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Abstract In this paper, the author considers a general control problem about the system

of thermoelasticity of type I. By introducing some unique continuation property of the

corresponding adjoint system and a suitable observability inequality for an elastic equa-

tion, using compact decoupling technique and variational approach, the exact-approximate

controllability of the abstract thermoelasticity of type I is obtained. Finally, the author

applies her abstract result to the exact-approximate controllability of the linear system of

thermoelasticity.
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1 Introduction

The abstract thermoelasticity of type I we considered is as follows





utt +A1u+Bθ = Ff, t ∈ (0, T ],

θt +A2θ −B∗ut = 0, t ∈ (0, T ],

u(0) = u0, ut(0) = u1, θ(0) = θ0,

(1.1)

where u denotes the displacement, θ is the temperature and f is the control. Moreover,

(u0, u1, θ0) belongs to some Hilbert space and A1, A2, B,B
∗, F will be showed later.

Due to the regularizing effect of the heat equation that the temperature θ(·) cannot satisfy

exactly controllable property. Then the aim of this paper is to study the exact-approximate

controllability of system (1.1), i.e., for any given time T > 0, try to find a control f(·) such

that the displacement u(·) is exactly controllable and the temperature θ(·) is approximately

controllable, respectively (see a precise definition in Section 2).

For the concrete system of (1.1), Zuazua [14] combined decoupling result and multiplier

techniques to obtain exact-approximate controllability with a control supported in a neigh-

borhood of the boundary of a domain. Moreover, in [4], for thermoelastic plates, Teresa and
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Zuazua [14] proved similar results hold. Other related results can be found in [2, 5, 9] and the

works cited therein.

The control problems about various abstract systems have been widely discussed by many

authors, see [3, 10–13] and references cited therein. Especially, Zhang in [12] considered the

exact controllability of an abstract semilinear control system by making some interesting as-

sumptions.

However, for the above abstract system, as far as I know, there are no papers concerning

its control problems. Only Ait Ben Hassi et al. in [1] and Henry et al. [6] analyzed its compact

decoupling by different ways. In this note, with Arzela-Ascoli lemma (see [8]), we deduce a

little stronger compact decoupling result (see Corollary 3.1). Then, motivated by [1, 12, 14], we

study the controllability of system (1.1) with control in the elastic component. Using variational

techniques, combining compact result Corollary 3.1, with some assumptions, we derive system

(1.1) is exact-approximately controllable. This result generalizes the similar result in [14].

The rest of the paper is organized as follows. In Section 2, we show the main result of this

paper. Some preliminaries are presented in Section 3. Section 4 is devoted to proving our main

result. Finally, we will apply the abstract result to a concrete system in Section 5.

2 Statement of the Main Result

Throughout this paper, let | · |H and 〈·, ·〉H denote the norm and inner product of a Hilbert

space H , respectively. To begin, we make the following assumptions.

(A1) H1 and H2 are two Hilbert spaces. Operators A1 : D(A1) ⊂ H1 → H1 and A2 :

D(A2) ⊂ H2 → H2 are self-adjoint positive, and B : D(B) ⊂ H2 → H1 is a closed operator

with adjoint B∗ such that D(A
1

2

2 ) ⊂ D(B), D(A
1

2

1 ) ⊂ D(B∗), and the operator A−1
2 B∗A

1

2

1 can

be extended to a bounded linear operator from H1 to H2. Moreover, A
− 1

2

1 BA−1
2 is a compact

operator from H2 to H1.

(A2) Similar to [12], assume the embeddings V
△
= D(A1)

1

2 →֒ H1 and Y
△
= D(A2)

1

2 →֒ H2

are compact. Next, we identify H1 and H ′
1, and H2 and H ′

2, respectively. Further, suppose that

V ⊂ H1 ≡ H ′
1 ⊂ V ′ and Y ⊂ H2 ≡ H ′

2 ⊂ Y ′ be two Gelfand triples, where H ′
1, H

′
2, V

′ and Y ′

are the dual spaces of H1, H2, V and Y , respectively, i.e., embeddings V
△
= D(A1)

1

2 →֒ H1 and

Y
△
= D(A2)

1

2 →֒ H2 are both continuous and dense, and the duality pairing 〈·, ·〉V,V ′ , 〈·, ·〉Y,Y ′

and the inner product 〈·, ·〉H1
, 〈·, ·〉H2

are compatible in the sense that

〈v, a1〉V,V ′ = 〈v, a1〉H1
, ∀v ∈ V, a1 ∈ H1, (2.1)

〈y, a2〉Y,Y ′ = 〈y, a2〉H2
, ∀y ∈ Y, a2 ∈ H2. (2.2)

(A3) Set

X = V ×H1 ×H2, (2.3)

and X is a Hilbert space with the following norm

|(b1, b2, b3)|X =

√
|A

1

2

1 b1|
2
H1

+ |b2|2H1
+ |b3|2H2

, ∀(b1, b2, b3) ∈ X. (2.4)
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Let U be another Hilbert space and F ∈ L(U,X). Next, assume X and U are the state space

and controllability space of system (1.1), respectively.

(A4) For any fixed time T , there exists a constant C such that

|ϑ0|2V + |ϑ1|2H1
≤ C

∫ T

0

|F ∗ϑt|
2
Udt, ∀(ϑ0, ϑ1) ∈ V ×H1, (2.5)

where ϑ satisfies equation

{
ϑtt +A1ϑ−BA−1

2 B∗ϑt = 0, t ∈ [0, T ),

ϑ(T ) = ϑ0, ϑt(T ) = ϑ1.
(2.6)

And define F ∗ to be the adjoint operator of F .

(A5) Denote

X
△
= H ′

1 × V ′ ×H ′
2 = H1 × V ′ ×H2. (2.7)

Let T > 0 be given. Assume that, for any (ϕ0, ϕ1, ψ0) ∈ X, we have

F ∗ϕ = 0, ∀t ∈ (0, T ) ⇒ (ϕ, ψ) ≡ (0, 0), ∀t ∈ (0, T ), (2.8)

where (ϕ, ψ) satisfies the equation as follows :





ϕtt +A1ϕ+Bψt = 0, t ∈ [0, T ),

−ψt +A2ψ +B∗ϕ = 0, t ∈ [0, T ),

ϕ(T ) = ϕ0, ϕt(T ) = ϕ1, ψ(T ) = ψ0.

(2.9)

Now, we introduce the following definition.

Definition 2.1 Fix a state space X and a control time T . If for any initial data (u0, u1, θ0) ∈

X, any final data (z0, z1, ζ0) ∈ X and any ε > 0, there exists a control f(·) ∈ L2(0, T ;U) such

that the mild solution of system (1.1) satisfies

{
u(T ) = z0, ut(T ) = z1,

|θ(T )− ζ0|H2
≤ ε.

(2.10)

We will say the system (1.1) is exact-approximately controllable.

Then, we have the following main result.

Theorem 2.1 Suppose (A1)–(A5) hold, then the system (1.1) is exact-approximately con-

trollable.

3 Some Preliminaries

In this section, we present some preliminary results, which will play a key role of the proof

of the main result.
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Proposition 3.1 Let (A1)–(A5) hold and assume T > 0. For any bounded set K of H2,

if the final data (ϕ0, ϕ1, ψ0) ∈ X of system (2.9) satisfies |(ϕ0, ϕ1 + Bψ0)|H1×V ′ ≥ 1, ψ0 ∈ K,

then there exists a constant δ = δ(K) such that

δ ≤

∫ T

0

|F ∗ϕ|2Udt. (3.1)

Here, (ϕ, ψ) is the mild solution of system (2.9).

Put

w(t) = −

∫ T

t

ϕ(s)ds+ χ, (3.2)

where χ satisfies

−A1χ = ϕ1 +Bψ0. (3.3)

Therefore, by (2.9) and (3.2), we obtain that





wtt +A1w +Bψ = 0, t ∈ [0, T ),

−ψt +A2ψ +B∗wt = 0, t ∈ [0, T ),

w(T ) = χ, wt(T ) = ϕ0, ψ(T ) = ψ0.

(3.4)

Then, Proposition 3.1 is equivalent to the following one.

Proposition 3.2 Suppose (A1)–(A5) hold. For any bounded set K of H2, if (χ, ϕ
0, ψ0) ∈ X

satisfies |(χ, ϕ0)|V ×H1
≥ 1, ψ0 ∈ K, then there exists a constant δ = δ(K) such that

δ ≤

∫ T

0

|F ∗wt|
2
Udt, (3.5)

where (w,ψ) satisfies (3.4).

Next, to prove Proposition 3.2, first we introduce the decoupled system of (3.4),





wtt +A1w −BA−1
2 B∗wt = 0, t ∈ [0, T ),

−ψt +A2ψ +B∗wt = 0, t ∈ [0, T ),

w(T ) = χ, wt(T ) = ϕ0, ψ(T ) = ψ0.

(3.6)

With (3.6), we know w satisfies the following equation

{
wtt +A1w −BA−1

2 B∗wt = 0, t ∈ [0, T ),

w(T ) = χ, wt(T ) = ϕ0.
(3.7)

Therefore, by (A4), we get

|χ|2V + |ϕ0|2H1
≤ C

∫ T

0

|F ∗wt|
2
Udt. (3.8)

Set

(w̃, ψ̃) = (w,ψ) − (w,ψ). (3.9)
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Then, taking into account (3.4) and (3.6), we obtain that




w̃tt + A1w̃ = −BA−1
2 B∗wt −Bψ, t ∈ [0, T ),

−ψ̃t +A2ψ̃ +B∗w̃t = 0, t ∈ [0, T ),

w̃(T ) = 0, w̃t(T ) = 0, ψ̃(T ) = 0.

(3.10)

Further, combining (3.8) and (3.9), it follows

|χ|2V + |ϕ0|2H1
≤ C

∫ T

0

(|F ∗wt|
2
U + |F ∗w̃t|

2
U )dt. (3.11)

Next, we recall some known results.

In [6], one could get the following lemma.

Lemma 3.1 The corresponding operators of systems (3.4) and (3.6) generate contractive

C0-semigroups (denoted by {S(t)}t≥0 and {Sd(t)}t≥0, respectively) on the Hilbert space X.

On the other hand, the C0-semigroups {S(t)}t≥0 and {Sd(t)}t≥0 have property as follows

(see [1]).

Lemma 3.2 For any t ≥ 0, operator S(t)− Sd(t) : X → X is compact.

Similar to [7], we also need the following infinite dimensional version of Arzela-Ascoli lemma

(see [8]).

Lemma 3.3 Let T > 0. Let W ⊂ C([0, T ];X) such that for each t ∈ [0, T ], the set {h(t) |

h ∈ W} is relatively compact in X. Moreover, W is uniformly bounded and equicontinuous,

i.e.,

sup
h∈W, t∈[0,T ]

|h(t)|X <∞,

and for any ε > 0, there exists a δ = δ(ε) > 0, such that

|h(t1)− h(t2)|X < ε, ∀t1, t2 ∈ [0, T ], |t1 − t2| < δ, h ∈ W .

Then, there exist a sequence hk ∈ W and h0 ∈ C([0, T ];X), such that

lim
k→∞

|hk(·) − h0(·)|C([0,T ];X) = 0.

Corollary 3.1 For any given T > 0, operator S(·)− Sd(·) : X → C([0, T ];X) is compact.

Proof With [1, Theorem 2.4], we know that the map t 7→ S(t)−Sd(t) is norm continuous

on [0,∞). Thus, combining Lemmas 3.2–3.3, we get Corollary 3.1.

We start to prove Proposition 3.2. We will follow the strategy in [14] to argue by contra-

diction.

Proof of Proposition 3.2 First, suppose Proposition 3.2 does not hold. Thus, there

exists a bounded set K of H2 and a sequence of initial data (χj , ϕ
0
j , ψ

0
j ) ∈ X such that

∫ T

0

|F ∗wj,t|
2
Udt→ 0 as j → ∞, (3.12)
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where (χj , ϕ
0
j , ψ

0
j ) satisfies

|(χj , ϕ
0
j)|V ×H1

≥ 1, ψ0
j ∈ K. (3.13)

Therefore, by (3.11)–(3.13), it is easy to deduce that

lim inf
j→∞

∫ T

0

|F ∗w̃j,t|
2
Udt > 0. (3.14)

Next, we put

(χ̂j , ϕ̂
0
j , ψ̂

0
j ) =

(χj , ϕ
0
j , ψ

0
j )

|F ∗w̃j,t|L2(0,T ;U)
. (3.15)

Moreover, assume that (ŵj , ϕ̂j) and ( ̂̃wj ,
̂̃
ψj) are the corresponding solutions of systems (3.4)

and (3.10), respectively.

Hence, we have ∫ T

0

|F ∗ ̂̃wj,t|
2
Udt = 1, ∀j ≥ 1 (3.16)

and ∫ T

0

|F ∗ŵj,t|
2
Udt→ 0 as j → ∞. (3.17)

Combining (3.11) and (3.16)–(3.17), it follows

|χ̂j |
2
V + |ϕ̂0

j |
2
H1

≤ C. (3.18)

Note ψ0
j ∈ K, then we get |ψ̂0

j |H2
≤ C. And with (3.18), one could obtain (for convenience, the

extracted subsequence is denoted by the original sequence)

{
(χ̂j , ϕ̂

0
j )⇀ (χ̂, ϕ̂0) in V ×H1 as j → ∞,

ψ̂0
j ⇀ ψ̂0 in H2 as j → ∞

(3.19)

and {
ŵj,t ⇀ ŵt in L2(0, T ;H1) as j → ∞,

̂̃wj,t ⇀ ̂̃wt in L2(0, T ;H1) as j → ∞,
(3.20)

where (ϕ̂, ψ̂), (ŵ, ψ̂) and ( ̂̃w, ̂̃ψ) are the solutions of systems (2.9), (3.4) and (3.10) corresponding

to the limit initial data, respectively.

Moreover, with Corollary 3.1, we know ( ̂̃wj,t) is relatively compact in C([0, T ];H1), thus

̂̃wj,t → ̂̃wt in L2(0, T ;H1) as j → ∞. (3.21)

Next, by (3.16) and (3.21), we conclude

∫ T

0

|F ∗ ̂̃wt|
2
Udt = 1. (3.22)

Combining (3.17) and (3.20), we arrive at

F ∗ϕ̂ = F ∗ŵt = 0, ∀t ∈ (0, T ). (3.23)
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Now, taking into account (A5) and (3.23), it holds that

(ϕ̂, ψ̂) ≡ (0, 0), ∀t ∈ (0, T ). (3.24)

Furthermore, we get

(ϕ̂0, ϕ̂1, ψ̂0) ≡ (0, 0, 0). (3.25)

Finally, recalling systems (2.9), (3.4), (3.6) and combining (3.24)–(3.25), we deduce

̂̃w ≡ 0, ∀t ∈ (0, T ), (3.26)

and this contradicts (3.22). Then, we know Proposition 3.2 holds.

Lemma 3.4 Assume (A1)–(A5) hold. For any given (z0, z1, ζ0) ∈ X (see (2.3) for X) and

any ε > 0, set

J(ξ0, ξ1, η0) =
1

2

∫ T

0

|F ∗ξ|2Udt− 〈z1, ξ
0〉H1

+ 〈z0, ξ
1〉V,V ′

+ ε|η0|H2
− 〈ζ0 −B∗z0, η

0
j 〉H2

, ∀(ξ0, ξ1, η0) ∈ X, (3.27)

where (ξ, η) is the mild solution of (2.9) corresponding to the initial data (ξ0, ξ1, η0) and X is

given in (2.7). Then, the function J(·, ·, ·) admits a unique minimizer (ξ
0
, ξ

1
, η0) in X.

Proof Noting (3.27), we know J is uniformly convex and continuous in X . Now, we will

deduce the function J : X → lR is coercive, i.e., for any ε > 0, there exists

lim inf
|(ξ0,ξ1,η0)|

X
→∞

J(ξ0, ξ1, η0)

|(ξ0, ξ1, η0)|X
≥ ε. (3.28)

Obviously, it suffices to show

lim inf
|(ξ0,ξ1+Bη0,η0)|

X
→∞

J(ξ0, ξ1, η0)

|(ξ0, ξ1 +Bη0, η0)|X
≥ ε. (3.29)

Similar to [14], we introduce a sequence (ξ0j , ξ
1
j , η

0
j ) ∈ X such that

Mj = |(ξ0j , ξ
1
j +Bη0j , η

0
j )|X → ∞ as j → ∞. (3.30)

Let us denote

(ξ̂0j , ξ̂
1
j , η̂

0
j ) =

(ξ0j , ξ
1
j , η

0
j )

Mj

. (3.31)

Then

(ξ̂j , η̂j) =
(ξj , ηj)

Mj

is the corresponding solution of system (2.9). Hence, we have

Jj

Mj

=
J(ξ0j , ξ

1
j , η

0
j )

Mj

=
Mj

2

∫ T

0

|F ∗ξ̂j |
2
Udt− 〈z1, ξ̂

0
j 〉H1

+ 〈z0, ξ̂
1
j 〉V,V ′

+ ε|η̂0j |H2
− 〈ζ0 −B∗z0, η̂

0
j 〉H2

. (3.32)
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In what follows, we will consider two cases.

(i)

lim inf
j→∞

∫ T

0

|F ∗ξ̂j |
2
Udt > 0; (3.33)

(ii)

lim inf
j→∞

∫ T

0

|F ∗ξ̂j |
2
Udt = 0. (3.34)

By (3.33), one obviously gets that

lim inf
j→∞

Jj

Mj

= ∞. (3.35)

On the other hand, by (3.34), we could obtain a sequence (ξ̂j) (the original sequence denote

the subsequence for convenience) such that

∫ T

0

|F ∗ξ̂j |
2
Udt→ 0 as j → ∞. (3.36)

Moreover, from (3.31), we know (ξ̂0j , ξ̂
1
j , η̂

0
j ) is bounded in X . Therefore, there exists a

sequence such that (ξ̂0j , ξ̂
1
j , η̂

0
j ) ⇀ (ξ̂0, ξ̂1, η̂0) (the extracted subsequence is denoted by the

original sequence for convenience) in X as j → ∞. Also, we denote (ξ̂, η̂) to be the mild

solution of system (2.9) with final data (ξ̂0, ξ̂1, η̂0).

Thus, combining (3.36), we deduce

F ∗ξ̂ ≡ 0, ∀t ∈ (0, T ). (3.37)

Next, we use (A5) again to get (ξ̂0, ξ̂1, η̂0) ≡ (0, 0, 0). Finally, it yields

(ξ̂0j , ξ̂
1
j , η̂

0
j )⇀ (0, 0, 0) in X as j → ∞. (3.38)

Applying (3.32) and (3.38), we have

lim inf
j→∞

Jj

Mj

= lim inf
j→∞

[Mj

2

∫ T

0

|F ∗ξ̂j |
2
Udt+ ε|η̂0j |H2

]
. (3.39)

Now, from (3.31), one could conclude

|(ξ̂0j , ξ̂
1
j +Bη̂0j , η̂

0
j )|X = 1 (3.40)

for all j > 0. Therefore, we see

|η̂0j |H2
≤ 1, ∀j > 0. (3.41)

And it is easy to get

lim inf
j→∞

|η̂0j |H2
≤ 1. (3.42)

However, we claim that

lim inf
j→∞

|η̂0j |H2
= 1. (3.43)
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Let us check (3.43). First of all, we assume

lim inf
j→∞

|η̂0j |H2
< 1. (3.44)

By (3.40) and (3.44), it holds

lim inf
j→∞

|(ξ̂0j , ξ̂
1
j +Bη̂0j )|H1×V

′ > 0. (3.45)

Further, combining (3.41), (3.45) and using Proposition 3.1, we arrive at

lim inf
j→∞

∫ T

0

|F ∗ξ̂j |
2
Udt > 0, (3.46)

which contradicts (3.36). Hence, we obtain (3.43).

Next, by (3.39) and (3.43), we could still get (3.35).

Finally, we know that the function J : X → lR is coercive. Thus, this completes the proof

of Lemma 3.4.

4 Proof of Theorem 2.1

We are now in a position to prove Theorem 2.1.

Proof of Theorem 2.1 To begin with, without loss of generality, we suppose (u0, u1, θ0) =

(0, 0, 0).

Thanks to Lemma 3.4, we know the function J admits a unique minimizer (ξ
0
, ξ

1
, η0) in X .

Note J : X → lR is Fréchet differentiable, then at the minimizer (ξ
0
, ξ

1
, η0) we have

∣∣∣
∫ T

0

〈FF ∗ξ, ̺〉H1
dt− 〈z1, ̺

0〉H1
+ 〈z0, ̺

1〉V,V ′ − 〈ζ0 −B∗z0, ι
0〉H2

∣∣∣ ≤ ε|ι0|H2
(4.1)

for any (̺0, ̺1, ι0) ∈ X and any ε > 0, where (̺, ι) satisfies (2.9) with final data (̺0, ̺1, ι0).

Moreover, for (1.1), putting f = F ∗ξ, we deduce

∫ T

0

〈FF ∗ξ, ̺〉H1
dt = 〈ut(T ), ̺

0〉H1
− 〈u(T ), ̺1〉V,V ′

+ 〈θ(T )−B∗u(T ), ι0〉H2
. (4.2)

Combining (4.1) and (4.2), we see

|〈ut(T )− z1, ̺
0〉H1

− 〈u(T )− z0, ̺
1〉V,V ′

+ 〈θ(T )−B∗u(T )− ζ0 +B∗z0, ι
0〉H2

| ≤ ε|ι0|H2
(4.3)

for any ε > 0 and any (̺0, ̺1, ι0) ∈ X.

In what follows, by (4.3), one obtains
{
u(T ) = z0, ut(T ) = z1,

|θ(T )− ζ0|H2
≤ ε.

(4.4)

Then the proof is finished.
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5 Example

Finally, we apply our abstract result to the thermoelasticity system in [14]. Now, we will

consider the system in one dimension.

Set Ω = (0, 1) and define

H1 = H2 = L2(0, 1), U = L2((0, T )× (0, 1)).

Furthermore, let

{
D(A1) = D(A2) = H2(0, 1) ∩H1

0 (0, 1),

A1 = A2 = −∂2x,

{
D(B) = H1

0 (0, 1),

B = ∂x.
(5.1)

Then, we get the adjoint operator B∗ of B is given by B∗ = −∂x, D(B∗) = H1
0 (0, 1).

In this case, system (1.1) could be written as follows:





utt − uxx + θx = f1ω in (0, T )× (0, 1),

θt − θxx + utx = 0 in (0, T )× (0, 1),

u(t, 0) = u(t, 1) = θ(t, 0) = θ(t, 1) = 0 in (0, T ),

u(0) = u0, ut(0) = u1, θ(0) = θ0 in (0, 1),

(5.2)

where ω = (l1, l2) and 0 < l1, l2 < 1. Also, we assume f ∈ L2(0, T ;L2(0, 1)) and the initial data

(u0, u1, θ0) belongs to the Hilbert space

X
△
= H1

0 (0, 1)× L2(0, 1)× L2(0, 1).

Clearly, the adjoint system of (5.2) is





ϕtt − ϕxx + ψtx = 0 in (0, T )× (0, 1),

−ψt − ψxx − ϕx = 0 in (0, T )× (0, 1),

ϕ(t, 0) = ϕ(t, 1) = ψ(t, 0) = ψ(t, 1) = 0 in (0, T ),

ϕ(T ) = ϕ0, ϕt(T ) = ϕ1, ψ(T ) = ψ0 in (0, 1),

(5.3)

where (ϕ0, ϕ1, ψ0) is taken in the following space

X
△
= L2(0, 1)×H−1(0, 1)× L2(0, 1).

Denote

w = −

∫ T

t

ϕ(s)ds+ χ (5.4)

with χ satisfying {
−χxx = −ϕ1 − ψ0

x in (0, 1),

χ(0) = χ(1) = 0.
(5.5)
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Therefore, we have





wtt − wxx + ψx = 0 in (0, T )× (0, 1),

−ψt − ψxx − wtx = 0 in (0, T )× (0, 1),

w(t, 0) = w(t, 1) = ψ(t, 0) = ψ(t, 1) = 0 in (0, T ),

w(T ) = χ, wt(T ) = ϕ0, ψ(T ) = ψ0 in (0, 1)

(5.6)

and (χ, ϕ0, ψ0) ∈ X . Consequently, we get the adjoint system of (5.6) is as follows:





wtt − wxx − Pwt = 0 in (0, T )× (0, 1),

−ψt − ψxx − wtx = 0 in (0, T )× (0, 1),

w(t, 0) = w(t, 1) = ψ(t, 0) = ψ(t, 1) = 0 in (0, T ),

w(T ) = χ, wt(T ) = ϕ0, ψ(T ) = ψ0 in (0, 1),

(5.7)

where

Pv = v −

∫ 1

0

v(x)dx, ∀v ∈ L2(0, 1).

Next, we recall the known result in [14].

Lemma 5.1 Assume T > 2max(l1, 1− l2), then there exists a constant C > 0 such that

|χ|2H1

0
(0,1) + |ϕ0|2L2(0,1) ≤ C

∫ T

0

∫ l2

l1

|wt|
2dxdt, (5.8)

where w satisfies {
wtt − wxx − Pwt = 0 in (0, T )× (0, 1),

w(T ) = χ, wt(T ) = ϕ0 in (0, 1).
(5.9)

In this case, it is easy to get the assumption (A4) holds.

On the other hand, we apply the result in [14] again.

Lemma 5.2 Suppose that T > 2max(l1, 1− l2) and (ϕ, ψ) is mild solution of (5.3). If

ϕ = 0 in (0, T )× (l1, l2),

then we have

(ϕ, ψ) ≡ (0, 0) in (0, T )× (0, 1).

Obviously, the assumption (A5) also holds.

Now, with Theorem 2.1, one obtains the following corollary.

Corollary 5.1 Assume T > 2max(l1, 1−l2), then (5.2) is exact-approximately controllable.
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