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Alternating Apéry-Type Series and Colored
Multiple Zeta Values of Level Eight*

Ce XU! Jiangiang ZHAO?

Abstract Apéry-type (inverse) binomial series have appeared prominently in the calcu-
lations of Feynman integrals in recent years. In their previous work, the authors showed
that a few large classes of the non-alternating Apéry-type (inverse) central binomial se-
ries can be evaluated using colored multiple zeta values of level four (i.e., special values
of multiple polylogarithms at the fourth roots of unity) by expressing them in terms of
iterated integrals. In this sequel, the authors will prove that for several classes of the
alternating versions they need to raise the level to eight. Their main idea is to adopt
hyperbolic trigonometric 1-forms to replace the ordinary trigonometric ones used in the
non-alternating setting.
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1 Introduction

Significant progress has been made on the calculations of the e-expansion of multiloop
Feynman diagrams in the past quarter of a century. It turns out that special values of multiple
polylogarithms have played indispensable roles in these computations. Much experimental
work emerged around the beginning of this century (see [4-7]), in which a special class of series
emerges. These infinite sums are often called Apéry-type series (or Apéry-like sums) because
the simplest cases were used by Apéry in his celebrated proof of irrationality of ((2) and ((3)
in 1979 when he discovered the following identities

=33 . (=53

n>1 n n>1

Motivated by Apéry’s proof, Leshchiner [10] generalized the above to the following identities
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involving the alternating Riemann zetas ((7) which are defined by

e (1 -
(=Y (k—n) = (2" —1)¢(n), Vn>2. (1.1)
k=1
Let 4,1 denote the Kronecker symbol. For all j € N, put A; =1 - -4+, B; =1 + %

Theorem 1.1 (see [10]) For any k € N, we have

— - 31 (2s)
_ n— —J
((2k) = > Z —i ,
2%k +1) = R B, 1 (20y)
C( + )—7; ; J nzj 2 ’
(-1)" (%?) S (D (2ey)
Z (2n + 1)2F1 :Z 42n ZAJ' n2i—1 ’
n>0 n>0 Jj=1
1 2n k . (Zk )
= B I
1;)(2714-1)2’“ ,; ; J 2n+1)

where 2, represents the string of 2’s with p repetitions, B;’s are Bernoulli numbers, and (,—1

and t,, are defined by (1.2) and (1.6), respectively.

We will call the Apéry-type series a central binomial series (resp. inverse central binomial
series) if the central binomial coefficient ( ") appears on the numerator (resp. denominator).
It is remarkable that both types appear in Theorem 1.1 and both appear in the evaluations of
Feynman integrals (see [4-6] for inverse binomial series and [7] for binomial series). Moreover,
odd-indexed variations of both types appeared implicitly, too. See [6, (1.1)] and [14, Remark
4.2] for the former and [7, (A.25)] and [14, Eq. (1.3)] for the latter.

In our previous work [13-15] we also studied both types and considered their even-odd-
indexed variations. Our main result is that many such series can be expressed as Q-linear
combinations of the real and/or the imaginary part of colored multiple zeta values of level 4.
We further considered similar series with (2:) replaced by its square, in which case a possible
extra factor of % may appear in the evaluations of these binomial series. In this paper, we will
focus primarily on the alternating versions.

We begin with some basic notations. Let N be the set of positive integers and Ny := NU{0}.
A finite sequence k := (k1,--- , k) € N" is called a composition. We put

|kl =k + -+ k., dep(k):=r,

and call them the weight and the depth of k, respectively. If k; > 1 then k is called admissible.

For any m,n,d € N with m > n + d and any compositions s = (s1,--- ,s4) € N%, set

Cm(8)n 1= Z ﬁ’

nl ...nd
m>ny>ng>-->ng>n
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1
G (8)n = > T sao
nl DY nd
m>ni>->ng>n

and respectively define the multiple harmonic (star) sums by

Cn(s) :=Cul(s)o,  Ch(s) == Cr(s)o- (1.2)

Then the multiple zeta values (MZVs for short) and the multiple zeta star values (MZSVs for
short) are defined by

((s) := lim Cu(s), ¢*(s):= lim (i(s),

n—r oo n—oo

respectively, and their n-tails are defined by

C(8)n = lm Gn(8)n, (*(8)n:= lim (7 (8)n,

m— o0 m—r oo

respectively. We call |s| := s1 +- - -+ s4 the weight and d the depth of the corresponding values.
Kontsvitch observed that ((s) can be expressed using Chen’s iterated integrals (see [16, Section

2.1] for a brief summary of this theory):

)= [ wia), wls) =ty T, (13)

Here we have put a = dt/t and x¢ = dt/(§ — t) for any Nth roots of unity £&. We will call w(s)

the associated word of s.

In general, let s = (s1,---,8q) € N® and n = (1, ,7n4), where n1,--- ,14 are Nth roots
of unity. We can define the colored MZVs (CMZVs for short) of level N by
. net.ne
Lis(n):= Y 4 (1.4)

ny>->ng>0 1 d

which converges if (s1,71) # (1,1) (see [11] and [16, Chapter 15]), in which case we call (s;n)
admissible. The level two colored MZVs are often called Euler sums or alternating MZVs.
In this case, namely, when (n1,--- ,n4) € {£1}" and (s1,m) # (1,1), we set ((s;n) = Lis(n).
Further, to save space we put a bar on top of s; if the corresponding n; = —1, which is consistent

with the notation in (1.1). For example,
C(gv 37T7 4) = <(2a 37 17 47 _17 17 _15 1)

Moreover, CMZVs can be expressed by Chen’s iterated integrals. In fact, for any complex

number z such that (s1,2n1) # (1,1) we have

Lis(2n17772’ . 777d) — / a.51—1Xw]1 . an_lxmi? (15)
0

J
where v; == [[ 0! = ﬁ for all j.
i=1
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In [1-2] Akhilesh discovered some very important and surprising connections between MZV's

and the following Apéry-type series, or multiple Apéry-like sums:

o= Y (M) gt

nL>ng>-->ng

Here we have renormalized the sums to make them consistent with our previous work. His
ingenious idea is to study the n-tails (and more generally, double tails) of such series. We

reformulate one of his key result as follows to make it more transparent. Set
tantdt, if s=1,
dto (cottdt)*~2odt, ifs>2.

9s(t) = g5 (t) = {
Further, we set (J) = 1,

on\ on\
by (x) = 4”( ) b, =b,(1) = 4”( ) , Vn>0.
n n

Theorem 1.2 (see [2, Thm. 4]) For all n € Ng, s = (s1,--+ ,54) € N¢, we have

o(s;siny), = Z b, (s1n.y)

ny>-->ng>n (2n1)81 T (Qnd)Sd

d

Y
= — gs, (t) 0 -+~ 09s,(t) 0 by (sint)dt.
= [ e (t) 0 by (sint)

Hereye(—%,%) ifni =1, andy € [—%,%] ifng > 2.

In this paper, motivated by a series of conjectures by Sun [12], and Leshchiner’s and
Akhilesh’s results above, we shall investigate the following alternating Apéry-type series. For

anyn € N,n = (n,---,nq) € {£1}%, 5 = (51,--- ,54) € N? and a complex variable z, define

e ) e b, ()01 -+ 1y
U(San7$)n = Z (2n1)51 -"(2’]’Ld)‘sd’

ny>-->nqg>n

which is called the n-tail of the alternating Apéry-type series denoted by

o(s;m;x) = o(s;m; ).

To save space we will put a bar on top of s; if the corresponding 7; = —1. For example,
. by () (—1)m 0
0(3,4,1;2) = ! )
GATD = D BurEa @

ni>n2>ns
From Leschiner’s result we see that studying Apéry-type series naturally leads to the follow-
ing multiple t-harmonic sums (and their star version). For any m,n,d € N and compositions

s=(s1,"--,54) € N% we define

1
tn(8)n == Z (2ny —1)51 - (2ng — 1)s¢’

m>ny>ng>-->ng>n
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* —— 1
b (8)n = Z (2ny — 1)1 (2ng — 1)%a

m>ni>-2>ng>n

and the multiple ¢-harmonic (star) sums
tn(s) = tn(s)Oa t:z(s) = t;(s)o, (16)
respectively. Correspondingly, the multiple ¢-(star) values are the infinite sums

t(s) := lim t,(s), ¢*(s):= lim t}(s).

n—oo n—r oo

We will use heavily the hyperbolic trigonometric functions throughout this paper. To fix

notation, we put

o T —e? : e +e”” , , et —e 7

shz = —isin(iz) = — chz = cos(iz) = — thae = —itan(iz) = ey
N e’ +e " . 2 — 2

cthax =icot(ixr) = ————, sechax =sec(ixr) = ————, cschx =icsc(iz) = ———.

We will extend Chen’s iterated integrals by combining 1-forms and functions as follows. For

any r € N, 1-forms fi(t)dt,- -, fr41(t)dt and functions Fy(t),--- , F,-(t), define recursively

1
/0 (AL + Fr (1) 0+ 0 (fr(8)dt + Fo(t) 0 frpn(t)dt
= / (A1)t + Fu(£)) o 0 (froa ()t + Fry () o fy()dt o fypa (1)l

1
+ /O (fit)dt + Fi(t)) oo (fr—1(t)dt + Fr_1(t)) o (E-(t) fr41(2))dt.

2 Alternating Apéry-Type Inverse Central Binomial Series

Define the hyperbolic counterpart of g,(t) by

) =50 thtdt, if s=1,
s t = s t =
I I dto (cthtdt)*=2odt, ifs>2.

Throughout the paper we put v := /2 + 1.
Theorem 2.1 Set ¢ = sh™'1= logv. For allm € Ng, s = (81, - ,84) € N?, we have
Yy
o(siishy)n (15 [ Gult)o 05, (1) obylishy)r
0

Here y e (—7/%1!’) Zf S1 = 1) and Y€ [_djaw] Zf S1 2> 2.

Proof Applying the substitution y — iy in Theorem 1.2, we obtain immediately

. by, (ishy)
o(s;ishy)y, = :
n1>'~z>nd>n (2711)51 o (2nd)5d
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y
=—i— / gs, (it) o - -+ 0 g5, (it) o b, (isht)d(it),
dy Jo

where we have used the fact that sinit = isht and cosit = cht. Note that

. tan(it)d(it), if s =1,
gS(lt) = . . . —92 : :

d(it) o (cot(it)d(it))*~= o d(it), if s> 2,

—thtdt, if s =1,

| —dto (cthtdt)* 2 odt, if s > 2.

The theorem follows immediately.

Similar to the original form in [2, Theorem 4], setting w(s) = x., - - - %, (see (1.3)) yields

Yy
o(s;ishy), = (—=1)%th" y/ thet 2L ¢dt - - - tho 1 Tew L ¢dtb,, (ish t)dt.
0

Corollary 2.1 For all p € N, we have

o(1,2,;ishy) = o(T,2,;shy) = (=1)PT ! th y(dt)2p+1 _ T th
b 23] ?J - Py 3 y - y o - (2p+1)'y yv
. 5 N G
0(2p;ishy) = 0(2,2,_1;shy) = (—1)”/ (dt)*? = yP.
0 (2p)!

Remark 2.1 Taking p = 0 and p = 1 in the first equation of Corollary 2.1, we can recover

the two equations (C.8) and (C.16) in [6]. Similarly, taking p = 0 and p = 1 in the second

equation above, we can obtain (C.9) and (C.17) in [6].

Example 2.1 For j =1,2,3,4, we have

! (W) = 1og (VLI E DY
2 2 '
Thus for all p > 0, we get

0(1,2p; \/51) = U(T, 2p; \/j)

2 2
> sh—1 (4L
_ (_1);04—1\/3 2 )(dt)2p+l
Vit+4 Jo
_ UG e (\/5+\/j+4).
@p+ )i +4 2
Similarly, for all p > 1,
o(2 -ﬁi) = (2.2 ‘/3) =(-1) /Shl(%(dt)% = C g (7‘/3+ Vj+4)
Py - y “p—1, 2 = o — (2p)' g B .

Remark 2.2 Kalmykov and his collaborators encountered and studied similar sums when
computing Feynman integrals in [6, 8-9]. By the stuffle relations it is easy to see that those

sums can be expressed as Q-linear combinations of ¢’s and their odd-indexed variations, but
not vice versa in general.
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We now turn to the general alternating case. Define

dt dt tdt tdt
wo i=— w = w = w = .

Theorem 2.2 For any d € N s = (s1,--+,84) € Nt andn = (n1,--- ,n4) € {£1}%,

put m; = kH e and sgn(n) = H n,. Set sihyy = siny and sih_;y = shy. Put b (t) =
=1

(2")_1(:|:4t2)", Then we have

sihy, y
o(s;m;sihy, y)n =sgn(n)@ / D70 (t) 0 -0 Dgd " (t) 0 38" (t)uwy, (2.1)
0

o(s;n;x), =sgn(n)y/1 — n1x2 / Lo ( .0 I‘?j’l"nd (t)o bign("d)(t)wnd, (2.2)

where ny =1, and

W3b—a Zf § = 17
et = {

wawg_wa, if s > 2.
Here if ;1 = 1 then o(s;m; 1), is the limit © — 1= on the right-hand side of (2.2).
Remark 2.3 Note that in general sgn(n) =n¢---n2_ 04 # kﬁl M.
Proof (2.2) is an easy consequence of (2.1) which we will prove by induction on d. When
d =1, from Theorem 1.2 and using the change of variables t — sin™! ¢ we see that

d d siny
1:siny), =— F(sint)dt = M
o(1;siny) dy/o tan tdtb; (sint)d dy/ waby, (t)wr,

s—2 siny
o(s;siny), (fy/ dt(t;irft) dtb; (sint)dt = %/0 wiwy " 2w b (Hws .

Similarly, from Theorem 2.1 and using the change of variables t — sh™! ¢ we get

_ d shy
o(1;sh —/ thtdtd,, (sht)dt = —— w_2b,, (t)w_1,
(Tshy) = [ (sho)dt =~ by (o
s d shy
o(S;shy)n, = — —/ tht dtb; (sht)dt = Dy w_1w§ 2w 1by (Hw_1.
0

Hence the depth d = 1 case is proved.
Assume the theorem holds when the depth is d — 1 for some d > 2. Write s = s4, 8/ =
($1,°+ ,84-1) and n' = (91, ,n4—1). By the definition

. o(s'sm';sihy, y)ink
U(S; n; Slh7h y)n = Z (2]6):1 d

k>n
Sgn("?d 1)( )

Slhnly NosM MNa—2:Md— 1 db
= sgn(n )dy oM (t)o-- oD, Z Wy, ,
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by the inductive assumption. But

k sgn(ng_1) n —1 2Nk
Z ndbk(%)s g - Z <2n) ("7(3‘:5)5) = 0(siMg; )n-

k>n k>n

If n; = 1 then setting 7 = sin~!'¢ and applying the change of variables © = sin™! z in the

iterated integral in Theorem 1.2, we have

o(s;mg;t)n = o(s;sinT), = i/ gs(u) o bl (sinu)du
0

Cdr
dry-td [
~(F) 5 [ rreeneme
" t
b (2w (2), if s =1,
m 0 n( ) 1( )
= . (2.3)
/ wo(2)* 2wy (2) o b (2)wi(z), ifs>2
0
Noticing that
tdt
" 1_t2_w25 lfnd 1_17
1= t2wnd71 i _ w if =-1
Vi 4, MNa—1 )
we deduce that
k sgn(ng_q)
N30 t
Z dk—s()w‘nd,l = U(S; nd;t)nwnd71
(2k)
k>n
W3_nd71b;‘;(t)wl, lf S = 1,
B W, wi 2wi b (B)wr, ifs>2
— DT () 0 BN (1), (2.4)
This completes the induction proof for the case n;, = 1. If n; = —1 then we only need to

modify the above proof slightly by replacing all the trigonometric functions by their hyperbolic

counterpart, replacing b} by by, replacing w; by w_; for j = 1,2,4, and keeping an extra

negative sign in the front of (2.3)—(2.4). Thus

Z (_1)k Zgn(ndil)(t)w = _w_g_”ldflb;(t)w_l’ if s = 1’
(2k)s MNa—1

-2 _ .
o —Wn, Wy woib, (Hw_1, ifs>2.

Combining the two cases we see that for ng = £1,

SR, [t B O a1
s MNa—1 _ sen .
k>n (2k) ndwndflw(s) 2w"7dbng (nd)(t)w"?d’ if s >2

— gD (1) 0 b 1),

This concludes the proof of the theorem.
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Theorem 2.3 Let d € N, s = (s1,-++,84) € N and n = (n1,---,ma) € {£1}% If
(817771) 7é (17 1) then

0(877’7 ) - Z S |s| ®@[17 ]7

ny>--->nqg>0 (2n1)51 o (2nd)8d

where CI\/IZV 5| is the Q-span of all CMZVs of weight |s| and level 8.

Proof This follows immediately from Theorem 2.2 by using the change of variables

V2t
VI+tt
Indeed, let 11; = exp (W) (j =1,---,4) be the four 8th roots of unity satisfying 241 = 0.
Under (2.5) we get

t— (2.5)

dt (1—thdt 1o
A S . 2.
YO T ) a+2;X“J’ (26)
dt V2(14t3)dt V2
Wit = 1 = Z(,uj +,u])x,u]7 (2 7)
Vo2 1+t 4~
dt V2(1—2)dt V2 o
Ww—1:= \/1—2 (1 +t4) = T Z(,uj ,uj)x,ujv (2 8)
Tt =
tdt 2(1 + t2)dt 1<
D= = = = . 2.9
T E T Aoy R 3 £y (2.9)
tdt 2(1 — 2)dt 1 <
R I (RS N 5 2 Xy~ %~ X (2.10)
j:l
tdt oadt 1
Woyg i =wy = m T Zﬂgxu; (2.11)

This completes the proof of the theorem.

Example 2.2 By the ideas used in the proof of Theorem 2.3, we can compute

o(1,T;1) = \/—/ waw1 = /(Zﬂjxu])(z Mk‘f'uk)xuk)

1 1
=—3 D 4 ukﬂck)/ X1y Xpu

7,k=1
1 o 4
=== 2 W+ ) Ling (151 E2)
L ke
J,k=1
~ —0.5346431875726234 (2.12)

by using GP-Pari or Au’s Mathematica package (see [3]). Similarly,
4

1 1 4
__ 1
o(2,1;1) = —/ Wo1wawy = — o ( > (1 — 13 X#)( E mxm)( > (e + i ch)
0 0 = k=1
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4
1 —
=== > (i + )i (e — p) Liva g (u 1K ’”) ~ 0.0851511799,
163‘1”:1 bk
1 1 1 4 4
o1t~ Mmoot =[5 0 (535 S b
0 0 j=1 k=1
1 o Ko
3 3 : -1 j l
= — = — Li 1. ( , )
16j7;l_1(uj 1) (e — pig) L (4 o

. 4 Wy €
Z (15 — 1) (e — ) Lz 1 (ﬂj L —)

jk=1le=%i < Mk
45805888486699.

|
O |~
M=

We have checked these numerically by computing the series o directly.
Corollary 2.2 Letd €N, s = (s1, -+ ,84) € N® and = (1, ,na) € {£1}%. For every
real algebraic point x with |x| <1 the value
o(sim; @),

if it exists, can be expressed as a Qi, V2,1 + ma?]-linear combination of the multiple poly-

logarithms evaluated at algebraic points.

Proof Suppose z # 0. By Theorem 2.2, up to a factor of \/1 + n122 in front o(s;n;z) can

be expressed as

/ [wo, w1, w2, wal|s), (2.13)
0

where [wo, wt1, w2, wal|g| is an iteration of 1-forms of length |s|. Therefore, after applying the
change of variables (2.5) we see that (2.13) is transformed to a Q[i, v/2]-linear combination of

iterated integrals of the form

Py

t(x)
/ [x0,%, : p* =1]js/, where t(z) = 5
O x

Note ¢(x) — x under the change of variables (2.5). The corollary follows from (1.5) immediately.

Example 2.3 For j = 1,2, 3,4, we have the explicit evaluations

_ /ﬁj/o w_1:—1l4+j10 ( + i+ )

Using the idea of (2.12) we see that for all j = 1,2, 3,4, we have

11— )
( ‘/4_’_]/ Wwaw_1 = SWJ;J% [k + 117) /Xuyxuk
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HE

- 4
V2j 2 3\7: N1 My
=— - : + Li (c . ,—]),
SWJﬁZ:lMJ(Mk Mk) 1,1 (])/’LJ

=y UV le,ﬁ_jrz) such that c(j) — 2 under (2.5). We can similarly express

where ¢( 5

J)
0(1, 1,1, %) By Maple computation we find the numerical evaluations

1
1 3 3
0(1, 1,1 5) - g Wit ~ —0.001257459248252,
0
.
_ 2 2
0(1, 1,1, g) - —/ wior ~ —0.013713567545998,
0
N
0(1,1 T. ?) -3 / * 2w ~ —0.08102265305753797,
0
__1 1 [z
0(1, T, 5) = / wiwr ~ —0.019408779689355473, (2.14)
0
2
P 1 7
0(1, ¥ g) - ﬁ/ wawr ~ —0.07667150401885149,
0
V3
a(T, T. ‘/73) — ‘/—f/ * waw; ~ —0.1845412608250132,
0
_ 1t
o(T,T;1) = — — | wawr ~ —0.5346431875726234.
V2 Jo

The above have been verified numerically by directly computing the series and integrals

separately. For the last equation also see Example 2.2.

3 Two Odd Variations of Alternating Apéry-Type Inverse Central
Binomial Series

In this section, we consider variations of the alternating Apéry-type inverse binomial series
studied in Section 2 by restricting the summation indices to odd numbers only. Recall that we
have the following results. Define the 1-forms

2 csc 2tdt, if s =1,
ho(t) := (3.1)
csctdt o (cot tdt)*~2 o csctdt, if s > 2.
Theorem 3.1 (see [14, Theorem 2.3]) For all n € Ny, 8 = (s1,-++ ,54) € N we have the

tail
T(8;8InY)y,

o by, (siny) _d )
P> (201 + 1) - (2ng + 1)% d_y/o o @ hay © bn(sint)dt (3:2)

ni>e>ng>n
Define the hyperbolic counterpart of hy(t) by
~ ~ 2 csch 2tdt, if s=1,
hs(t) = hi(t) =
cschtdt o (cthtdt)*=2 o cschtdt, if s > 2.
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Theorem 3.2 Set ¢ = sh™1= logv. For allm € Ny, s = (81, - ,84) € N?, we have

a (v~ .
7(s;ishy)y, :@/ hs, 00 hg, oby(isht)dt.
0

Here y e (‘d’ﬂ/’) /Lf ny =1, and Y€ [_waw] anl > 2.

Proof Applying the substitution y — iy in Theorem 3.1, we obtain the theorem immediately

since cscit = —icscht and sechit = secht.

We now turn to another odd variation. Define the 1-forms

sin tdt csc tdt 4 tan tdt, if s =1, (33)
Ke(t) = .
sintdt(cot tdt + 1)(cot tdt)*~2 csctdt, if s > 2.

Theorem 3.3 (see [14, Theorem 3.1]) For all n € Ny and s = (s1,--- ,84) € N, the tail

. by, (siny) d [v .
X(8;siny), = : =— [ kg 0---0Kg, 0by(sint)dt.
n1>-;ld>n (2TL1 - 1)81 T (2nd - 1)Sd dy 0 ' !
In the above y € [—%,%] ifs1>1, and y € (—%,%) if s1=1.
Define the hyperbolic counterpart of k4(t) by

S

) =7 —shtdt cschtdt — thidt, if s =1,
rs(t) =K =
—shtdt(cthtdt + 1)(cthtdt)*~2 cschtdt, if s > 2.

Theorem 3.4 Set ) =sh™'1=1logr. For alln € Ny, s = (s1,--- ,54) € N, we have

i bn, (ishy) a4 Y. - .
shy)yi= Y — (1)L [ R, 0.0, 0 bp(ishi)dt.
X(S7ls y) ny>-->ng>n (2TL1 - 1)31 T (2nd - 1)Sd ( ) »/(; o oM ® ’ (15 )d

Here y e (‘d’ﬂ/’) /Lf ny =1, and Y€ [_waw] anl > 2.

Proof Applying the substitution y — iy in Theorem 3.3 we can prove the theorem easily

since cscit = —icscht and sechit = secht.

4 Alternating Apéry-Type Central Binomial Series

We studied Apéry-type inverse binomial series in the previous sections. It is natural to
see if the same idea works for the binomial series, too. In [15] we successfully carried out
this investigation and proved that results similar to those in Theorem 1.2 and its odd-indexed
versions, Theorem 3.1 and Theorem 3.3, still hold. We will generalize some of these to the

alternating case in this section.

Put af (z) = a,(z) := % and a} = a, := (472). Define
fr) =1, fealt) = s, fus(t) = %, fanolt) = —mes,  f5(t) = ¢
+1 T 9 +2 A 1:Ft27 +3 - ta +20 _t 1:Ft27 5 - b
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Then for all the subscripts k

Recall that the 1-forms wyj are defined by (2.6)—(2.11).

1,2,3,4,5,20, we have
where w499 = wg &+ wW4o

frr(twir = wir,

By | ]forallnzo,szl,andye( %,%),Wehave
Qp, (siny) Y a1 .
Z ————= = [ (cottdt)* (1 — csctdt o sect)ay,(sint) tantdt
m>n (Qm)S 0
Z am(siny) =csc /y(cot tdt)*~1(1 — dt o csctsect)a, (sint)sint tan tdt
= (2m+ 1)5 - Yy o n 9

(sin y

Z (2m+ 1)

m>n
Y
A, (Sln y) =cosy / Ap (Sin t) tant sec tdt,
0

Z 2m —1

m>n
y
=sin y/ (cot tdt)*2(cot? tdt)a,, (sint) tant sectdt, s> 2
0

y
=cscy / (cot tdt)*~!(csct — dt o sect)a, (sint) tan tdt

Z am (siny)
= (2m—1)* B
With substitution siny = x, we get
(4.1)

Z am () :/Ow wi™t (1 — w30 ﬁ)an(t)o.)z,

m>n (2m)s
A () 1/”” S_1(1 1 )
— == - = ——— ) an(t)wo,
,;n(zmﬂ)s v )y 0 G mere =)t
tdt

. 2m —1
V1 —2dt tdt
= 52 an(t) =, §>2.

> =
A Gm— T TP (1-12)3
The above iteration formulas form the foundation of all the results in [15]. Set a, (x) =
(=1)™au, (x). Applying substitution z — iz in the above we obtain, for all s > 1
A (2) / e 1( ! ) -
= ) w_30 —=—1])a, (t)w_o, 4.2
mz>n (2m)5 o 0 3 12 n( ) 2 ( )
ap(x) 1 / 5_1(1 1 ) -
— Y =— — 10 —/—— t)w— 4.3
n;l(2m+1)5 v )y 0 t+wlo\/1+—t2a"()w > (43)
(x)
— V1 2 —_— 4.4
Z 2m — e / 1+t2)%’ (4.4)
(4.5)

(1+12)2

m>n
1 tQ tdt
/ PRV + dt o= (1) d ema

m>n
By repeatedly applying (4.2)—(4.5), we can find many results analogous to those in Section 2

See [15] for the approach we used to study the non-alternating version
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Fix a primitive 8th root of unity u = (1\2). Using the idea in the proof for the non-

alternating case we can prove the following theorem.

Theorem 4.1 Letd € N, s = (s1, -+ ,54) € N and n = £1. Let [;(n) = 2n or l;(n) =
2n+1 for all 1 < j <d. Then

Ay 1" 8 i
e CMZVZ,, ®Q1’\/§’ 46
n1>-n2;>-nd>.0 ll(nl)sl e ld(nd)sd <ls| [ ] ( )

where “=7 can be either “>7 or “>”, provided the series is defined.

Proof If n = 1 then the Apéry-like sum (4.6) is in CMZV?S‘ by [15, Theorem 5.3]. If n = —1,
by the same proof for [13, Theorem 5.3] we can show that this sum can be expressed as an
iterated integral involving only the following 1-forms:

First block: ecschtdt, cthtdt, dt (see [13, (5.16)]),
Mid blocks: thtdt, sechteschtdt (see [13, (5.21)]),

and no additional 1-forms can appear inside the end block. Under the change of variables

t — sh™' y we have

dt - w_q1, cthtdt — wg, thtdt — w_o, cschtdt — w_3, sechtcscht — w_9g.

i(1—t%)

Under the change of variables t — ==, we get
dt dt tdt
wo=a=— =y, wo1= T —dj_j, w_g= 7o — —z, (4.7)
dt dt
w_gzﬁﬁd_l,l, w_gozm—mf—i-z:—a—x_l—xl, (4.8)
wherey = x_{+x —x_1 — X1, 2= —a—x_; — x; and d¢ ¢ = x¢ — x¢ for any two roots of unity

& and &’. We see that all the w’s transform according to (4.7)—(4.8). Hence the sum (4.6) can

be expressed by Qli, v/2]-linear combination of convergent iterated integrals of the form

I
/ Zyp o Ky 7j6{07N6:0§e§7}'
1

Now we can apply Chen’s theory of iterated integrals (see [16, Lemma 2.1.2(ii)]) to get

" k I 0
/1 Xy o Xy = Z (Reg~/0 Xy "'XW)(Reg‘/l Xyt ---kailka)

£=0

k 1 1
:(_1)k_EZ(Reg/ X%---X%)(Reg/ X'YkX'kall-.X'YK#»l)’
=0 0 0

where Reg means one should take regularized values of the possible divergent integrals (see [16,
13.3.1] for detailed treatment of this mechanism). These regularized values are all polynomials
of T whose coefficients are all given by CMZVs of level 8. Therefore the theorem follows by
specializing at T'= 0. This completes the proof of the theorem.
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Remark 4.1 When computing concrete examples, sometimes one can avoid to use the full
regularization mechanism. Instead, one can often use shuffle products and/or substitutions to
combine all divergent integrals into convergent ones. See Examples 4.5 and 5.5 for applications

of these ideas.
We now present a few enlightening examples.
Example 4.1 By (4.2), for all s > 1 we have

Z%:/O wy™ 1(w_30\/1:——t2_1)w_2

n>0

:/st_l( dt . tdttdt )
o 0 \Ite (142)F 148

v dt 1 9t tdt
:/0 o (t\/1+t2-{\/1+u2}0_1+t2)

x 1
Z/ wy M (w —B—W—zo—w—z)Z/ wy ! (w-3 — wo).
0 0

Applying the change of variables ¢ — (1 & ) and using (4.7) we see that
(=Dan(x) _ [ -
> Teny v le, (4.9)
n>0 1

where A(z) = /152 and ¢ = 2x_1 — x_; — x;. We can take:z:—i (1 <j<4)in (4.9) to get

- 241 M 4, ~
Z( " () = log 2‘1 : =log(3(\/m—2)).
n>0

16" (2n) t+1)

Setting y,, = X_i +Xﬁ SR and ¢, = 2x_% —X_i X, and noticing that A\(1) = p,

e [ e e [ [ [ [ ne

:§——(log 2 —2log2logv + 2log? v 4 4 Lis(v™1))

~ —0.1074917339. (4.10)

we obtain

>

Example 4.2 For all s > 1, using (4.3) we have
(=D)"an(z) 1 /”” S_1(1 1
== w —+w_10 7)w_
_1/“w_% N )
) 1+ 14 2)d

Y SR
Ta )y 0 Nty 1+u2lo

Ow
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1 /ac . 1 /A(w) —1g
=— Wy w_1 = — i
z Jo 0 1= . y ,

by the change of variables ¢t — i(ll_:tt;). Of course, when z = i (1<j<4)ands=1onecan

integrate without change of variables to get

G P2 5E_ 2 (VI VIE
Z16n(2n+1 \/_/ :ﬁlog(“+ L+u?), =Wlog(f).

Similarly to Example 4.1, when 2 = 1 and s = 2 we can replace ¢ by d; _; in (4.10) to get

S [ [orffar ]
CTERTE S R A T

52
=21 +log2logv — log? v — 2 Lis(v™1) &~ 0.9552018.

Example 4.3 For any s > 1, (4.2)—(4.3) and the computation in Example 4.1 yield that

(Ve _ [t ! 0 (1)
Y it ), (¥+“‘1°¢1+—t2)m>0 2m

n>m>0

[ 7 (s gt
= w, — 4w 10— |w_o(w_3 —w
; 0 : 1 e 2 3 0

_/1ws_1( dt fwoo tdt )(w _w)
I ST i I A

Since

/tl tdt 1 1
w1+ 1+ 148

we have

(_1) Qn ! s—1 1
2 Trren = || i [t )
1 Iz
Z/ wg_lw_l(w_zo—w_g) :/ ys_ld_i)ie
0 1

by the change of variables ¢t — ﬂ;f?, where e = x9 + 2x_;. If s = 1 then we get

(—1)"a p € I3 e I3
Z N 7 n :/ d_jie = hm d—i,ie"'/ d—i,i/ e—|—/ d—i,ie)
n>m>0 (27’L + 1)(2m) 1 5_>0 1 € 1 e
1
—hm(/ ed_”—/ d_11 / e+/ / d_i7ie)
e—0
:/ ed_j; — / d_”/ e—/ ed_j; = —log2logv — Lis(r™!) ~ —0.0503718221

by using Au’s mathematica package (see [3]). When s = 2 we obtain

Z (_1)na £ 12 € 14 € 12
" _ lim (/ yd_i e —|—/ y/ d_j;e +/ yd_i7i/ e +/ yd_i7ie)
n>m>0 (27”L + 1)2(2m) =0 1 € 1 € 1 €
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Iz 1 Iz
lim(—/ ed_“y—|—/ / ed_“—/ yd_“(/ e—|—/ e)—l—/ yd_i,ie)
e—0 c €
e [of s [ [ s [oma
0

9 log®2  3log®2 9 2. .
=2¢(3) - V2L ST g2 - - 1 2log2log?v — - 1
8<(3) 3\/— (3, x8) 15 108 15 5 logv +2log2log” v — Zlog” v
1
+ (3log2 — 2logv) Lis(v~) + 4 Lis (E) ~2Lis3(v~ 1) ~ —0.02023197786,

where L(3,yxs) is the Dirichlet L-function with the primitive character ys modulo 8 satisfying
xs(3) = xs(5) = —1 and xs(1) = xs(7) = 1.
Example 4.4 With the same idea of iteration, (4.2) and (4.4) imply that

(—1)"a, o L tdt am(t)
2 @n—-1)2m) \/5/0 (1+2)3 = 2m

n>m>0

1

:\/5/01 {ﬁ}t(u)%—wo)
Z/Ol(w—3—wo)—\/§/ol\/11+—tQ(W—B_WO)
:/Ol(w_g—wo)_\/i/olw—QO_w—g
V/()l(oJ-g—oJo)+\/5/()loJ-z

2
v(log2 —log(vV2 + 1)) + g log 2

- (1 + %) log2 — vlog v & 0.035710328462762

by Example 4.1. Note that the weight at the end drops by 1 as is the general case when
ll(n) =2n—1.

Example 4.5 As a last example in this section, we consider a sum not covered by Theorem

4.1 since the 1-form
dt

tv1—t4

Wweg =

appears. Using (4.1) and (4.4) we get
D e ‘ﬂ/ol Tt e
n>m>0 m>0
1
=2 )| [, (e =)
= /01(6034-012 —wa) — \/5/01 ﬁ(wg + w2 — wao)

1 1
1 1-—¢

= 1 X — X 2| (- (bt

/0(2}( 1— %X —X )_|_\/_/O 1—|—t2(a ws3) v _>1—|—t

2
in the first 1ntegra1)
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1
=log2+ \/5/ (w_g — wg).
0

To compute the last integral we use the regularization trick as follows:

1 1 1 1 1 /1
— zlim( w_3 — o.)g):lim( w_g — — wg)
0 (w_B WG) e—0 c B c e—0 c B 2 22

by the change of variables t — /¢ in the second integral. Hence by the change of variables

t— 1(11;;2) in the first integral and ¢ —

1 - t2 in the second integral, we see that

1 A1) 1 /0
/ (w-3 —we) = lim (/ d-11— —/ d—l.,l)-
0 e—0 Ae) 2 A(e2)

Since A(—i) = u we have

/1( dt ) . (lo t— 1A (=) 110 t—1\0 )
wW_3 — ———| = lIlm _— — — -
0 N Lo B A(—ie) 2 S A(s2)

—1 V1t+ie+ V1 V142 —+/1—¢2
:1og +hm(1 + log )
w1 \/1—|—16—\/1—16 V1+e244/1—¢2
—1 i(1
= logZ_F1 + log(—+/2i) = log V2 + log (,U"' 1) log V2 — log v.

Thus

-1 n+m "
)3 (D" ay (1 n \f) log 2 — V2 log v ~ —0.063174227986,
n>m>0 (27”L B 1)(2m)

which is clearly a value in CMZV} ® Qli, v/2).

5 Alternating Apéry-Type Inverse Central Binomial Series with
Summation Indices of Mixed Parities

We now return to the inverse binomial series and consider their alternating versions in this
section. Keeping the same notation as before, we write b} (z) := b, (z) and

b (2) = b (iz) = (—1)"4" <2n> T b b (1) = (1) (2") ~ o

n

Combining [14, (4.3)—(4.8)] with Theorems 2.1, 3.2 and 3.4 yield that

Z; b"j;% =+ fun(z) /Ow by (w1, (5.1)
Z l()i ()) +hi(z) /Ow W Pwaiby (Dwsr, Vs 22, (5.2)
Z; 21, +)1 = fanle / b (D, (5.3)
> @ffiii) = f3(2) /O S R (s, V22, (5.4)

ni>n
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x

.. .
nlz>n 21;;111(_)1 — ifs(x)/o Wby (Hwsn ifi2(l')/0 b (w1, (5.5)

.. .
2 % = jEf5(f‘0)/0 (wo + Lwgwaraby (Hwsr, Vs > 2. (5.6)

ni>n

By applying (5.1)—(5.6) iteratively it is possible to express every alternating Apéry-type

inverse binomial series with summation indices of mixed parities by an iterated integral involving

only 1-forms w+; (0 < j < 6), where wis = wiE and wig = t\/%. Unfortunately, w3,

wys and wyg transform badly under the change of variables (2.5). Using the idea in the proof
for the non-alternating case we can slightly extend Theorem 2.3 to the following more general

form.

Theorem 5.1 Let d € N, s = (s1,---,54) € N® and n = (n1,--- ,mq) € {£1}?. Let
Li(n) = 2n orlj(n) = 2n+1 for all 1 < j < d so that s; = 1 and n; = sgn(j — 1.5) if
li(n) =2n+1. If (s1,m) # (1,1) then

> b”f’?l g — € CM2V§, ® Qfi, V2],
s 0 1(n1)st - lg(ng)sa
Proof We only need to consider the appearance of [;(n) = 2n + 1 raised to the first power
on the denominator. If it only appear at the beginning then we need to have 171 = —1 to
guarantee convergence, in which case the theorem is clear since (5.3) only involves the 1-form
wx1. If [j(n) = 2n + 1 appears for some j > 2 then (5.3) may produce wioy = wo £ w2
after combining f490 with the 1-form w4, produced by the proceeding iteration since 7; = 1
guarantees the same sign pattern. The rest of the proof follows from the same reasoning as

used in that of Theorem 2.3 and thus is left to the interested reader.

Remark 5.1 If [;(n) = 2n + 1 appears for some j > 2 but n; = —1 then the 1-form wyg is

produced. We do not know how to handle this in general with our approach yet.
The following result as well as its proof is analogous to Theorem 4.1.

Theorem 5.2 Let d € N, s = (s1, -+ ,84) € N and n = £1. Let l;(n) = 2n or l;(n) =
2n+1 forall1 <j<d. If (s1,m) # (1,1) then

by, ™ ] .
L € CMZV&,, @ Qfi, V2], 5.7
n1>_n2;>nd>—0 ll(nl)SI "'ld(nd)sd <|s| [ ] ( )

where “~” can be either “>7" or “>7, provided the series is defined.

Proof The proof is almost exactly the same as that of Theorem 4.1 so we omit the details

here. The key idea is to follow the proof of [14, Theorem 4.3] step by step but use the substitution

1—t2
1+¢2

. 2
t — W=D (instead of ¢ —

T in the original proof) at the end.
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We now consider several alternating Apéry-type inverse binomial series with summation
indices having mixed parity.
Example 5.1 Using (5.1) and (5.3) successively, we get
3 (=D)"bn $ b, (1)
o (2n +1)(2m) o (2n +1)(2m)
1

1 ) -1
- ﬁ/ mZ m) T VB S T
1 1 1 4 4
= Z/O (Xi +x— ) me) Z(Nk - Mz)xuk
=1 k=1

4

1 1

Z—ZZ ,Uk_,uk / XEX,U«IC_Z Z(/Lk_ﬂz)/ X Xpy,

k=1e=d+i k=1 0

12 &

=1 Z [ — i Llll(ml,—)—gzz e — Llll( 75)

kl 1 k=1e=i

32

= - (8log? v + 16 Lin(V2 — 1) — 8log 2log v — ) ~ ~0.14078648719

by GP-Pari or Au’s mathematica package (see [3]). We have also verified this by numerically

computing the series directly and by numerically evaluating the integral with mathematica:

th(t +V1+2)
_ ~ —0.14078648719.
\/_/ Ww_ow_1 = \/—/ T 1ie

Example 5.2 In depth 3, using (5.1)—(5.3) successively, we find that

(_1) bn o b;(l)
Z (2n)(2m +1)(2k)% Z (2n)(2m+1)(2k)2

n>m2k>0 n>m>k>0
/ (t 1 /l 5
Z w_l w—_20 Z —— U,]_Qow_l
>k>0 (2m +1)(2k)* \/_ =0 Qk V2l
1/t ! 3
0 k:l
Ly 1
3 3 1 Hj Mk
~ 39 j — M - Li ( )
D) j%:zl(uj 1) (e — 1) (. — w1’ Lo (145 i
4
1 : -1 & H;j Hk
+ 25 (g — 113) (e — ) (= ) L 110 (a 1,—,—],—)
32 j,;lzl EZZ:I:i ’ ! My Bk
7 3739
= t;{L— + 392" 74 + other terms in CMZV ~ 0.0202649114985

by GP-Pari or Au’s mathematica package (see [3]). We have also checked this by numerically

computing the series directly and by numerically evaluating the integral with mathematica:

log”(t + /1 + t2
/ wogow?; = / o8 (0 + VITE) 11 6090264911495,
V2 6v/2

t(1+t2)
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Example 5.3 Similarly, using (5.1)—(5.3) successively, we can get

(=D"**b, by, (1)(=1)*
2 (2n+1)(2m)2(2k) 2 (2n + 1)(2m)?(2k)

n>m>k>0 ) n>m >k>0
b, (t)(—=1)* -1
2 T o A W—-1 = —= _12 -1 = 1W4W1
f >k>0 (2m)*(2k) = ( V2 Jo
4
Z B = 1)K (15— )%, Zul Xy Z 1k + 1) %,
7j=1 k=1
1« Pho Hyo [
- 2 3 3 3\ 71 : -1 Mh ] l
3 s~ s (51 2.5, 2
64}”%;:1#1 (n — 1) (5 — 1) (s + ) L (g R

1\2 3m3log(1 + v2) — 7 10g2—128\fL13( )10 (1+V2)

+ m(41log? 2log(1 + V2) — 8log2log?(1 + V2) + 34(3))) ~ —0.00777369894.

We have also checked this by numerically computing the series directly and by numerically

evaluating the integral with Mathematica:

-1 1w2 Wawy = —1 (" t(logv — log(t + V1+t2))210g(t+\/1+t2)dt
\/5 ! 2\/5 0 V1 —t4

~ —0.00777369894.

Example 5.4 This example converges very slowly. Using (5.1)—(5.3) successively, we see

that

(=1)"bn _ b, (1)
Z (2n+1)(2m)2(2k)_ Z (2n + 1)(2m)2(2k)

n>m>k>0 n>m>k>0
-1 [t by, (t) 1 /1
-1 = —= w_ wW_1 = —= wW_o2W_1
f/ gozm 22T VR 1%(%) 2Jo 7
1 4 = 4
= ﬁ Z(Mh - ﬂ%)xuh Z(/Ifj - M?)Xﬂj (5 ZXM - X 1) Z ﬂk - Mk X
0 p= j=1 =1 k=1
1 : 3 3 3 !
= 64 (ton — Mh)(ﬂj - Mj)(ﬂk - Mk)/ Ko Xpg Xy Xy,
hogiok,1=1 0
1
3 2 2 = by — = ) [ s,
h,j,k=1e==+i 0
1O Bho pg
. 1 Hh l
= 64 (b = i) (g — ) (e — ) Lin 1 (Mhl, —, =, )
hojki=1 Hj Ml Mk
4

1 : B oy €
e Do D (= i)y = ) (i = pi) L (Mhl, , —)

e
hojk=1e—ti H Fok

~ 0.00585622967.
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We have also checked this by numerically computing the series directly and by numerically
evaluating the integral with mathematica:

/ / (logv —log(t + V1 + 12))? log(t + /1 +t2)
V2Jo ST T

1+1¢2

~(0.00585622967.

Example 5.5 Using (5.1) and (5.5) successively, we find that
(=1)"bn / ' b (t) /
S S e O LI
2 T nem 2 o P

n>m>0
/1 1 1
= W_3W_ow_1 + —/ W_oW_1.
0 V2 Jo

Under the change of variables ¢ — ‘(11:22 ) for the first integral (see (4.7)) and (2.5) for the

second, we get

4 4

> mone /N 1/1(12 x-i) 2
—_ = d_ d_;; — — =X — —
@n—D@m)  J, T T3 0 \2 j:lxu] ’ k=1 e

n>m>0

For some very small ¢ > 0, by Chen’s theory of iterated integrals (see [16, Lemma 2.1.2(ii)]) we

may compute the first integral as

n
/ d—l,lzd—i7i:/ d_j1zd_j; + / d_ 11/ Zd—11+/ d_ 112/ d—11+/ d_q,12zd
1 1 1
o
:_/ d—IIZd 11+/ dll/ d—llz_/ dllz/ d—11+/ dllzd—ll
15 I € 15

Note that by the shuffle relation

1
/dll/ d_jiz — /dllz/ d_i;
Iz Iz Iz 1
2/ d_11 /d—n/ Z—/Zd—11 —(/ d—l,l/ Z—/ Zd—l,l)/d—i,i-
1> I I I

Thus taking e — 0, we have

(_1)nbn
Z mz— d—uZd 1,1 — d11 Zd—11+ d11 d—11 z
ne>ms>0 7 m 0
1% 1 o 4
+/ Zd—l,l/ d—i,i +/ d—LIZd—ll n / ( Z Xp; — X — ) Z Nk - /J'k Xpg
0 0 0 1
1 1 1 1 1 1
= —/ d_jizd_11 — d-1 ;/ zd_;; + d-1 ;/ d_j; z
0 o *'*Jo o *’'*Jo w

1 1 1
—/(a—|—x_l—|—xl)d;1i/d_iﬂi—/di 1(a—|—x 1—|—X;) i
0 M " no 0 0 T [T
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By using Au’s mathematica package (see [3]), we find the evaluation
Z (_1)nbn
n>m>0 (2n —1)(2m)
w2 1 3 log 2
= 3—2(3\/5—1- 4log2 — 6logv) + 6(16\/§L(3, xs) + log” v) + T(3\/§ —2logv)logv

3v2 3
— %—(logQ v+ Lig(v™!)) —4Liz(v™!) —logv Lig(v 1) — gg(g) ~ 0.20569096448.

In view of the theorems and the examples obtained so far, we would like to conclude the
paper with the following question.

Question 5.1 Let d € N, s = (s1,--+,84) € N and p = (1, ,n4) € {£1}%. Let
lj(n) =2norljn)=2n+1forall 1 <j<d. Isit true that

Ay T - 17 8 i V2
Z [ (n )51 . (7’L )sd € CMZV§|S| ® @[17 2]7
N1 =na=-=ng=0 171 d\"nd

bn”??l "'773‘1 S . \/_
Z l (TL )51 - (TL )Sd € CMZV§|S|+1 & @[17 2]7
n1=ng=-=ngqg>=0 1\ d\td

if the sums converge? Here “>~" can be either “>” or “>7.
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