(y) for any

function f(x) defined in N .

Meanwhile, the condition (1.8) on the lateral boundary Γ of N becomes

−g′(y1)u1(y) + y2u2(y) + y3u3(y) = 0, y ∈ Γ0. (2.3)

The physical conditions (1.9)–(1.10) at the entrance Σ0 and the exit Σℓ of N are changed

into





( y2
|y′|

u2

u1
+

y3

|y′|

u3

u1

)
(0, y′) = vr0(|y

′|),

(
−

y3

|y′|
u2 +

y2

|y′|
u3

)
(0, y′) = vθ0(|y

′|), y′ ∈ B1(0),

E(0, y′) = E0(|y′|), s(0, y′) = s0(|y′|)

(2.4)

with vr0(1) = g′(0) and

P (ℓ, y′) = Pℓ(|y
′|), y′ ∈ B1(0). (2.5)

Based on the transformation (2.1), Theorem 1.1 can be restated equivalently as the following

result.

Theorem 2.1 Under the assumptions in Theorem 1.1 and (1.11), the problem (2.2) with

(2.3)–(2.5) has a unique axisymmetric solution, which satisfies

‖(u, ρ, s)− (ub, ρb, sb)‖1,α;Nb
≤ c0ε. (2.6)

Here, we use the notation (ub,Eb)(y) = (ub,Eb) ◦m
−1
0 (y) with m0 : Nb → Nb, x 7→ y = x as

the identity mapping associated with the reference subsonic flow (1.5).
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2.2 Auxiliary transformation via the cylindrical coordinate

Since the system (2.2) is just the Euler system (1.1) in the new Cartesian coordinate y, it

is also the hyperbolic-elliptic coupled in subsonic region. In three dimensional axisymmetric

case, we use the cylindrical coordinate to decompose the corresponding hyperbolic modes and

elliptic modes. To this end, we define the cylindrical transformation

T : Nb → [0, ℓ]× [0, 1]× T, y 7→ (z, r, θ) (2.7)

with y1 = z, y2 = r cos θ, y3 = r sin θ. The inverse of T is denoted as T−1. Meanwhile, we set




(vz , vr, vθ)(z, r, θ) =
(
u1,

y2

r
u2 +

y3

r
u3,−

y3

r
u2 +

y2

r
u3

)
◦ T−1(z, r, θ),

(E, s, ρ,P )(z, r, θ) := (E, s, ρ,P ) ◦ T−1(z, r, θ).

(2.8)

In general, the three dimensional axisymmetric assumption means that

(vz , vr, vθ) = (vz , vr, vθ)(z, r), (E, s, ρ,P ) = (E, s, ρ,P )(z, r). (2.9)

We introduce the set notation {axisymmetry} to denote the collection of all the vector functions

{(u1, u2, u3,P ,E, s)(y)} satisfying (2.8)–(2.9).

Under the transformation (2.7) and the notations in (2.8)–(2.9), the system (2.2) can be

rewritten as




(g(z)∂z − g′(z)r∂r)(ρvz) + ∂r(ρvr) +
1

r
ρvr = 0,

(g(z)∂z − g′(z)r∂r)(ρvzvz + P ) + ∂r(ρvzvr) +
1

r
ρvzvr = 0,

(g(z)∂z − g′(z)r∂r)(ρvzvr) + ∂r(ρvrvr + P ) +
1

r
ρ(v2r − v2θ) = 0,

(g(z)∂z − g′(z)r∂r)(ρvzvθ) + ∂r(ρvrvθ) +
2

r
ρvrvθ = 0,

(g(z)∂z − g′(z)r∂r)(ρvzE) + ∂r(ρvrE) +
1

r
ρvrE = 0.

(2.10)

With the notation v = vr
vz
, the computations

(2.10)3 − vr × (2.10)1, (2.10)2 − vz × (2.10)1, vz × (2.10)2 + vr × (2.10)3 + vθ × (2.10)4

yield




(g(z)∂z − g′(z)r∂r)v +
1

ρv2z
∂rP

−
v

γP
(g(z)∂z − g′(z)r∂r + v∂r)P −

1

r

(
v2 +

v2θ
v2z

)
= 0,

−∂rv +
( 1

ρv2z
−

1

γP

)
(g(z)∂z − g′(z)r∂r)P −

1

γP
v∂rP −

1

r
v = 0,

((g(z)∂z − g′(z)r∂r) + v∂r)vθ +
1

r
vvθ = 0,

((g(z)∂z − g′(z)r∂r) + v∂r)s = 0,

((g(z)∂z − g′(z)r∂r) + v∂r)E = 0.

(2.11)
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Simultaneously, (2.3)–(2.5) have the forms

v(z, 1) = g′(z), z ∈ [0, ℓ], (2.12)

{
v(0, r) = vr0(r), vθ(0, r) = vθ0(r),

E(0, r) = E0(r), s(0, r) = s0(r),
r ∈ [0, 1] (2.13)

and

P (ℓ, r) = Pℓ(r), r ∈ [0, 1]. (2.14)

Remark 2.1 In (r, z, θ)-coordinate, the reference shear flow has the form




(vz, v, vθ)
∣∣
reference flow

= (vzb(r), 0, 0),

E
∣∣
reference flow

= Eb(r),

sb, ρb,P b are positive constants.

(2.15)

Remark 2.2 With the relations in (2.8), u can be expressed as

u = (u1, u2, u3) =
(
vz ,

y2

r
vr −

y3

r
vθ,

y3

r
vr +

y2

r
vθ

)
◦ T . (2.16)

Further properties about {axisymmetry} are arranged in Subsection 3.1.

Remark 2.3 The merit of the system (2.11) is that (2.11)1–(2.11)2 is the first order elliptic

system for (v,P ) and the other three equations are transport equations for vθ, s and E. This

means that in three dimensional axisymmetrical case, the hyperbolic-elliptic form of the Euler

system (1.1) can be decoupled under the cylindrical coordinate. As a price, we should treat

with the artificial singularity caused by the additional 1
r
factor along the symmetrical axis. Due

to (2.16), our strategy is to analyse the system (2.11) under the y-coordinate and establish the

C1,α estimates for yi

r
(v, vθ) (i = 2, 3) and other quantities.

2.3 Linearized form

The linearized form is built up due to the good form of the system (2.11) as pointed out

in Remark 2.3. Consequently, the main result will be established via the contraction mapping

principle in Section 5.

Based on the notations in (2.8) and (2.15), set w = (w1, · · · , w6) as

w = (vz − vzb, v − 0, vθ − 0,P − P b,E −Eb, s− sb). (2.17)

It derives from (1.2)–(1.3) that

ρ− ρb = G1w4 + G2w6, (2.18)

where Gi = Gi(w) (i = 1, 2) satisfies




G1 =
(
γA(s)

∫ 1

0

[ρb + t(ρ− ρb)]
γ−1dt

)−1

,

G2 = −ργb

∫ 1

0

A′(sb + t(s− sb))dt · G1.

(2.19)
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In a similar way, we obtain from (1.2), (2.18) and the definition of v = vr
vz

that

w1 = G3w2 + G4w3 + G5w4 + G6w5 + G7w6, (2.20)

where Gi = Gi(w) (3 ≤ i ≤ 7) satisfies





G3 = −
v2zbv

(1 + v2)(vz + vzb)
,

G4 = −
vθ

(1 + v2)(vz + vzb)
,

G5 = −
2γ

ρ(γ − 1)(1 + v2)(vz + vzb)

(
1−

P b

ρb
G1

)
,

G6 =
2

(1 + v2)(vz + vzb)
,

G7 =
2γP b

ρρb(γ − 1)(1 + v2)(vz + vzb)
G2.

Under the notations in (2.17), we derive from (2.11) that





∂zw2 + a1(r)∂rw4 = F1(w),

−∂rw2 −
1

r
w2 + a2(r)∂zw4 = F2(w),

(2.21)

where

a1(r) =
1

ρbv
2
zb

(r) > 0, a2(r) =
1

ρbv
2
zb

(r) −
1

γP b

(r) > 0 (2.22)

and

F1(w) =− ∂rw4

( 1

ρv2z
−

1

ρbv
2
zb

)
+

1

r

w2
3

v2z

+ (1− g(z))∂zw2 + g′(z)r∂rw2

+
1

γP
w2(g(z)∂z − g′(z)r∂r + w2∂r)w4 +

1

r
w2

2 ,

F2(w) =
1

γP
∂rw4w2 +

(
a2(r) −

( 1

ρv2z
−

1

γP

)
g(z)

)
∂zw4

+
( 1

ρv2z
−

1

γP

)
g′(z)r∂rw4.

(2.23)

Meanwhile, we derive from (2.11)3–(2.11)4 and (2.17) that

((g(z)∂z − g′(z)r∂r) + v∂r)w3 +
1

r
vw3 = 0 (2.24)

and

((g(z)∂z − g′(z)r∂r) + v∂r)w6 = 0. (2.25)

With respect to w5, for any (0, β) with 0 ≤ β ≤ 1, we define the rightward characteristics

r = r(z;β) decided by the operator Lv = g(z)∂z − g′(r)r∂r + v∂r in (2.11)5, which starts
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from (0, β). Then, for any (z, r) ∈ [0, ℓ] × [0, 1], one can define the corresponding leftward

characteristics r = r(z;β(z, r)) going through (z, r) and ending at (0, β(z, r)). In this way, we

can define formally

w5 = E0(β(z, r)) −Eb(r). (2.26)

The detailed analysis of w5 will be carried out by the method of characteristics in Section 5.

3 Preliminary

Before dealing with the main problem, we arrange some basic preparations in this section.

3.1 Estimates for artificial singularity

In this subsection, we give the analysis to deal with the possible artificial singularity 1
r

caused by the cylindrical transformation T in (2.7).

Lemma 3.1 When G(y) ∈ Cα(Nb) with G(y1, 0, 0) = 0, then for i = 2, 3,

∥∥∥ yi

|y′|
G
∥∥∥
0,α

≤ 3‖G‖0,α. (3.1)

Proof First, we have

∥∥∥ yi

|y′|
G
∥∥∥
0,0

≤ ‖G‖0,α. (3.2)

For any y = (y1, y
′) ∈ Nb and z = (z1, z

′) ∈ Nb with |z′| ≤ |y′|, one has

∣∣∣ yi
|y′|

G(y1, y
′)−

zi

|z′|
G(z1, z

′)
∣∣∣

≤
∣∣∣ yi
|y′|

∣∣∣|G(y1, y′)| −G(z1, z
′)|+ |G(z1, z

′)|
(∣∣∣yi − zi

|y′|

∣∣∣+ |zi|
|(y′ − z′) · (y′ + z′)|

|y′||z′|(|y′|+ |z′|)

)

≤ [G]α(|y − z|α + 2|z′|α(|y′|−α|y′ − z′|α)

≤ 3[G]α||y − z|α.

Combining this with (3.2) yields (3.1), we complete the proof of Lemma 3.1.

Lemma 3.2 For any axisymmetry function W (y1, |y′|) ∈ Cα(Nb), define

W (y) :=W (y1, r) =
1

r

∫ r

0

sW (y1, s)ds (3.3)

with r = |y′|, then ∂j
(
yi

r
W

)
∈ Cα(Nb) (i, j = 2, 3) satisfying

∥∥∥∂j
(yi
r
W

)∥∥∥
0,α

≤ C0‖W‖0,α. (3.4)

Proof Note that

yi

r
W (y) =

yi

r2

∫ r

0

s(W (y1, s)−W (y1, 0))ds+
yi

2
W (y1, 0). (3.5)
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Without loss of generation, we can assume that W (y1, 0) = 0.

A direct computation yields

∂j

(yi
r
W

)
=
yiyj

r2
W (y1, r) +

δij

r2

∫ r

0

sW (y1, s)ds−
2yiyj
r2

1

r2

∫ r

0

sW (y1, s)ds

=: I1 + δijI2 + I3. (3.6)

By using Lemma 3.1 twice, one has I1 ∈ Cα(Nb) with

‖I1‖0,α ≤ 9‖W‖0,α. (3.7)

With respect to I2, one has

|I2| ≤ ‖W‖0,α. (3.8)

In addition, for any y = (y1, y
′) ∈ Nb and z = (z1, z

′) ∈ Nb with |z′| ≤ |y′|, one has

I2(y)− I2(z)

=
1

|y′|2

∫ |y′|

0

sW (y1, s)ds−
1

|z′|2

∫ |z′|

0

sW (z1, s)ds

=
1

|y′|2

∫ |y′|

|z′|

sW (y1, s)ds+
1

|y′|2

∫ |z′|

0

s(W (y1, s)−W (z1, s))ds

+
( 1

|y′|2
−

1

|z′|2

) ∫ |z′|

0

sW (z1, s)ds

=: I21 + I22 + I23 (3.9)

with

|I21| ≤
|y′|1+α

|y′|2
(|y′| − |z′|)[W ]α ≤ 2|y − z|α[W ]α,

|I22| ≤
|z′|2

2|y′|2
|y1 − z1|

α[W ]α ≤ |y − z|α[W ]α,

|I23| ≤
|(y′ + z′) · (y′ − z′)|

|y′|2|z′|2
|z′|2+α

2 + α
[W ]α ≤ 2|y − z|α[W ]α.

Combining this with (3.8)–(3.9) shows

‖I2‖0,α ≤ 6‖W‖0,α. (3.10)

Since lim
r→0

1
r2

∫ r

0
sW (y1, s)ds =

1
2W (y1, 0) = 0, then with the proof of (3.10) and Lemma 3.1,

one has

‖I3‖0,α ≤ 54‖W‖0,α. (3.11)

Finally, (3.4) comes from (3.6)–(3.7) and (3.10)–(3.11). The proof of Lemma 3.2 is complet-

ed.
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Lemma 3.3 Three dimensional axisymmetric functions have the following properties :

(1) For any axisymmetric function = F (y1, |y′|) ∈ C1(Nb), one has

∂2F = ∂3F = ∂rF = 0 on |y′| = 0. (3.12)

(2) Under the axisymmetric and continuous assumptions of vr, vθ in (2.8)–(2.9) and the

corresponding u2 and u3, one has

u2 = u3 = vr = vθ = 0 on |y′| = 0. (3.13)

Proof Since the proof is just a routine, we omit the details here.

3.2 The analysis of the specific characteristics

To treat the transport-type problems (2.24)–(2.25), we establish the systematic analysis of

the specific characteristic defined by the first order operator

Lv = g(z)∂z − g′(z)r∂r + v∂r

= g(y1)∂1 − g′(y1)(y2∂2 + y3∂3) +
y2

|y′|
v∂2 +

y3

|y′|
v∂3

: = g(y1)(∂1 +Q2(y)∂2 +Q3(y)∂3) (3.14)

with the forms both in cylindrical coordinate and y-coordinate (the new Cartesian coordinate),

where v is a function defined in Nb and

Qi(y) =
1

g(y1)

( yi

|y′|
v(y)− yig

′(y1)
)
, i = 2, 3.

For any y ∈ Nb, the characteristic

Y (t; y) = (Y1(t; y), Y2(t; y), Y3(t; y) := (Y1(t), Y2(t), Y3(t)), t ∈ [0, ℓ]

of the operator Lv starting from some (0, βv) ∈ Σ0 and going through y can be formally defined

as




Y ′
1(t) = 1, t ∈ [0, ℓ],

Y ′
2(t) = Q2(Y (t; y)), t ∈ [0, ℓ],

Y ′
3(t) = Q3(Y (t; y)), t ∈ [0, ℓ],

Y (y1) = y, Y (0) = (0, βv).

(3.15)

Here, we use the notation Y (t; y) to denote the characteristic defined by (3.15) with t and y as

its variable and parameters respectively. The parameters y will be dropped where there is no

ambiguity.

It derives from (3.15) that




Y1(t) = t, Yi(t)− yi =

∫ t

y1

Qi(Y (t; y))dt, t ∈ [0, ℓ],

yi − βvi =

∫ y1

0

Qi(Y (t; y))dt.

(3.16)
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Thus, if Y (t; y) in (3.15) is well defined, we can determine the functions βv(y) = (βv2(y),

βv3(y)) from (3.16) as

βvi(y) = yi −

∫ y1

0

Qi(Y (t))dt, i = 2, 3. (3.17)

Lemma 3.4 For any axisymmetric v(y1, |y′|) with yi

|y′|v(y1, |y
′|) ∈ C1,α(Nb) (i = 2, 3) and

v(y1, 0) = 0, v(y1, 1) = g′(y1), the characteristic Y (t; y) and βv(y) in (3.16)–(3.17) are well

defined and satisfies




Y (t; y) ∈ N b,

Y (t; y) ∩ Γb = ∅, |y′| < 1,

Y (t; y) ∈ Γb, |y′| = 1

t ∈ [0, ℓ], (3.18)

and
{
‖Y1(t; y)‖1,α ≤ C, ‖Yi(t; y)− yi‖1,α ≤ C‖Qi‖1,α, t ∈ [0, ℓ],

‖βvi(y)− yi‖1,α ≤ C‖Qi‖1,α.
(3.19)

In addition, if ‖v‖1,0 ≤ ε for some ε > 0 small, one has

1

2
|yi| ≤ |Yi(t; y)| ≤ 2|yi|, t ∈ [0, ℓ],

1

2
|yi| ≤ |βvi(y)| ≤ 2|yi|. (3.20)

Proof With (3.12) in Lemma 3.3 and Lemma 3.1, we have that

‖Qi‖1,α ≤ C
(∥∥∥ yi

|y′|
v
∥∥∥
1,α

+ ‖g′‖1,α
)

(3.21)

and

Qi(y) = 0, y ∈ Γb. (3.22)

Thus, deriving from (3.15) and (3.21), we know that Y (t) is locally well-posed in the interval

Iy,λ = [y1 − λ, y1 + λ] ∩ [0, ℓ] for some λ > 0 small. It comes from (3.15)2–(3.15)3 and (3.21)

that

|Y2(t)|+ |Y3(t)| ≤ |y2|+ |y3|+ ‖Q2‖L∞ + ‖Q3‖L∞

≤ 2 + C
(∥∥∥ y2

|y′|
v
∥∥∥
1,α

+
∥∥∥ y3
|y′|

v
∥∥∥
1,α

+ ‖g‖2,α
)
, t ∈ Iy,λ. (3.23)

In addition, due to (3.22) and the theory of locally unique existence, Y (t) ∈ Nb satisfies




Y (t; y) ∈ Nb,

Y (t; y) ∩ Γb = ∅, |y′| < 1,

Y (t; y) ∈ Γb, |y′| = 1,

t ∈ Iy,λ. (3.24)

Based on (3.23)–(3.24), the problem (3.15) is uniquely solved on [0, ℓ] and Y (t) satisfies (3.18).

The regularity and estimates in (3.19) comes from the theorem of implicit function and

(3.16)–(3.17). The property (3.20) is obtained from (3.16)–(3.17), the expression of Qi(y) in

(3.14) and ‖w‖1,0 ≤ ε with v(y1, 0) = 0. Finally, we complete the proof of Lemma 3.4.
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3.3 Short introduction of Morrey and Campanato spaces

The notations and results in this subsection are mainly quoted from [18].

Definition 3.1 (A-type domain) A domain Ω ⊂ R
3 is called as an A-type domain if

there exists a generic constant C > 0 such that for all y0 ∈ Ω, 0 < τ < diam(Ω), we have

|B+
τ (y0)| ≥ Cτ3 where B+

τ (y0) = Bτ (y0) ∩ Ω.

Definition 3.2 (Morrey space) For any 1 ≤ p ≤ +∞, λ ≥ 0 and A-type domain Ω ⊂ R
3,

define the Morrey space Lp,λ(Ω) as

Lp,λ(Ω) := {u ∈ LP (Ω) : ‖u‖Lp,λ(Ω) < +∞}

with

‖u‖p
Lp,λ(Ω)

:= sup
y0∈Ω,τ>0

τ−λ

∫

B
+
τ (y0)

|u|Pdy.

Definition 3.3 (Campanato space) For any 1 ≤ p ≤ +∞, λ ≥ 0 and A-type domain

Ω ⊂ R
3, define the Campanato space Lp,λ(Ω) as

Lp,λ(Ω) := {u ∈ LP (Ω) : ‖u‖Lp,λ(Ω) < +∞}

with

‖u‖Lp,λ(Ω) := ‖u‖Lp(Ω) + [u]Lp,λ(Ω)

and

[u]p
Lp,λ(Ω)

:= sup
y0∈Ω,τ>0

τ−λ

∫

B
+
τ (y0)

|u− uy0,τ |
pdy < +∞.

Here, uy0,τ = 1
|B+

τ (y0)|

∫
B

+
τ (y0)

u(y)dy.

Based on the Definitions 3.1–3.3, one has the following results.

Proposition 3.1 If λ1 ≤ λ2, then Lp,λ2(Ω) ⊆ Lp,λ1(Ω).

Proof This can be shown from the definition of Campanato space, we omit the proof here.

Proposition 3.2 (see [18, Proposition 5.4]) For any 0 ≤ λ < 3, we have Lp,λ(Ω) ∼=

Lp,λ(Ω).

Proposition 3.3 (see [18, Proposition 5.5]) For any α ∈ (0, 1), we have Lp,3+pα(Ω) ∼=

Cα(Ω). Moreover, [u]α,Ω is equivalent to [u]Lp,3+pα(Ω).

Proposition 3.3 shows that, if we want to proof that u ∈ Cα(Ω), we just need to prove

u ∈ Lp,3+pα(Ω). Moreover, with Propositions 3.1–3.3, for any µ > 0, one has

Cα ∼= L2,3+2α ⊆ L2,3−µ ∼= L2,3−µ. (3.25)
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Proposition 3.4 (see [18, Lemma 5.13]) Let Φ be a non-decreasing function, A, a, b, R0

are positive constants with a > b, satisfying

Φ(τ) ≤ A
[( τ
R

)a

+ σ
]
Φ(R) +BRb

for all 0 < τ < R < r0, then there exist constants σ0 = σ0(A, a, b) and C = C(A, a, b) such that

if σ < σ0, then

Φ(τ) ≤ C
[( τ
R

)b

Φ(R) +B
]
τb.

4 Model Problem

In this section, we study the following model problem





∂zd+ a1(r)∂re = f1, (z, r) ∈ (0, ℓ)× (0, 1),

−∂rd−
1

r
d+ a2(r)∂ze = f2, (z, r) ∈ (0, ℓ)× (0, 1),

d(0, r) = d0(r), r ∈ [0, 1],

e(ℓ, r) = eℓ(r), r ∈ [0, 1],

d(z, 0) = 0, d(z, 1) = m(z), z ∈ [0, ℓ].

(4.1)

The well-posedness of the problem (4.1) can be presented as the following result.

Theorem 4.1 When fi ◦ T ∈ Cα(Nb), ai ◦ T ∈ C1,α(B1(0)) (i = 1, 2) satisfy

ai > λ, ‖ai ◦ T ‖
C1,α(B1(0))

< Λ

for some positive constants λ < Λ, yi

r
d0 ◦ T , eℓ ◦ T ∈ C1,α(B1(0)), m(z) ∈ C1,α([0, ℓ]) with the

natural admissible conditions

f1(z, 0) = 0, 0 ≤ z ≤ ℓ, (4.2a)

d0(0) = 0, d0(1) = m(0), (4.2b)

d′0(0) = e′ℓ(0) = 0, m′(ℓ) + a1(1)e
′
ℓ(1) = f1(ℓ, 1), (4.2c)

then the model problem (4.1) has a unique solution (d, e) such that
(
yi

r
d ◦T , e ◦T

)
∈ C1,α(Nb),

satisfying

∥∥∥y2
r
d ◦ T

∥∥∥
1,α

+
∥∥∥y3
r
d ◦ T

∥∥∥
1,α

+ ‖e ◦ T ‖1,α

≤ C0

(
‖f1 ◦ T ‖0,α + ‖f2 ◦ T ‖0,α +

∥∥∥y2
r
d0 ◦ T

∥∥∥
1,α

+
∥∥∥y3
r
d0 ◦ T

∥∥∥
1,α

+ ‖eℓ ◦ T ‖1,α + ‖m‖1,α
)
. (4.3)

For simplicity of notations, we drop “ ◦ T ” hereafter in this section where there is no

ambiguity.
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Remark 4.1 (Reduce to the case d0 = eℓ = m = 0) In Theorem 4.1, without loss of

generality, we can assume u0 = vℓ = m = 0. Otherwise, set

{
D = d− d0(r) − r2m(z) + r2m(0),

E = e− eℓ(r),
(4.4)

then the problem (4.1) is equivalent converted into





∂zD + a1(r)∂rE = F1, (z, r) ∈ (0, ℓ)× (0, 1),

−∂rD −
1

r
D + a2(r)∂zE = F2, (z, r) ∈ (0, ℓ)× (0, 1),

D(0, r) = 0, r ∈ [0, 1],

E(ℓ, r) = 0, r ∈ [0, 1],

D(z, 0) = 0, D(z, 1) = 0, z ∈ [0, ℓ],

(4.5)

where




F1 = f1 − r2m′(z)− a1(r)e
′
ℓ(r),

F2 = f2 + d′0(r) +
d0(r)

r
+ 3r(m(z)−m(0)).

(4.6)

Since e′ℓ(0) = 0, one has ∂ieℓ(0) = yi

r
e′ℓ(0) = 0 for i = 2, 3 by Lemma 3.3. Thus, with

Lemma 3.1, one has

e′ℓ(r) =
y2

r
∂2eℓ +

y3

r
∂3eℓ ∈ Cα(Nb).

Combining this with

d′0(r) +
d0(r)

r
= ∂2

(y2
r
d0

)
+ ∂3

(y3
r
d0

)
∈ Cα(Nb),

arrives at Fi ∈ Cα(Nb) (i = 1, 2) with F1(z, 0) = 0 and F1(ℓ, 1) = 0.

Based on Remark 4.1, we assume d0 = eℓ = m = 0 in the problem (4.1) with f1(z, 0) = 0

and f1(ℓ, 1) = 0. In this way, the unique solvability of the problem (4.1) can be reduced to the

unique solvability of the following two problems





∂zd1 + a1(r)∂re1 = f1, (z, r) ∈ (0, ℓ)× (0, 1),

−∂rd1 −
1

r
d1 + a2(r)∂ze1 = 0, (z, r) ∈ (0, ℓ)× (0, 1),

d1(0, r) = 0, r ∈ [0, 1],

e1(ℓ, r) = 0, r ∈ [0, 1],

d1(z, 0) = 0, d1(z, 1) = 0, z ∈ [0, ℓ]

(4.7)
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and




∂zd2 + a1(r)∂re2 = 0, (z, r) ∈ (0, ℓ)× (0, 1),

−∂rd2 −
1

r
d2 + a2(r)∂ze2 = f2, (z, r) ∈ (0, ℓ)× (0, 1),

d2(0, r) = 0, r ∈ [0, 1],

e2(ℓ, r) = 0, r ∈ [0, 1],

d2(z, 0) = 0, d2(z, 1) = 0, z ∈ [0, ℓ]

(4.8)

with (d, e) = (d1, e1) + (d2, e2).

4.1 Solvability of (d1, e1)

It derives from (4.7)2 that

d1 =
1

r

∫ r

0

a2(s)s∂ze1(z, s)ds. (4.9)

Substituting (4.9) into (4.7) implies





a2(r)∂
2
z e1 + a1(r)

(
∂2re1 +

1

r
∂re1

)
+ a′1(r)∂re1

= ∂rf1 +
1

r
f1, (z, r) ∈ (0, ℓ)× (0, 1),

∂re1 =
f1

a1
, (z, r) ∈ [0, ℓ]× {0, 1},

∂ze1(0, r) = e1(ℓ, r) = 0, r ∈ [0, 1].

(4.10)

With the help of the transformation (2.7), the problem (4.10) has the form as





∂1(a2(|y
′|)∂1e1) +

3∑

i=2

∂i(a1(|y
′|)∂ie1) =

3∑

i=2

∂i

( yi

|y′|
f1

)
, y ∈ Nb,

∂ne1 =
f1

a1(1)
, y ∈ [0, ℓ]× ∂B1(0),

∂1e1(0, y
′) = e1(ℓ, y

′) = 0, y′ ∈ B1(0).

(4.11)

With e1 = e11 + e12, the problem (4.11) can be split into the following two problems





Le11 =

3∑

i=2

∂i

( yi

|y′|
f1

)
, y ∈ Nb,

∂1e11(0, y
′) = ∂1e11(ℓ, y

′) = 0, y′ ∈ B1(0),

∂ne11(y1, y
′) =

f1

a1(1)
, |y′| = 1,

1

|Nb|

∫

Nb

e11dy = 0

(4.12)
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and




Le12 = 0, y ∈ Nb,

∂1e12(0, y
′) = 0, y′ ∈ B1(0),

e12(ℓ, y
′) = −e11(ℓ, y′), y′ ∈ B1(0),

∂ne12(y1, y
′) = 0, |y′| = 1,

(4.13)

where the divergence operator L = ∂1(a2(|y′|)∂1·) +
3∑

i=2

∂i(a1(|y′|)∂i·).

With respect to the problem (4.12), one has the following result.

Lemma 4.1 When f1(y1, |y′|) ∈ Cα(Nb) (i = 2, 3) with f1(z, 0) = 0 and f1(ℓ, 1) = 0, the

problem (4.12) has a unique H1-weak solution e11 such that

‖e11‖H1(Nb) ≤ C‖f1‖0,α. (4.14)

Proof Set

ẽ =





e11(y1, y
′), y1 ∈ [0, ℓ],

e11(−y1, y′), y1 ∈ [−ℓ, 0],

e11(2ℓ− y1, y
′), y1 ∈ [ℓ, 2ℓ]

and

f̃(y1, y
′) =





f1(y1, y
′), y1 ∈ [0, ℓ],

f1(−y1, y′), y1 ∈ [−ℓ, 0],

f1(2ℓ− y1, y
′), y1 ∈ [ℓ, 2ℓ].

Then the problem (4.12) can be equivalently converted into the following problem of ẽ





Lẽ =

3∑

i=2

∂i

( yi

|y′|
f̃
)
, y ∈ N1

b ,

∂1ẽ(−ℓ, y′) = ∂1ẽ(2ℓ, y
′) = 0, y′ ∈ B1(0),

∂nẽ(y1, y
′) =

f̃

a1(1)
, |y′| = 1,

1

|N1
b |

∫

N1
b

ẽdy = 0

(4.15)

with f̃(z, 0) = 0 for z ∈ [−ℓ, 2ℓ], f̃(ℓ, y′) = 0 for |y′| = 1 and N1
b = [−ℓ, 2ℓ] × B1(0). Since

the boundary conditions of the problem (4.15) are Neumann type, thus, ẽ being the H1-weak

solution of (4.15) means for any test function φ ∈ H1(N1
b ),

∫

N1
b

(a2∂1ẽ∂1φ+ a1∂2ẽ∂2φ+ a1∂3ẽ∂3φ)dy =

∫

N1
b

( y2
|y′|

f̃∂2φ+
y3

|y′|
f̃∂3φ

)
dy. (4.16)

By Lax-Milgram theorem (see [19, Theorem 5.8]) and the argument of uniqueness for the

axisymmetric case, the problem (4.15) has a unique axisymmetric weak solution ẽ ∈ H1(N1
b ).
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Together with the Poincaré inequality and (4.15)4, one has

‖ẽ‖H1(N1
b
) ≤ C

3∑

i=2

∥∥∥
( yi

|y′|
f̃
)∥∥∥

L2(N1
b
)
≤ C‖f1‖0,α.

Thus, we obtain (4.14) and finish the proof of Lemma 4.1.

In addition, the regularity of e11 can be improved into C1,α(N b). To this end, we first

establish the following lemma to homogenize the boundary condition on |y′| = 1.

Lemma 4.2 Under the assumption in Lemma 4.1, there exists a bounded operator

T : Cα(∂N1
b ∩ {|y′| = 1}) → C1,α(N

1

b),

such that for each ϕ(y1, |y′|) with ϕ ∈ Cα(∂N1
b ∩ {|y′| = 1}),

∂n(T ϕ)|[− ℓ
2
, 3ℓ

2
]×{|y′|=1} = ϕ, ‖T ϕ‖1,α ≤ C‖ϕ‖0,α (4.17)

for some generic positive constant C.

Proof First, we choose a monotonically increasing cut-off function h(r) ∈ C∞([0, 1]),

0 ≤ h′(r) ≤ 2 with

h(r) =





r, r ∈
[3
4
, 1
]
,

0, r ∈
[
0,

1

4

]
.

Thus h(|y′|) ∈ C∞(B1(0)). In addition, we choose two non-negative cut-off functions χ0(t) ∈

C∞
0 (R) and χ1(t) ∈ C∞

0 ((−ℓ, 2ℓ)), such that
∫
R
χ0(t)dt = 1 and

0 ≤ χ1(t) ≤ 1; χ1(t) = 1, t ∈
[
−
ℓ

2
,
3ℓ

2

]
; χ1(t) = 0, t ∈

(
−∞,−

3

4
ℓ
]
∪
[7
4
ℓ,+∞

)
.

For each ϕ(y1, |y′|) with ϕ ∈ Cα(∂N1
b ∩ {|y′| = 1}), we define

T ϕ(y) = (h(|y′|)− 1)

∫

R

[ϕ(·, 1)χ1(·)](y1 − (1− h(|y′|))t)χ0(t)dt.

A direct computation shows that

∂nT ϕ = ϕ on
[
−
ℓ

2
,
3ℓ

4

]
× {|y′| = 1}, ‖T ϕ‖1,α ≤ C‖ϕ‖0,α.

This yields (4.17) and the proof of Lemma 4.2 is finished.

Lemma 4.3 Under the assumptions in Lemma 4.1, e11 ∈ C1,α(Nb) and

‖e11‖1,α ≤ C‖f1‖0,α. (4.18)
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Proof We also start from the notation ẽ in the problem (4.15). For any y0 ∈ Nb, let

B+
τ (y0) = Bτ (y0)∩N1

b . To see that ẽ ∈ C1,α(Nb), from (4.14), the Definition 3.3 of Campanato

space and Proposition 3.3, we just need to prove that
∫

B
+
τ (y0)

|∇ẽ − (∇ẽ)y0,τ |
2dy ≤ C‖f1‖

2
0,ατ

3+2α (4.19)

for any 0 < τ < 1
8 where

(∇ẽ)y0,τ =
1

|B+
τ (y0)|

∫

B
+
τ (y0)

Dẽdy. (4.20)

From the interior estimates in [18, Theorem 5.14] and (4.14), (4.19) holds for y0 ∈ [0, ℓ]×

B1(0) with

∫

B
+
τ (y0)

|∇ẽ− (∇ẽ)y0,τ |
2dy ≤ C‖f1‖

2
0,ατ

3+2α, (4.21)

where C = C(λ,Λ) and ∂+τ (y0) ∩ {|y′| = 1} = ∅.

For y0 ∈ [0, ℓ]× (B1(0) \ B 7
8
(0)) and B+

R(y0) ∩ {|y′| = 1} 6= ∅ with 0 < R < 1
8 , the process

of proving (4.19) is divided into the following three steps.

Step 1 Homogeneous equation with constant coefficient in B+
R(y0).

In this step, we namely consider the case that in (4.15), a1, a2 are positive constants and

f̃ = 0 in B+
R(y0) for 0 < τ < R < 1

8 .

We first prove the following Caccioppoli inequality
∫

B
+
τ (y0)

|∇ẽ|2dy ≤ C
1

(R − τ)2

∫

B
+

R
(y0)

|ẽ−H |2dy, (4.22)

where C = C(λ,Λ) and H can be any positive constant.

In fact, choose the test function φ = η2(ẽ −H) in (4.16) with η ∈ H1
0 (BR(y0) ∩N1

b ) being

a cut-off function as: 0 ≤ η ≤ 1 in B+
R(y0), η ≡ 1 in B+

τ (y0), and |Dη| ≤ C
R−τ

. Then one has

∫

N1
b

η2(a2(∂1ẽ)
2 + a1(∂2ẽ)

2 + a1(∂3ẽ)
2)dy

= −

∫

N1
b

2η(ẽ−H)(a2∂1ẽ∂1η + a1∂2ẽ∂2η + ∂3ẽ∂3η)dy,

which yields

λ

∫

B
+

R
(y0)

(ηDẽ)2dy ≤ ε

∫

B
+

R
(y0)

(ηDẽ)2dy + C(ε)

∫

B
+

R
(y0)

|Dη|2|ẽ−H |2dy.

Thus, (4.22) is proved with ε = λ
2 and the definition of η.

Next, we prove the following two inequalities
∫

B
+
τ (y0)

|ẽ|2dy ≤ C
( τ
R

)3
∫

B
+

R(y0)

|ẽ|2dy (4.23)
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and
∫

B
+
τ (y0)

|ẽ − (ẽ)y0,τ |
2dy ≤ C

( τ
R

)5
∫

B
+

R(y0)

|ẽ− (ẽ)y0,R|
2dy. (4.24)

When R
2 ≤ τ ≤ R, (4.23) holds clearly. When 0 < τ < R

2 , in the way similar to [19, Theorem

8.10, Theorem 8.13], one has ẽ ∈ H2(B+
3R
4

(y0)) with

‖ẽ‖H2(B+

3R
4

(y0))
≤ C‖ẽ‖L2(B+

R
(y0))

. (4.25)

Here, one should deal with the Neumann boundary condition ∂nẽ
∣∣
|y′|=1

= 0 when B+
R(y0)\N

1
b 6=

∅ and can use the estimation skill of the tangential-normal derivatives to obtain (4.25).

Combining (4.25) with Sobolev imbedding Theorem and the scaling skill shows that

sup
BR

2

(y0)

|ẽ| ≤ CR− 3
2 ‖ẽ‖

H2(B+

R
2

(y0))
≤ CR− 3

2 ‖ẽ‖
L2(B+

R(y0))
. (4.26)

Therefore, it derives from (4.26) that
∫

Bτ (y0)

|ẽ|2dy ≤ Cτ3 sup
BR

2

(y0)

|ẽ|2 ≤ C
( τ
R

)3
∫

B
+

R
(y0)

|ẽ|2dy.

This shows (4.23).

Now, we prove (4.24).

For 0 < τ < R
2 , with (4.25), ∂z ẽ ∈ H1(B 3R

4
(y0)) also satisfies the homogeneous equation

with constant coefficients in B+
R(y0) with ∂n∂z ẽ = 0 on |y′| = 1. Thus following the process

of the interior estimates and the estimates near the lateral boundary of N1
b routinely as in the

proof of (4.23), we have
∫

B
+
τ (y0)

|∇ẽ|2dy ≤ C
( τ
R

)3
∫

B
+

3R
4

(y0)

|∇ẽ|2dy. (4.27)

By use of the Poincaré inequality and the Caccioppoli inequality (4.22) for the left-hand side

and the right-hand side of (4.27), respectively, (4.24) is proved for 0 < τ < R
2 .

For R
2 < τ < R, one has

( τ
R

)5
∫

B
+

R
(y0)

|ẽ− (ẽ)y0,R|
2dy

≥
(1
2

)5
∫

B+

R
(y0)

|ẽ− (ẽ)y0,R|
2dy

≥
(1
2

)5
∫

B
+
τ (y0)

|ẽ− (ẽ)y0,τ |
2dy, (4.28)

where the last inequality holds since Φ(ξ) :=
∫
B

+

ξ
(y0)

|ẽ− (ẽ)y0,ξ|
2dy is monotonically increasing

with respect to ξ. So we obtain (4.24).

In the similay way to deal with (4.27)–(4.28), one also has
∫

B
+
τ (y0)

|∇ẽ|2dy ≤ C
( τ
R

)3
∫

B
+

R
(y0)

|∇ẽ|2dy
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and
∫

B
+
τ (y0)

|∇ẽ− (∇ẽ)y0,τ |
2dy ≤ C

( τ
R

)5
∫

B
+

R
(y0)

|∇ẽ− (∇ẽ)y0,R|
2dy.

Together with Lemma 4.1, one has
∫

B
+
τ (y0)

|∇ẽ− (∇ẽ)y0,τ |
2dy ≤ C

( τ
R

)5
∫

B
+

R
(y0)

|∇ẽ|2dy ≤ C
( τ
R

)5

‖f1‖0,α ≤ Cτ3+2α‖f1‖0,α,

since R is a fixed constant. Therefore, (4.19) is proved for this case.

Step 2 Inhomogeneous equation with constant coefficient in B+
R(y0).

In this step, we consider that in (4.15), a1, a2 are positive constants and f̃ 6= 0 in B+
R(y0)

for 0 < τ < R < 1
8 . By use of Lemma 4.2, without loss of generality, we assume f̃(z, y′) = 0 on

|y′| = 1, otherwise, we use ẽ− T f̃
a1(1)

to replace ẽ itself.

Let ê be the solution to the following homogeneous problem





Lê = 0 in B+
R(y0),

ê = ẽ on ∂BR(y0) ∩N1
b ,

∂nê = ∂nẽ = 0 on BR(y0) ∩ ∂N1
b .

(4.29)

Based on Lemme 4.1, by Lax-Milgram theorem, the problem (4.29) has a uniqueH1(B+
R (y0))

weak solution ê satisfying

‖ê‖H1(B+

R
(y0))

≤ C‖ẽ‖H1(B+

R
(y0))

≤ C‖f1‖0,α. (4.30)

Similar to Step 1, one has
∫

B
+
τ (y0)

|∇ê− (∇ê)y0,τ |
2dy ≤ C

( τ
R

)5
∫

B
+

R(y0)

|∇ê− (∇ê)y0,R|
2dy. (4.31)

Let ě = ẽ− ê, thus it derives from (4.31), (4.24) and the monotonicity of Φ(ξ) defined after

(4.28) that

∫

B
+
τ (y0)

|∇ẽ − (∇ẽ)y0,τ |
2dy

=

∫

B
+
τ (y0)

|∇ê − (∇ê)y0,τ +∇ě− (∇ě)y0,τ |
2dy

≤ 2

∫

B
+
τ (y0)

|∇ê− (∇ê)y0,τ |
2dy + 2

∫

B
+
τ (y0)

|∇ě− (∇ě)y0,τ |
2dy

≤ C
( τ
R

)5
∫

B
+

R(y0)

|∇ê− (∇ê)y0,R|
2dy + C

∫

B
+

R(y0)

|∇ě − (∇ě)y0,R|
2dy

≤ C
( τ
R

)5
∫

B
+

R
(y0)

|∇ẽ− (∇ẽ)y0,R|
2dy + C

∫

B
+

R
(y0)

|∇ě|2dy + C

∫

B
+

R
(y0)

|(∇ě)y0,R|
2dy

≤ C
( τ
R

)5
∫

B
+

R(y0)

|∇ẽ− (∇ẽ)y0,R|
2dy + C

∫

B
+

R(y0)

|∇ě|2dy, (4.32)

where the last inequality comes from Hölder inequality.
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Now we estimate
∫
B

+

R
(y0)

|∇ě|2dy. From the definition of ě, ě is the unique weak solution of

the following problem




L1ě =

3∑

i=2

∂i

( yi

|y′|
f̃1

)
inB+

R(y0),

ě = 0 on ∂BR(y0) ∩N1
b ,

∂ně = 0 on Br(y0) ∩ ∂N1
b ,

(4.33)

namely, for any test function φ ∈ H1
0 (B

+
R(y0)),

∫

B
+

R(y0)

(a2∂1ě∂1φ+ a1∂2ě∂2φ+ a1∂3ě∂3φ)dy =

∫

B
+

R(y0)

( y2

|y′|
f̃1∂2φ+

y3

|y′|
f̃1∂3φ

)
dy. (4.34)

In (4.34), choose φ = ě, together with Hölder inequality and the ellipticity of the system,

one has
∫

B
+

R(y0)

|∇ě|2dy ≤ C

∫

B
+

R(y0)

|f̃1|
2dy ≤ C‖f1‖

2
Cα(Nb)

R3+2α. (4.35)

Here, the last estimate yields from the facts B+
R(y0) ∩ {|y′| = 1} 6= ∅ and f̃1

∣∣
|y′|=1

= 0.

Substituting (4.35) into (4.32) leads to
∫

B
+
τ (y0)

|∇ẽ − (∇ẽ)y0,τ |
2dy

≤ C
( τ
R

)5
∫

B
+

R
(y0)

|∇ẽ− (∇ẽ)y0,R|
2dy + C‖f1‖

2
Cα(Nb)

R3+2α. (4.36)

Applying Proposition 3.4 to (4.36), we obtain
∫

B
+
τ (y0)

|∇ẽ1 − (∇ẽ1)y0,τ |
2dy

≤ C
( 1

R3+2α

∫

B
+

R
(y0)

|∇ẽ1 − (∇ẽ1)y0,R|
2dy + ‖f1‖

2
Cα(Nb)

)
τ3+2α,

thus
∫

B
+
τ (y0)

|∇ẽ1 − (∇ẽ1)y0,τ |
2dy ≤ C(‖∇ẽ1‖

2
L2(Nb)

+ ‖f1‖
2
Cα(Nb)

)τ3+2α.

Together with (4.30) and (4.21), (4.19) is proved for this case.

Step 3 General case in B+
R (y0).

By use of Lemma 4.2, without loss of generality, we also assume f̃(z, y′) = 0 on |y′| = 1,

otherwise, we use ẽ− T f̃
a1(1)

to replace ẽ itself.

Fix y0 ∈ Nb, rewrite the first equation in (4.15) as

L̂ẽ = ∂1(a2(|y
′
0|)∂1ẽ) + ∂2(a1(|y

′
0|)∂2ẽ) + ∂3(a1(|y

′
0|)∂3ẽ) =

3∑

i=1

∂iF
i
1, (4.37)

where F1 = (F1
1,F

2
1,F

3
1) with




F1
1 = (a2(|y′0|)− a2(|y′|))∂1ẽ,

Fi
1 = (a1(|y

′
0|)− a1(|y

′|))∂iẽ+
yi

|y′|
f̃ , i = 2, 3.

(4.38)
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For any 0 < τ < R < 1
8 , with a little bit of conceptual confusion, we still define ê as the

solution to the following homogeneous problem




L̂ê = 0 in B+

R(y0),
ê = ẽ on ∂BR(y0) ∩N1

b ,

∂nê = 0 on BR(y0) ∩ ∂N1
b

(4.39)

and ě = ẽ− ê.

Similarly, based on Lemma 4.1, by Lax-Milgram theorem, there exists a unique H1(B+
R (y0))

solution ê to the problem (4.39), which satisfies

‖ê‖H1(B+

R(y0))
≤ C‖ẽ‖H1(B+

R(y0))
≤ C‖f1‖0,α. (4.40)

First, from (3.25), we have f̃ ∈ L2,3−µ with 0 < µ ≤ 3. Then we claim ∇ẽ ∈ L2,3−µ for any

0 < µ ≤ 3 with

‖∇ẽ‖L2,3−µ(Nb) ≤ C(‖∇ẽ‖L2(Nb) + ‖f1‖α;Nb
). (4.41)

Together with Lemma 4.1, we obtain

‖∇ẽ‖L2,3−µ(Nb) ≤ C‖f1‖α;Nb
. (4.42)

Now, we prove (4.41).

In fact, from (4.27), one has

∫

B
+
τ (y0)

|∇ê|2dy ≤ C
( τ
R

)3
∫

B
+

R
(y0)

|∇ê|2dy.

This yields
∫

B
+
τ (y0)

|∇ẽ|2dy ≤ 2

∫

B
+
τ (y0)

|∇ê|2dy + 2

∫

B
+
τ (y0)

|∇ě|2dy

≤ C
( τ
R

)3
∫

B
+

R
(y0)

|∇ê|2dy + 2

∫

B
+

R
(y0)

|∇ě|2dy. (4.43)

From Lemma 4.1, (4.37) and (4.39), ě = ẽ− ê is the unique H1(B+
R(y0)) weak solution of





L̂ě =

3∑

i=1

∂iF
i
1 in B+

R(y0),

ě = 0 on ∂BR(y0) ∩N1
b ,

∂ně = 0 on BR(y0) ∩ ∂N
1
b .

(4.44)

The energy estimate of the problem (4.44) with the test function ě yields

∫

B
+

R(y0)

|∇ě|2dy ≤ C

∫

B
+

R(y0))

|F1|
2dy

≤ C

∫

B
+

R
(y0))

|f1|
2dy + Cω2(R)

∫

B
+

R
(y0)

|∇ẽ|2dy, (4.45)
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where ω2(R) = sup
y∈B

+

R(y0)

2∑
i=1

|ai(|y′0|)− ai(|y′|)|2.

Note that ai ∈ C1,α(Nb), then for any ζ > 0, there exists a positive constant R0, such that

for any 0 < τ < R < R0, we have ω2(R) < ζ. In this situation, substituting (4.45) into (4.43)

yields
∫

B
+
τ (y0)

|∇ẽ|2dy ≤ C
[( τ
R

)3

+ ζ
] ∫

B
+

R(y0)

|∇ẽ|2dy + C

∫

B
+

R(y0))

|f1|
2dy

≤ C
[( τ
R

)3

+ σ
] ∫

B
+

R
(y0)

|∇ẽ|2dy + C‖f1‖
2
α;Nb

R3−µ. (4.46)

Choose Φ(τ) =
∫
B

+
τ (y0)

|Dẽ|2dy,A = C, B = C‖f1‖
2
Cα(Nb)

, a = 3, b = 3+ 2α in Proposition

3.4, then there exists a positive constant R̃0 ∈ (0, R0), such that for any 0 < τ < R < R̃0,

(4.41) has been proved from (4.46).

With the same argument in Step 2 used to obtain (4.32) and (4.35), we get

∫

B
+
τ (y0)

|∇ẽ− (∇ẽ)y0,τ |
2dy ≤ C

( τ
R

)5
∫

B
+

R
(y0)

|∇ẽ− (∇ẽ)y0,R|
2dy + C

∫

B
+

R
(y0)

|∇ě|2dy (4.47)

and

∫

B
+

R
(y0)

|∇ě|2dy ≤ C

3∑

i=1

∫

B
+

R
(y0)

|F1 − (F1)y0,R|
2dy. (4.48)

From the definition of F1 in (4.38), one has

∫

B
+

R
(y0)

|F1 − (F1)y0,R|
2dy

≤

∫

B
+

R
(y0)

|f̃ − (f̃)y0,R|
2dy +

3∑

i=1

∣∣âi(|y′0|)− âi(|y
′|)
∣∣2 ×

∫

B
+

R
(y0)

|Dẽ|2dy, (4.49)

where â1 = a2, â2 = â3 = a1. Note that ai ∈ C1,α(Nb), we have

sup
y∈B

+

R(y0)

|âi(|y
′
0|)− âi(|y

′|)|2 ≤ [ai]
2
0,αR

2α. (4.50)

Since f1 ∈ Cα(N b) and f1(y1, y
′)
∣∣
|y′|=1

= 0, substituting (4.48)–(4.50) into (4.47) yields

∫

B
+
τ (y0)

|∇ẽ− (∇ẽ)y0,τ |
2dy

≤ C
( τ
R

)5
∫

B
+

R
(y0)

|∇ẽ − (∇ẽ)y0,R|
2dy

+ C[f1]
2
αR

3+2α + C[ai]
2
0,αR

2α

∫

B
+

R(y0)

|Dẽ|2dy

≤ C
( τ
R

)5
∫

B
+

R
(y0)

|∇ẽ − (∇ẽ)y0,R|
2dy + C‖f1‖α;Nb

R3+2α−µ, 0 < µ < 2α, (4.51)
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where the last inequality comes from (4.42). Together with Proposition 3.4, one has

∫

B
+
τ (y0)

|∇ẽ − (∇ẽ)y0,τ |
2dy ≤ C‖f1‖

2
α;Nb

τ3+2α−µ,

which means ∇ẽ ∈ Cα−µ
2 (Nb) for any 0 < µ < 2α with

‖∇ẽ‖α−µ
2
;Nb

≤ C‖f1‖α;Nb
.

This yields (4.41) with the help of (3.25). Thus ∇ẽ is bounded and

∫

B
+

R
(y0)

|∇ẽ|2dy ≤ C‖f1‖
2
α;Nb

R3. (4.52)

Substituting (4.52) into the first inequality of (4.51) arrives at

∫

B
+
τ (y0)

|∇ẽ− (∇ẽ)y0,τ |
2dy ≤ C

( τ
R

)5
∫

B
+

R(y0)

|∇ẽ − (∇ẽ)y0,R|
2dy + C‖f1‖α;Nb

R3+2α. (4.53)

Using Proposition 3.4 again, we can infer that ∇ẽ ∈ Cα(Nb) with the estimate (4.19).

Finally, we finish the proof of Lemma 4.3.

With respect to the problem (4.13), we have the following result.

Lemma 4.4 Under the assumptions in Lemma 4.1, the problem (4.13) has a unique solution

e12 ∈ C1,α(Nb) with

‖e12‖1,α ≤ C‖f1‖1,α. (4.54)

Proof By Lemma 4.1 and Lemma 4.3, the problem (4.12) has a unique solution e11 ∈

C1,α(N b) with ∂ne11(ℓ, y)||y′|=1 = 0. This yields ∂ne12(ℓ, y
′)||y′|=1 = 0, which matches the

lateral boundary condition of e12 at the points y = (ℓ, y′)||y′|=1. Therefore, Lemma 4.4 can be

derived from in [19, Theorems 6.30–6.31] with the local extension skill.

Lemma 4.5 Under the assumption of Theorem 4.1, the problem (4.7) has a unique solution

(d1, e1) with

∥∥∥y2
r
d1 ◦ T

∥∥∥
1,α

+
∥∥∥y3
r
d1 ◦ T

∥∥∥
1,α

+ ‖e1 ◦ T ‖1,α ≤ C‖f1‖0,α,

where C = C(λ,Λ).

Proof This lemma can be directly derived from Lemmas 4.3–4.4, Lemma 3.2 and the

expression of ∂zd1 in (4.7)1.

4.2 Solvability of (d2, e2)

Set

∂zψ = e2, ∂rψ = −
1

a1(r)
d2, ψ(0, 0) = 0. (4.55)
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Substituting (4.55) into (4.8) shows





a2(r)∂
2
zψ + a1(r)

(
∂2rψ +

1

r
∂rψ

)
+ a′1(r)∂rψ = f2, (z, r) ∈ (0, ℓ)× (0, 1),

ψ(0, r) = 0, r ∈ [0, 1],

∂zψ(ℓ, r) = 0, r ∈ [0, 1],

∂rψ(z, 0) = ∂rψ(z, 1) = 0, z ∈ [0, ℓ].

(4.56)

With the inverse of the transformation (2.7), the problem (4.56) can be written as





Lψ = f2, y ∈ Nb,

∂nψ = 0, y ∈ [0, ℓ]× ∂B1(0),

ψ(0, y′) = ∂1ψ(ℓ, y
′) = 0, y′ ∈ B1(0).

(4.57)

We have the following well-posedness result of the problem (4.57).

Lemma 4.6 Under the assumptions of Theorem 4.1, the problem (4.57) has a unique solu-

tion ψ ∈ C2,α(Nb) with

‖ψ‖2,α ≤ C‖f2‖0,α, (4.58)

where C = C(λ,Λ).

Proof Set

ψ̃(y1, y
′) =

{
ψ(y1, y

′), y1 ∈ [0, ℓ],

ψ(2ℓ− y1, y
′), y1 ∈ [ℓ, 2ℓ]

(4.59)

and

f̃2(y1, y
′) =

{
f2(y1, y

′), y1 ∈ [0, ℓ],

f2(2ℓ− y1, y
′), y1 ∈ [ℓ, 2ℓ],

(4.60)

then the problem (4.57) is equivalently converted into the following problem of ψ̃ as





Lψ̃ = f̃2, y ∈ N2
b ,

∂nψ̃ = 0, y ∈ [0, 2ℓ]× ∂B1(0),

ψ̃(0, y′) = ψ̃(2ℓ, y′) = 0, y′ ∈ B1(0)

(4.61)

with N2
b = [0, 2ℓ]× B1(0) and the divergence type operator L defined in (4.12).

By Lax-Milgram theorem, when f2 ∈ Cα(N b), the problem (4.61) has a unique axisymmetric

solution ψ̃ ∈ H1(N2
b ). According to [19, Chapter 6, Chapter 8], one has

ψ̃ ∈ C2,α([0, 2ℓ]×B1(0)) ∩ C
0(N2

b ). (4.62)

It remains to show that ψ̃ admits the regularity estimate (4.58).

Step 1 Estimate of ψ̃ in [0, 2ℓ]×B 3
4
(0).
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Set

ϕ(y) =
F

λ
(y1(2ℓ− y1) + k(y22 + y23)),

where F = ‖f̃2‖0,α and k = λ
8Λ . Without loss of generality, we assume F 6= 0.

Then a direct computation yields




L(±ψ̃ + ϕ) ≤ 0 in N2
b ,

∂n(±ψ̃ + ϕ) > 0 on |y′| = 1,

±ψ̃ + ϕ ≥ 0 on y1 = 0, 2ℓ.

(4.63)

By use of the comparison principle, it derives from (4.63) that

‖ψ̃‖L∞ ≤ C‖f̃2‖0,α, (4.64)

where C = C(λ,Λ).

Then it follows from the Schauder interior and boundary estimates in [19, Theorem 6.2,

Corollary 6.7] that

‖ψ̃‖
C2,α([0,2ℓ]×B 3

4

(0))
≤ C(‖ψ̃‖L∞ + ‖f̃2‖0,α) ≤ C‖f̃2‖0,α. (4.65)

Step 2 Estimate of ψ̃ near {r = 1}.

To estimate ψ in [0, 2ℓ]×
{
y′ : |y′| ∈

[
3
4 , 1

]}
, we consider the following problem under the

(z, r) coordinate




a2(r)∂
2
z ψ̃ + a1(r)∂

2
r ψ̃ +

(a1(r)
r

+ a′1(r)
)
∂rψ̃ = f̃2, (z, r) ∈ (0, 2ℓ)×

(1
2
, 1
)
,

ψ̃(0, r) = ψ̃(2ℓ, r) = 0, r ∈ [0, 1],

ψ̃
(
z,

1

2

)
= ψ̃(y1, y

′) with |y′| =
1

2
, z ∈ [0, 2ℓ],

∂rψ̃(z, 1) = 0, z ∈ [0, ℓ].

Set

ai(r) =





ai(r), r ∈
[1
2
, 1
]
,

ai(2− r), r ∈
[
1,

3

2

]
,

i = 1, 2,

ψ =





ψ̃(z, r), r ∈
[1
2
, 1
]
,

ψ̃(z, 2− r), r ∈
[
1,

3

2

]

and

f2 =





(
f̃2 −

(a1(r)
r

+ a′1(r)
)
∂rψ̃

)
(z, r), r ∈

[1
2
, 1
]
,

(
f̃2 −

(a1(r)
r

+ a′1(r)
)
∂rψ̃

)
(z, 2− r), r ∈

[
1,

3

2

]
,
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then 



a2(r)∂
2
zψ + a1(r)∂

2
rψ = f2, (z, r) ∈ (0, 2ℓ)×

(1
2
,
3

2

)
,

ψ(0, r) = ψ(2ℓ, r) = 0, r ∈
[
0,

3

2

]
,

ψ
(
z,

1

2

)
= ψ̃(y1, y

′) with |y′| =
1

2
, z ∈ [0, 2ℓ],

ψ
(
z, 32

)
= ψ̃(y1, y

′) with |y′| =
1

2
, z ∈ [0, 2ℓ],

∂rψ(z, 1) = 0, z ∈ [0, ℓ].

(4.66)

Similar to (4.65) in Step 1, with the definitions of ψ, f2 and (4.64), (4.66), one has

‖ψ̃‖C2,α([0,2ℓ]×{ 3
4
≤|y′|≤1})

≤ ‖ψ‖C2,α([0,2ℓ]×{ 3
4
≤|y′|≤ 5

4
})

≤ C(‖ψ‖L∞ + ‖f2‖0,α)

≤ C
(
f̃2‖0,α +

3∑

i=2

‖∂iψ̃‖0,α
)
.

Combining this with (4.64)–(4.65) and (4.59)–(4.60) yields (4.58) and the proof of Lemma 4.6

is completed.

Lemma 4.7 Under the assumption of Theorem 4.1, the problem (4.8) has a unique solution

(d2, e2) with
∥∥∥y2
r
d2 ◦ T

∥∥∥
1,α

+
∥∥∥y3
r
d2 ◦ T

∥∥∥
1,α

+ ‖e2 ◦ T ‖1,α ≤ C‖f2‖0,α, (4.67)

where C = C(λ,Λ).

Proof From (4.55) and Lemma 4.6, one has

e2 ◦ T = ∂y1
ψ ∈ C1,α(Nb) (4.68)

and

yi

r
d2 ◦ T = −a2(r)

yi

r
∂rψ = −a2(|y

′|)∂yi
ψ ∈ C1,α(Nb), i = 2, 3. (4.69)

Finally, (4.67) comes from (4.68)–(4.69) and (4.58). We complete the proof of Lemma 4.7.

Proof of Theorem 4.1 Theorem 4.1 can be established directly from Lemma 4.5 and

Lemma 4.7.

5 Proof of the Main Theorem

Based on the linearized form for the nonlinear problem constructed in Section 2, Theorem

2.1 as well as the main Theorem 1.1 will be proved via the Banach fixed point theorem. To this

end, in the next Subsection 5.1, we construct an iteration scheme determined by the linearized

form.
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5.1 Iteration scheme

Based on (2.20)–(2.21) and (2.24)–(2.26), we can construct the iteration scheme.

With the notations

U = (u1, u2, u3,P ,E, s)(y) ∈ {axisymmetry},

Ub = (vzb(|y
′|), 0, 0,P b,Eb(|y

′|), sb)

with P b = A(sb)ρ
γ
b where ρb, sb are positive constants, one can define w = w(z, r) by (2.8)–(2.9)

and (2.17). Thus, we introduce a Banach space Ξδ as

Ξδ =
{
w(z, r) ∈ C1,α(Nb)

5 : [[w]]1,α := ‖(w1, w4, w5, w6)‖1,α +
3∑

i,j=2

∥∥∥ yi

|y′|
wj

∥∥∥
1,α

< δ,

w2(z, 0) = w3(z, 0) = 0, w2(z, 1) = g′(z), w3(ℓ, 1) = ∂rw4(ℓ, 1) = 0
}

(5.1)

with the positive constant δ to be specific later.

Based on the reduction in Subsection 2.3, we can formally define a mapping

T : Ξδ → Ξδ, w 7→ w = T(w) (5.2)

in the following way.

Due to (2.21) with (2.12)–(2.14), w2 and w4 are defined by the following problem





∂zw2 + a1(r)∂rw4 = F1(w), (z, r) ∈ (0, ℓ)× (0, 1),

−∂rw2 −
1

r
w2 + a2(r)∂zw4 = F2(w), (z, r) ∈ (0, ℓ)× (0, 1),

w2(0, r) = vr0(r), r ∈ (0, 1),

w2(z, 0) = 0, w2(z, 1) = g′(z), z ∈ [0, ℓ],

w4(ℓ, r) = Pℓ(r) − P b.

(5.3)

Once w2 and w4 are obtained, we can define v = w2 + 0.

According to (2.24), w3 is determined as




(g(z)∂z − g′(z)r∂r + v∂r)w3 +
1

r
vw3 = 0, (z, r) ∈ (0, ℓ)× (0, 1),

w3(0, r) = vθ0(r), r ∈ [0, 1].

(5.4)

Similarly, according to (2.25), w6 is defined as
{
(g(z)∂z − g′(z)r∂r + v∂r)w6 = 0, (z, r) ∈ (0, ℓ)× (0, 1),

w6(0, r) = s0(r)− sb, r ∈ [0, 1].
(5.5)

As for the definition of w5, in the way of deriving (2.26), for any (z, r) ∈ [0, ℓ] × [0, 1], we

define the leftward characteristics r = r(z;β(r, z)) with respect to the operator Lv = g(z)∂z −

g′(r)r∂r + v∂r, going through (z, r) and ending at (0, β(r, z)). Thus, we define

w5 = E0(β(r, z))−Eb(r). (5.6)
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Finally, with the identity 2.20, w1 is defined as

w1 = G3(w)w2 + G4(w)w3 + G5(w)w4 + G6(w)w5 + G7(w)w6. (5.7)

Consequently, if the problems (5.3)–(5.7) are well solved, then the mapping w = T(w) can

be formally defined. Therefore, the proof of the main Theorem 2.1 is reduced to show that the

mapping T is well-defined and has a unique fixed point in Ξδ for suitable positive δ.

5.2 Apriori estimates

For the aims of boundness and contraction of the mapping T, at first, we establish some

necessary apriori estimates of Fi(w) (i = 1, 2) defined in (2.23). For the convenience, hereafter,

we introduce a generic positive constant C as: For any functions F = F (w, ∂w) and G = G(w)

smooth with respect to their arguments with any w ∈ Ξδ, we define

‖F (w, ∂w)‖0,α + ‖G(w)‖1,α ≤ C. (5.8)

For the aim of the boundness of the mapping T, we have the following result.

Lemma 5.1 For Fi(w)(i = 1, 2) defined in (2.23) with w ∈ Ξδ, one has

2∑

i=1

‖Fi(w)‖0,α ≤ C(δ + ε)δ. (5.9)

Proof From (2.18) and (2.20), one has

‖ρ− ρb‖1,α ≤ C(‖w4‖1,α + ‖w6‖1,α) ≤ Cδ,

‖w1‖1,α ≤ C

6∑

i=2

‖wi‖1,α ≤ Cδ.
(5.10)

Due to the axisymmetry, it derives from Lemma 3.3 that ∂iw4(z, 0) = 0 (i = 2, 3). Combin-

ing this with w ∈ Ξδ yields

F1(w) =
1

ρρbvzvzb
[v2zb(ρb − ρ) + ρ(vzb + vz)(vzb − vz)]

(y2
r
∂2w4 +

y3

r
∂3w4

)

+ (1− g(z))∂zw2 + g′(z)(y2∂2w2 + y3∂3w2)

+
1

γP
w2(g(z)∂zw4 − g′(z)(y2∂2w4 + y3∂3w4) + w2

(y2
r
∂2w4 +

y3

r
∂3w4

)

+
w2

r

∫ r

0

∂rw2(z, t)dt+
w3

v2zr

∫ r

0

∂rw3(z, t)dt, (5.11)

F2(w) =
1

γP
w2

(y2
r
∂2w4 +

y3

r
∂3w4

)
+
(
a2(r)−

( 1

ρv2z
−

1

γP

)
g(z)

)
∂zw4

+
( 1

ρv2z
−

1

γP

)
g′(z)(y2∂2w4 + y3∂3w4)

with

F1(w)(z, 0) = 0, F1(w)(ℓ, 1) = 0. (5.12)
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Since w2(z, 0) = w3(z, 0) = ∂iw4(z, 0) = 0 (i = 2, 3), by use of Lemma 3.1, it derives from

(5.10)–(5.11) that

‖F1(w)‖0,α + ‖F2(w)‖0,α

≤ C(‖ρ− ρb‖0,α + ‖vz − vzb‖0,α + ‖1− g‖2,α + ‖w‖1,α)(‖∂w2‖0,α + ‖∂w4‖0,α)

≤ C(δ + ε)δ.

This shows (5.9) and the proof of Lemma 5.1 is completed.

Next, we establish the estimates for the aim of the contraction of the mapping T. To this

end, for any w ∈ Ξδ, we denote the new norm 〈·〉α as

〈w〉α = ‖(w1, w5, w6)‖0,α + ‖w4‖1,α +

2∑

i=2

(∥∥∥ yi

|y′|
w2

∥∥∥
1,α

+
∥∥∥ yi

|y′|
w3

∥∥∥
0,α

)
. (5.13)

For any wi ∈ Ξδ (i = 1, 2), with the notations in (2.17)–(2.18), one can define ρi and P i

accordingly. Then the necessary estimates for the contraction of the mapping T can be stated

as the following result.

Lemma 5.2 With the notations above, we have

‖Fi(w
1)−Fi(w

2)‖0,α ≤ C(δ + ε)〈w1 − w2〉α, i = 1, 2. (5.14)

Proof From (2.18), one has

‖ρ1 − ρ2‖0,α ≤
2∑

i=1

‖Gi(w
1)− Gi(w

2)‖0,α(‖w
1
4‖0,α + ‖w1

6‖0,α)

+
2∑

i=1

‖Gi(w
2)‖0,α(‖w

1
4 − w2

4‖0,α + ‖w1
6 − w2

6‖0,α)

≤ C〈w1 − w2〉α.

Combining this with (5.11) arrives

‖F1(w
1)−F1(w

2)‖0,α

≤ C[[w1]]1,α(‖ρ
1 − ρ2‖0,α + 〈w1 − w2〉α)

+ C(‖ρ2 − ρb‖1,α + ‖v2z − vzb‖1,α + ‖1− g‖2,α + [[w2]]1,α)〈w
1 − w2〉α

≤ C(δ + ε)〈w1 − w2〉α. (5.15)

In a similar way, we can directly compute that

‖F2(w
1)−F2(w

2)‖0,α ≤ C(δ + ε)〈w1 − w2〉α. (5.16)

Finally, (5.14) comes from (5.15)–(5.16). And we finish the proof of Lemma 5.2.
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5.3 Well-posedness of the mapping T

With the notations in (5.2), for anyW ∈ Ξδ, we solve w = T(W ) in the following four steps.

Step 1 Solvability of w2 and w4.

From (5.12), (1.9) and Lemma 3.3, one has

F1(w)(z, 0) = 0, F1(w)(ℓ, 1) = 0,

vr0(0) = 0, vr0(1) = g′(0). (5.17)

Meanwhile, it derives from (1.11) that

g′′(ℓ) + a1(1)P
′
ℓ(1) = 0 = F1(W )(ℓ, 1) = 0. (5.18)

Combining (5.17)–(5.18) with Theorem 4.1 and (5.9) shows that the problem (5.3) has a unique

solution (w2, w4) with

∥∥∥y2
r
w2 ◦ T

∥∥∥
1,α

+
∥∥∥y3
r
w2 ◦ T

∥∥∥
1,α

+ ‖w4 ◦ T ‖1,α

≤ C
( 2∑

i=1

‖Fi(w) ◦ T ‖0,α +
3∑

j=2

∥∥∥yj
r
vr0 ◦ T

∥∥∥
1,α

+ ‖(Pℓ − Pb) ◦ T ‖1,α + ‖g′‖1,α
)

≤ C(δ2 + ε). (5.19)

Step 2 Solvability of w5 and w6.

For v = w2 + 0, we define the operator Lv and βvi(y) (i = 2, 3) by (3.14) and (3.17). Thus,

w5 in (5.6) can be expressed as

w5 = E0(|βv2(y), βv3(y))|) − Eb(r).

Combining this with v = w2 + 0 and (1.12), (3.21), (3.19), (5.19) yields

‖w5‖1,α ≤ C(ε+ ‖Q1‖1,α + ‖Q2‖1,α) ≤ C(δ2 + ε). (5.20)

In the similar way, the problem (5.5) has a unique solution w6 satisfying

w6 = s0(|(βv2(y), βv3(y))|)− sb (5.21)

and

‖w6‖1,α ≤ C(δ2 + ε). (5.22)

Step 3 Solvability of w3.

With the notations of Lv and βvi(y) (i = 2, 3) in the above Step 2 and the characteristic in

Lemma 3.4, the problem (5.4) has a unique solution w3 as

w3(y1, |y
′|) = vθ0(|(βv2(y), βv3(y))|) exp

{
−

∫ y1

0

v(t, Rv(t; y))

g(t)Rv(t; y)
dt
}

(5.23)
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with Rv(t; y) = |(Y2(t; y), Y3(t; y)|.

Here, for i = 2, 3 and j = 1, 2, 3, a direct computation shows

∂j

( yi

|y′|
w3

)
=

( δij
|y′|

− (1− δ
j
1)
yiyj

|y′|3
+ δ

j
1

yi

|y′|

)
w3

+
yi

|y′|
(Jj

1 (y) + J
j
2 (y) + J

j
3 (y) + J

j
4 (y)) exp

{
−

∫ y1

0

v(t, Rv(t; y))

g(t)Rv(t; y)
dt
}

(5.24)

with

J
j
1 (y) = ∂rvθ0(|(βv2(y), βv3(y))|)

βvi(y)∂jβvi(y)

|(βv2(y), βv3(y))|
,

J
j
2 (y) = −δ1jvθ0(|(βv2(y), βv3(y))|)

v(y1, Rv(y1; y))

g(y1)Rv(y1; y)
,

J
j
3 (y) = −vθ0(|(βv2(y), βv3(y))|)

∫ y1

0

∂rv(t, Rv(t; y))

g(t)Rv(t; y)

Yi(t; y)∂jYi(t; y)

Rv(t; y)
dt,

J
j
4 (y) = vθ0(|(βv2(y), βv3(y))|)

∫ y1

0

v(t, Rv(t; y))

g(t)R2
v(t; y)

Yi(t; y)∂jYi(t; y)

Rv(t; y)
dt.

Now, we only estimate
[

yi

|y′|J
j
4 (y)

]
α

since other cases are easier. Due to vθ0(0) = 0, we

denote

J
j
4 (y) = vθ0(|(βv2(y), βv3(y))|)

∫ y1

0

1

R2
v(t; y)

J i
41(t; y)∂jYi(t; y)dt

=

∫ 1

0

∂rvθ0(|(βv2(y), βv3(y))|t)dt · |(βv2(y), βv3(y))| ·

∫ y1

0

1

g(t)R2
v(t; y)

J i
41(t; y)∂jYi(t; y)dt

: = J1
42(y) · J

2
42(y) · J

3
42(y) (5.25)

with

J i
41(t; y) =

Yi(t; y)

Rv(t; y)
v(t;Rv(t; y)) =

zi

|z′|
v(z)

∣∣
z=(t,Y2(t;y),Y3(t;y))

.

For any y, z ∈ Nb with |z′| ≤ |y′|, one has

J
j
4 (y)− J

j
4 (z)

=

∫ 1

0

(∂rvθ0(|(βv2(y), βv3(y))|t) − ∂rvθ0(|(βv2(z), βv3(z))|t))dt · J
2
42(y) · J

3
42(y)

+ J1
42(z) · (|(βv2(y), βv3(y))| − |(βv2(z), βv3(z))|) · J

3
42(y)

+ J1
42(z) · J

2
42(z) · (J

3
42(y)− J3

43(z))

: = J1
43(y, z) + J2

43(y, z) + J3
43(y, z). (5.26)

With respect to J1
43(y, z), by use of (3.19)–(3.20) and v(y1, 0) = 0, one has

|J1
43(y, z)| ≤ C[∂rvθ0]α|(βv2(y), βv3(y))− (βv2(z), βv3(z))|

α sup
t∈[0,ℓ]

‖∂jYi(t)‖0,α‖∂rv‖0,α

≤ C‖∂rvθ0‖0,α‖∂rv‖0,α|y − z|α

≤ C(δ2 + ε)|y − z|α, (5.27)
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where the last inequality is due to (5.19) and (1.12). With respect to J2
43(y, z), as for (5.27),

by use of ∂rvθ0(0) = 0, one has

|J2
43(y, z)| ≤ C[∂rvθ0]α|(βv2(z), βv3(z))|

α|(βv2(y), βv3(y))|
1−α|y − z|α|J3

42(y)|

≤ C‖∂rvθ0‖0,α‖∂rv‖0,α|y − z|α

≤ C(δ2 + ε)|y − z|α. (5.28)

With respect to J3
43(y, z), in a similar way, one has

|J3
43(y, z)|

≤ C‖∂rvθ0‖0,α|(βv2(z), βv3(z))|
1+α

×
{
‖∂rv‖0,α

(∣∣∣
∫ y1

z1

1

R1−α
v (t; y)

dt
∣∣∣+

∫ z1

0

1

R1−α
v (t; y)

dt
)}

|y − z|α

+ C‖∂rvθ0‖0,α|(βv2(z), βv3(z))|
1+α

× ‖∂rv‖0,α

∫ z1

0

R1+α
v (t; z)(Rv(t; y) +Rv(t; z))

R2
v(t; y)R

2
v(t; z)

|(Y2(t; y), Y3(t; y))− (Y2(t, z), Y3(t; z))|dt

≤ C(δ2 + ε)|y − z|α. (5.29)

In addition,

∣∣∣
( yi

|y′|
−

zi

|z′|

)
J
j
4 (z)

∣∣∣

≤ C|y − z|α|y′|−α‖∂rvθ0‖0,α‖∂rv‖0,α|z|
1+α|z|−1+α

≤ C(δ2 + ε)|y − z|α. (5.30)

Substituting (5.27)–(5.29) into (5.26) arrives at

[Jj
4 ]α ≤ C(δ2 + ε).

Combining this with, (5.23)–(5.25), (5.31) and a routine verification yields

∥∥∥ yi

|y′|
w3

∥∥∥
1,α

≤ C(δ2 + ε), i = 2, 3. (5.31)

Step 4 Solvability of w1.

Since wi (i = 2, · · · , 6) is obtained, by (5.7), we define w1 as

w1 = G3(w)w2 + G4(w)w3 + G5(w)w4 + G6(w)w5 + G7(w)w6

=

3∑

i=2

( yi

|y′|
G3(w)

yi

|y′|
w2 +

yi

|y′|
G4(w)

yi

|y′|
w3

)

+ G5(w)w4 + G6(w)w5 + G7(w)w6. (5.32)

Combining this with w ∈ Ξδ, (5.19)–(5.20), (5.22) and (5.31) shows

‖w1‖1,α ≤ C(δ2 + ε). (5.33)
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Finally, we define w = T(w) by Steps 1–4. It derives from (5.19)–(5.20), (5.22), (5.31) and

(5.33) that

[[w]]1,α ≤ C(δ2 + ε). (5.34)

We choose δ = 2Cε for 0 < ε ≤ ε0 with some ε0 > 0 such that 0 < δ < 1
2 . Combining this with

(5.34) shows

[[w]]1,α < δ. (5.35)

This yields that w = T(w) ∈ Ξδ for δ = 2Cε and 0 < ε ≤ ε0, namely, T maps Ξδ into itself

when δ = 2Cε.

5.4 Contraction of the mapping T

For any given two states wi ∈ Ξδ (i = 1, 2), we define wi = T(wi) by Subsection 5.3. We

will frequently use the norm 〈·〉α defined in (5.13) in this section without further declaration.

It derives from (5.3) that





∂z(w
1
2 − w2

2) + a1(r)∂r(w
1
4 − w2

4) = F1(w
1)−F1(w

2),

−∂r(w
1
2 − w2

2)−
1

r
(w1

2 − w2
2) + a2(r)∂z(w

1
4 − w2

4) = F2(w
1)−F2(w

2),

(w1
2 − w2

2)(0, r) = 0, r ∈ (0, 1),

(w1
2 − w2

2)(z, 0) = 0, (w1
2 − w2

2)(z, 1) = 0, z ∈ [0, ℓ],

(w1
4 − w2

4)(ℓ, r) = 0.

Then similar to Step 1 in Subsection 5.3, with Lemma 5.2, one has

∥∥∥yi
r
(w1

2 − w2
2) ◦ T

∥∥∥
1,α

+ ‖(w1
4 − w2

4) ◦ T ‖1,α

≤ C(‖(F1(w
1)−F1(w

2)) ◦ T ‖0,α + ‖(F2(w
1)−F2(w

2)) ◦ T ‖0,α)

≤ Cε
〈
w1 − w2

〉
α
. (5.36)

With vi = wi
2 +0 for i = 2, 3, we can define the operator Lvi with the coefficient Qi

j(y), the

characteristic Y i(t; y) and βvij(y) (j = 2, 3) by (3.14) and (3.16)–(3.17), respectively. By use

of (5.6), one has

w1
5 − w2

5 = E0(|(βv12(y), βv13(y))|)−E0(|(βv22(y), βv23(y))|). (5.37)

It comes from (3.16), (1.7) and the definition of Ξδ that

‖Y 1
2 (t; y)− Y 2

2 (t; y)‖0,α + ‖Y 1
3 (t; y)− Y 2

3 (t; y)‖0,α

≤ C(‖Q1
2(Y

1)−Q2
2(Y

2)‖0,α + ‖Q1
3(Y

1)−Q2
3(Y

2)‖0,α)

≤ C

3∑

i=2

∥∥∥ yi

|y′|
(w1

2 − w2
2)(y)

∥∥∥
1,α
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+ ε(‖Y 1
2 (t; y)− Y 2

2 (t; y)‖0,α + ‖Y 1
3 (t; y)− Y 2

3 (t; y)‖0,α).

Combining this with (5.36), (1.12) and (3.16) yields

‖Y 1
2 (t; y)− Y 2

2 (t; y)‖0,α + ‖Y 1
3 (t; y)− Y 2

3 (t; y)‖0,α ≤ Cε〈w1 − w2〉α, (5.38)

and then

‖w1
5 − w2

5‖0,α

≤ C(‖βv12(y)− βv2
2
(y)‖0,α + ‖βv13(y)− βv23(y)‖0,α)

≤ C(‖Q1
2(Y

1)−Q2
2(Y

2)‖0,α + ‖Q1
3(Y

1)−Q2
3(Y

2)‖0,α)

≤ Cε〈w1 − w2〉α. (5.39)

In the same way, one has

‖w1
6 − w2

6‖0,α ≤ Cε〈w1 − w2〉α. (5.40)

With respect to w1
3 − w2

3 , tracking the similar estimates in Step 3 in Subsection 5.3 and

(5.38), one has

∥∥∥y2
r
(w1

3 − w2
3)
∥∥∥
0,α

+
∥∥∥y3
r
(w1

3 − w2
3)
∥∥∥
0,α

≤ Cε〈w1 − w2〉α. (5.41)

By use of (5.32), we also have

‖w1
1 − w2

1‖0,α ≤ Cε〈w1 − w2〉α. (5.42)

Combining (5.36) and (5.39)–(5.42) yields

〈w1 − w2〉α ≤ Cε〈w1 − w2〉α ≤
1

2
〈w1 − w2〉α

with 0 < ε ≤ ε0 for some ε0 > 0. From this, we obtain that T is a contraction mapping from

Ξδ to itself.

5.5 Proofs of Theorem 2.1 and Theorem 1.1

Proof of Theorem 2.1 For any U0 = (u01, u
0
2, u

0
3,P

0,E0, s0) ∈ {axisymmetry} with

w0 being the combination of U0 − Ub ∈ Ξδ by (2.8)–(2.9), we define a series {Un}∞n=1 with

Un = (un1 , u
n
2 , u

n
3 ,P

n,En, sn) as well as wn as

wn = T(wn−1), n ≥ 1. (5.43)

From Subsections 5.3–5.4, we have wn ∈ Ξδ (n ≥ 1) for some certain δ = O(ε) small

determined in (5.35) and

〈wn − wn−1〉α ≤
1

2
〈wn−1 − wn−2〉α (5.44)
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shown by Subsection 5.4 with the norm 〈·〉 defined in (5.13).

By (5.43)–(5.44), there exists a unique w ∈ Ξδ and the corresponding U defined by (2.8)–

(2.9), solving the problem (2.2) with (2.3)–(2.5) and satisfying the estimates (2.6). Therefore,

we finally complete the proof of Theorem 2.1.

Proof of Theorem 1.1 Since the transformation m defined in (1.13) is reversible due to

‖g− 1‖2,α ≤ ε in (1.7), thus, Theorem 1.1 comes from Theorem 2.1 immediately and the proof

is finished.
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