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Exact-Approximate Controllability of the
Abstract Thermoelasticity of Type I
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Abstract In this paper, the author considers a general control problem about the system
of thermoelasticity of type I. By introducing some unique continuation property of the
corresponding adjoint system and a suitable observability inequality for an elastic equa-
tion, using compact decoupling technique and variational approach, the exact-approximate
controllability of the abstract thermoelasticity of type I is obtained. Finally, the author
applies her abstract result to the exact-approximate controllability of the linear system of
thermoelasticity.
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1 Introduction
The abstract thermoelasticity of type I we considered is as follows

uy + Aju+ BO = Ff, t e (0,77,
0 + A2 — B*uy = 0, t e (0,71, (1.1)
u(0) =up, u(0) =wuy, 6(0) =6y,
where u denotes the displacement, 6 is the temperature and f is the control. Moreover,
(up,u1,00) belongs to some Hilbert space and Ay, Ao, B, B*, F' will be showed later.

Due to the regularizing effect of the heat equation that the temperature 0(-) cannot satisfy
exactly controllable property. Then the aim of this paper is to study the exact-approximate
controllability of system (1.1), i.e., for any given time T' > 0, try to find a control f(-) such
that the displacement wu(-) is exactly controllable and the temperature 6(-) is approximately
controllable, respectively (see a precise definition in Section 2).

For the concrete system of (1.1), Zuazua [14] combined decoupling result and multiplier
techniques to obtain exact-approximate controllability with a control supported in a neigh-

borhood of the boundary of a domain. Moreover, in [4], for thermoelastic plates, Teresa and
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Zuazua [14] proved similar results hold. Other related results can be found in [2, 5, 9] and the
works cited therein.

The control problems about various abstract systems have been widely discussed by many
authors, see [3, 10-13] and references cited therein. Especially, Zhang in [12] considered the
exact controllability of an abstract semilinear control system by making some interesting as-
sumptions.

However, for the above abstract system, as far as I know, there are no papers concerning
its control problems. Only Ait Ben Hassi et al. in [1] and Henry et al. [6] analyzed its compact
decoupling by different ways. In this note, with Arzela-Ascoli lemma (see [8]), we deduce a
little stronger compact decoupling result (see Corollary 3.1). Then, motivated by [1, 12, 14], we
study the controllability of system (1.1) with control in the elastic component. Using variational
techniques, combining compact result Corollary 3.1, with some assumptions, we derive system
(1.1) is exact-approximately controllable. This result generalizes the similar result in [14].

The rest of the paper is organized as follows. In Section 2, we show the main result of this
paper. Some preliminaries are presented in Section 3. Section 4 is devoted to proving our main

result. Finally, we will apply the abstract result to a concrete system in Section 5.

2 Statement of the Main Result

Throughout this paper, let |- |y and (-, )z denote the norm and inner product of a Hilbert
space H, respectively. To begin, we make the following assumptions.

(A1) Hy; and Hs are two Hilbert spaces. Operators A; : D(A;1) C H; — H; and A :
D(As) C Hy — Hs are self-adjoint positive, and B : D(B) C Hy — H; is a closed operator
with adjoint B* such that D(Aé) C D(B), D(Al%) C D(B*), and the operator A;lB*Al% can
be extended to a bounded linear operator from H; to Hy. Moreover, A;%BAQ_ !is a compact
operator from Hy to Hj.

(A2) Similar to [12], assume the embeddings V' 2 D(A1)? < Hy and Y 2 D(A3)? < Hy
are compact. Next, we identify H; and Hj, and Hs and H}, respectively. Further, suppose that
VCH =H CV' andY C Hy = H) C Y’ be two Gelfand triples, where Hy, H;, V' and Y’
are the dual spaces of Hy, Ho,V and Y, respectively, i.e., embeddings V' 2 D(Al)% — H; and
y 2 D(As)z < Hy are both continuous and dense, and the duality pairing (-, Sy, )y

and the inner product (-, ") g, , (-, ) m, are compatible in the sense that

<Uaa1>V,V' = <U7a1>H17 Vv € ‘/7 ai € Hla (21)
(y,a2)y,y' = (Y, a2)m,, Yy €Y, ag € Hy. (2.2)

(A3) Set
X:VXHl XHQ, (23)

and X is a Hilbert space with the following norm

|(b1,b2,b3)|x = \/|A1§b1 %{1 + |b2 %11 + |b3 %12, V(bl,bQ,bg) e X. (24)



Ezact-Approzimate Controllability of the Abstract Thermoelasticity of Type I 549

Let U be another Hilbert space and F' € L(U, X). Next, assume X and U are the state space
and controllability space of system (1.1), respectively.

(A4) For any fixed time T, there exists a constant C' such that
T
P+ 10, <C [ o Y00 eV x i, (25)
0

where ¢ satisfies equation

ﬁtt-i-Al’l?—BAz_lB*’l?t =0, te [O,T),
(2.6)
IT) =19° 0(T) ="
And define F'* to be the adjoint operator of F.
(A5) Denote
XEH| x V' x Hy=H, x V' x Hy. (2.7)
Let T > 0 be given. Assume that, for any (©°, ¢!, ¥°) € X, we have
Fro=0, vte(0,T)= (p,%)=(0,0), Vte(0,T), (2.8)
where (¢, 1) satisfies the equation as follows:
(ptt—f—Al(p-i-B’lbt:O, te [O,T),
—y + Agt) + B*p = 0, tel0,7T), (2.9)

(M) =¢" wlT)=¢', »(T)=y"
Now, we introduce the following definition.

Definition 2.1 Fiz a state space X and a control time T'. If for any initial data (ug, u1,6p) €
X, any final data (zo, 21,{o) € X and any € > 0, there exists a control f(-) € L*(0,T;U) such
that the mild solution of system (1.1) satisfies

w(T) = z0, w(T)= 21,
(2.10)
10(T) = Colm, <&
We will say the system (1.1) is exact-approzimately controllable.
Then, we have the following main result.
Theorem 2.1 Suppose (A1)—(A5) hold, then the system (1.1) is exact-approximately con-
trollable.

3 Some Preliminaries

In this section, we present some preliminary results, which will play a key role of the proof

of the main result.
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Proposition 3.1 Let (A1)—(A5) hold and assume T > 0. For any bounded set K of Hs,
if the final data (¢°, ", ¢°) € X of system (2.9) satisfies |(0°, o* + BYO) g, v > 1, 0 € K,
then there exists a constant § = 6(K) such that

T
5§/ |F*p|?,dt. (3.1)
0

Here, (p, ) is the mild solution of system (2.9).
Put
T
w(t) = —/ w(s)ds + x, (3.2)
t

where x satisfies
—Ayx = o' + By°. (3.3)

Therefore, by (2.9) and (3.2), we obtain that
wy + Ajw + By =0, tel0,7),
—by + Asth + Bwy = 0, t€l0,7), (3.4)
w(l)=x, w(T)=¢° P(T)=1°
Then, Proposition 3.1 is equivalent to the following one.

Proposition 3.2 Suppose (A1)~(A5) hold. For any bounded set K of Ha, if (x,¢°,¢°) € X
satisfies |(x, P°)|vxm, > 1, ¥° € K, then there exists a constant § = 6(K) such that

T
5g/ | F*wy |%dt, (3.5)
0

where (w, 1)) satisfies (3.4).
Next, to prove Proposition 3.2, first we introduce the decoupled system of (3.4),
Wi + Ay — BA; ' B*w,; = 0, te0,7),
1, + Aotp + B*w; = 0, telo,T), (3.6)

w(l)=x, w(T)=¢" (T)=1"

With (3.6), we know W satisfies the following equation

Wy + AW — BA;'B*w, =0, t€[0,T),
(3.7)
w(T) =x, wW(T)=¢"
Therefore, by (A4), we get
T
b+ < C [ Tl (3.8)

Set
(@,) = (w,9) — (W, D). (3.9)
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Then, taking into account (3.4) and (3.6), we obtain that
Wyt + Ay = —BA;'B*w;, — B,  te[0,T),
4y + Ast) + B*@; = 0, telo,7), (3.10)
@(T) =0, @(T)=0, ¥(T)=0.
Further, combining (3.8) and (3.9), it follows
1, < [ 0Pl + (3.11)

Next, we recall some known results.

In [6], one could get the following lemma.

Lemma 3.1 The corresponding operators of systems (3.4) and (3.6) generate contractive

Co-semigroups (denoted by {S(t)}i>0 and {Sq(t)}i>0, respectively) on the Hilbert space X .

On the other hand, the Cy-semigroups {S(¢)};>0 and {S4(¢)}:>0 have property as follows
(see [1]).
Lemma 3.2 For any t > 0, operator S(t) — Sq(t) : X — X is compact.

Similar to [7], we also need the following infinite dimensional version of Arzela-Ascoli lemma
(see [8]).

Lemma 3.3 Let T > 0. Let W C C([0,T); X) such that for each t € [0,T], the set {h(t) |
h € W} is relatively compact in X. Moreover, W is uniformly bounded and equicontinuous,
i.e.,

sup |h(t)|x < oo,
hew, te[0,T)
and for any € > 0, there exists a § = d(e) > 0, such that
|h(t1) — h(t2)|X <eg, Vi, ts€ [O,T], |t1 — t2| <0, heW.
Then, there exist a sequence hy, € W and ho € C([0,T]; X), such that
i Ay () = ho()loqo,mx) = 0.
Corollary 3.1 For any given T > 0, operator S(-) — Sq(-) : X — C([0,T); X) is compact.

Proof With [1, Theorem 2.4], we know that the map t — S(t) — S4(t) is norm continuous
on [0,00). Thus, combining Lemmas 3.2-3.3, we get Corollary 3.1.

We start to prove Proposition 3.2. We will follow the strategy in [14] to argue by contra-

diction.

Proof of Proposition 3.2 First, suppose Proposition 3.2 does not hold. Thus, there
exists a bounded set K of Hy and a sequence of initial data (x;,¢Y,%) € X such that

T
/ |F*w; 4|5dt — 0 as j — oo, (3.12)
0
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where (x;, ¢Y,¢7) satisfies
|(Xj7(pg)|V><H1 > 1, ’Q/JJO c K. (313)

Therefore, by (3.11)—(3.13), it is easy to deduce that

T
liminf/ |F*w; 4 |7dt > 0. (3.14)
0

J—00

Next, we put

_ (xj, 9, 49)
(XJ?@?/‘A?) = —

= —— 3.15
|F*wj.¢| 120,750 (8.15)

Moreover, assume that (@;, ;) and ({l:)j,izj) are the corresponding solutions of systems (3.4)
and (3.10), respectively.

Hence, we have

T
/ |F*w4|pdt =1, Vj>1 (3.16)
0
and
T
/ F*@ . 5dt — 0 as j — oo (3.17)
0
Combining (3.11) and (3.16)—(3.17), it follows

X3y + 1851, < C. (3.18)

Note ¢9 € K, then we get |$?|H2 < C. And with (3.18), one could obtain (for convenience, the

extracted subsequence is denoted by the original sequence)

(X5 #5) = (X, ") inV x Hy as j — oo, (3.19)
N in Hy as j — 0o '
and
W; — @ in L*(0,T; Hy) as j — oo,
. N (3.20)
wj; — wy in L*(0,T; Hy) as j — oo,

-~ -~

where (@, ), (W, ) and (57, 1) are the solutions of systems (2.9), (3.4) and (3.10) corresponding
to the limit initial data, respectively.

Moreover, with Corollary 3.1, we know (57]-7,5) is relatively compact in C([0,T]; Hy), thus
W4 — Wy in L2(0,T; Hy) as j — oc. (3.21)
Next, by (3.16) and (3.21), we conclude
T ~
/ [Fw|fdt = 1. (3.22)
0
Combining (3.17) and (3.20), we arrive at

F*¢=F*%, =0, Vte(0,T). (3.23)
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Now, taking into account (A5) and (3.23), it holds that

-~

(¢,%) =(0,0), Vte(0,T). (3.24)
Furthermore, we get
(8°,8",¢") = (0,0,0). (3.25)

Finally, recalling systems (2.9), (3.4), (3.6) and combining (3.24)—(3.25), we deduce

~

w=0, Vte(0,T), (3.26)

and this contradicts (3.22). Then, we know Proposition 3.2 holds.

Lemma 3.4 Assume (A1)—(A5) hold. For any given (zo,z1,C0) € X (see (2.3) for X) and
any € > 0, set

1 T
J(E, ") = 5/ |F*¢|3dt — (21, €%, + (20,6 )y v
0

+ 5|770|H2 - <CO - B*2077730'>H27 v(gO’é-l’nO) € 77 (327)

where (&,m) is the mild solution of (2.9) corresponding to the initial data (€°,&Y,1°) and X is

given in (2.7). Then, the function J(-,-,-) admits a unique minimizer (EO,El,ﬁO) in X.

Proof Noting (3.27), we know J is uniformly convex and continuous in X. Now, we will

deduce the function J : X — R is coercive, i.e., for any € > 0, there exists

0 ¢1 ,0
lim inf 7J(€ SRl

)
1(€0,68,m0) e =00 [ (9,61, m0) |5 — 3:25)

Obviously, it suffices to show

J(E°, &8 n°)

lim inf 3.29
|(€2,61+Bn® 0 [ x =00 [(£°, €1 + Bn®,n°) | — (329
Similar to [14], we introduce a sequence (£9,€},77) € X such that
M; =|( ?,5]1- + Bn?,n?ﬂy — 00 asj— oo. (3.30)
Let us denote
2 a0y (65:65m)
(&5,85,m;) = VA (3.31)
J
Then € )
=~ iy 15
(&) = JTJJ

is the corresponding solution of system (2.9). Hence, we have

Jj ']( Qa 177]0) M; r *
4= ZTJ/ |F*€[3dt — (21, ), + (20, €1 )y v
0

M; M;
+ el |, — (Co — B*20, 1) 11, (3.32)
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In what follows, we will consider two cases.

(i)
T ~
liminf [ |F*&|3dt > 0; (3.33)
Jj—0o0 0
(i)
T ~
li_minf/ |F*¢;|7dt = 0. (3.34)
Jj—o0 0
By (3.33), one obviously gets that
hjrgg)lf % = 00. (3.35)

On the other hand, by (3.34), we could obtain a sequence (@) (the original sequence denote
the subsequence for convenience) such that
T ~
/O |F*&)3dt — 0 as j — oo. (3.36)

Moreover, from (3.31), we know (é}),?,
sequence such that (é? ,Ajl-,ﬁ?) - (@,El,n“)) (the extracted subsequence is denoted by the
original sequence for convenience) in X as j — oo. Also, we denote (E, 1) to be the mild
solution of system (2.9) with final data (£0,&%,79).

Thus, combining (3.36), we deduce

ﬁ?) is bounded in X. Therefore, there exists a

F*€=0, Vte (0,7). (3.37)

~,

Next, we use (A5) again to get (€2,&L,7°) = (0,0,0). Finally, it yields

(€9,€1,79) — (0,0,0) in X asj — oo. (3.38)

73]

B

Applying (3.32) and (3.38), we have

liminf 22 = lim inf [% T|F*E-|2 dt + e|n?] } (3.39)
j—oo M j—o0 2 Jo J 1151 Ha |- '

Now, from (3.31), one could conclude

(€D, &) + B, i)l =1 (3.40)
for all 7 > 0. Therefore, we see
73|, <1, V5 >0. (3.41)
And it is easy to get
liminf [7? |, < 1. (3.42)
J—o0

However, we claim that

lim inf 79|, = 1. (3.43)
J—ro0
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Let us check (3.43). First of all, we assume
h}ggfmﬂm <1 (3.44)
By (3.40) and (3.44), it holds

lim in (€2,€) + B, v > 0. (3.45)

Further, combining (3.41), (3.45) and using Proposition 3.1, we arrive at

T
li_minf/ |F*¢;|7dt > 0, (3.46)
0

J—00

which contradicts (3.36). Hence, we obtain (3.43).
Next, by (3.39) and (3.43), we could still get (3.35).
Finally, we know that the function J : X — R is coercive. Thus, this completes the proof

of Lemma 3.4.

4 Proof of Theorem 2.1

We are now in a position to prove Theorem 2.1.

Proof of Theorem 2.1 To begin with, without loss of generality, we suppose (ug, u1,0) =
(0,0,0).

Thanks to Lemma 3.4, we know the function J admits a unique minimizer (EO, Zl, 7°) in X.
Note J : X — R is Fréchet differentiable, then at the minimizer (ZO,EI,WO) we have

T
‘ / <FF*§7 Q>H1dt - <Zla QO>H1 + <207 Q1>V,V’ - <C0 - B*Z(J? LO>H2 < 5|LO|H2 (41)
0

for any (0%, 0',:) € X and any e > 0, where (g, ) satisfies (2.9) with final data (o°, o', .°).
Moreover, for (1.1), putting f = F*¢, we deduce
T —
[ FFE ot = (D)., — (u(D), )y
0
+(0(T) — B*u(T), ") - (4.2)

Combining (4.1) and (4.2), we see

|<Ut(T) — 21, QO>H1 - <U(T) — 20, Q1>V,Vl

+(0(T) — B*u(T) — Co + B*20,") 1, | < &l m, (4.3)

for any £ > 0 and any (0°, 0!,:°) € X.
In what follows, by (4.3), one obtains

{u(T) =29, w(T) =z,

10(T) — Colr, < e Y

Then the proof is finished.
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5 Example
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Finally, we apply our abstract result to the thermoelasticity system in [14]. Now, we will

consider the system in one dimension.
Set Q = (0,1) and define

Hy = Hy = L*(0,1),

Furthermore, let
D(A1) = D(Az) = H?(0,1) N Hy(0,1),
A = Ay = —02,

Then, we get the adjoint operator B* of B is given by B*

In this case, system (1.1) could be written as follows:
Ut — Ugz + 0z = [y
0t — 10 + Uty =0
u(t,0) =u(t,1) =6(¢t,0) =0(t,1) =0
u(0) = uy,

ut(O) = Uy, 9(0) = 90

U = L*(0,7) x (0,1)).

{D(B) = H;(0,1),

w
[
&

= —0,, D(B*) = H}(0,1).

(5.2)

where w = (I1,13) and 0 < I1,ls < 1. Also, we assume f € L?(0,T; L*(0,1)) and the initial data

(up,u1,60) belongs to the Hilbert space

X 2 H10,1) x L(0,1) x L*(0,1).

Clearly, the adjoint system of (5.2) is
tt — Pra + Ptz =0
—Pt — gz — pz =0
o(t,0) = @(t,1) = ¥(t,0) = (¢, 1) = 0
p(T)=¢" @(T)=¢', »(T)=1y"

where (%, ¢!, 4°) is taken in the following space

1>

X

Denote

T
w:—/ o(s)ds + x
t

with x satisfying

0,7) x (0,1),
0,T) x (0,1),
0,7,

in
in
in
in (0,1),

(
(
(
(

L?(0,1) x H71(0,1) x L*(0,1).

{_X:m = _901 - "/’2 in (07 1)7

x(0) = x(1) = 0.
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Therefore, we have

Wit — Weg + "/]w =0 m (O,T) X (0, 1),
_wt - 1/1951 — Wtx = 0 m (OaT) X (07 1)7
(5.6)
w(t,0) = w(t,1) =1 (t,0) =¢(t,1) =0 in (0,T),
’UJ(T) =X, wt(T) = QOO’ 1/’(T) = 1/)0 in (07 1)
and (x, ¢%, ") € X. Consequently, we get the adjoint system of (5.6) is as follows:

Ett—wm—Pwt:O in (0 T)X(O,l),
_Et - Ezz — Wiy =0 m (OvT) x (Oa 1)7

_ _ (5.7)
W(t,0) = w(t, 1) = B(t,0) = B(t, 1) = 0 in (0,7),
E(T) =X m15(7") = (poa E(T) = 71’0 in (07 1)5

where .
Pv=v-— / v(z)dz, Vv e L*(0,1).
0

Next, we recall the known result in [14].

Lemma 5.1 Assume T > 2max(l1,1 — l2), then there exists a constant C' > 0 such that

T l2
|X|§{é(071)+|<p0|%2(0_’1)SC/O /l @, |>dzdt, (5.8)
1

where W satisfies

Wit — Wey — Pwt =0 mn (O,T) X (0, 1), ( )
5.9
wW(T)=x, wW(T)=¢" in(0,1).

In this case, it is easy to get the assumption (A4) holds.
On the other hand, we apply the result in [14] again.

Lemma 5.2 Suppose that T > 2max(l1,1 — l2) and (p,v) is mild solution of (5.3). If
Y = 0 n (O,T) X (11,12),

then we have
(¢,¥) =(0,0) in (0,7) x (0,1).

Obviously, the assumption (A5) also holds.

Now, with Theorem 2.1, one obtains the following corollary.

Corollary 5.1 Assume T > 2max(l1,1—12), then (5.2) is exact-approzimately controllable.
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