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1 Introduction

We begin with some notations. Let (Ω,F ,F,P) be a complete filtered probability space

on which a standard one-dimensional Brownian motion W (·) = {W (t)}t≥0 is defined, and

F = {Ft}t≥0 is the natural filtration of W (·) augmented by all the P-null sets in F .

Let T > 0. For any t ∈ [0, T ) and Banach space H, let

L2
Ft
(Ω;H) = {ξ : Ω → H | ξ is Ft-measurable, E|ξ|2H < ∞},

L2
F
(t, T ;H) =

{
ϕ : [t, T ]× Ω → H | ϕ(·) is F-adapted, E

∫ T

t

|ϕ(s)|2
H
ds < ∞

}
,

CF([t, T ];L
2(Ω;H)) = {ϕ : [t, T ]×Ω → H | ϕ(·) is F-adapted,

ϕ : [t, T ] → L2
FT

(Ω;H) is continuous},

L2
F(Ω;L

1(t, T ;H)) =
{
ϕ : [t, T ]× Ω → H | ϕ(·) is F-adapted, E

(∫ T

t

|ϕ(s)|Hds
)2

< ∞
}
.

Let H1 and H2 be two Banach spaces. Denote by L(H1,H2) (resp. L(H1)) the set of all

bounded linear operators from H1 to H2 (resp. H1). If H is a Hilbert space, then we set

S(H) , {F ∈ L(H) | F is self-adjoint}
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and

S+(H) , {F ∈ S(H) | 〈Fξ, ξ〉 ≥ 0, ∀ξ ∈ H}.

Here and in what follows, for simplicity of notations, when there is no confusion, we shall use

〈·, ·〉 for inner products in possibly different Hilbert spaces.

For any interval [t1, t2] ⊂ [0,+∞), denote by C([t1, t2]; S(H)) the set of all continuous

mappings from [t1, t2] to S(H), which is a Banach space equipped with the norm

|F |C([t1,t2];S(H)) , sup
t∈[t1,t2]

|F (t)|L(H).

Denote by CS([t1, t2]; S(H)) the set of all strongly continuous mappings F : [t1, t2] → S(H),

that is, F (·)ξ is continuous on [t1, t2] for each ξ ∈ H. Let {Fn}
∞
n=1 ⊂ CS([t1, t2]; S(H)). We say

that {Fn}
∞
n=1 converges strongly to F ∈ CS([t1, t2]; S(H)) if

lim
n→∞

Fn(·)ξ = F (·)ξ, ∀ξ ∈ H.

In this case, we write

lim
n→∞

Fn = F in CS([t1, t2]; S(H)).

If F ∈ CS([t1, t2]; S(H)), then, by the uniform boundedness theorem, the quantity

|F |CS([t1,t2];S(H)) , sup
t∈[t1,t2]

|F (t)|L(H)

is finite, and CS([t1, t2]; S(H)) is a Banach space with this norm (see [2]).

We next introduce the Banach space Cγ([t1, t2];H) (see [2]) of continuous mappings on

[t1, t2) into a space H, which is equipped with the norm

|f |Cγ([t1,t2];H) , sup
s∈[t1,t2]

(t2 − s)γ |f(s)|H < ∞.

The space accounts for possible singularities at the time t2 of the order γ.

Denote by Cγ,S([t1, t2];L(H)) the set of all strongly continuous operators in L(H) with the

norm

|F |Cγ,S([t1,t2];L(H)) , sup
s∈[t1,t2]

(t2 − s)γ |F (s)|L(H).

The norm is finite (see [2]).

Let

L2,S(t1, t2;L(H)) , {F : (t1, t2) → L(H) | Fη ∈ L2(t1, t2;H)

∀η ∈ H, |F |L(H) ∈ L2(t1, t2)}.
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Now we turn to our control problem. Let H and U be two separable Hilbert spaces. Let A

be the generator of a C0-semigroup {eτA}τ≥0 on H . Denote by H−1 the completion of H with

respect to the norm |x|H−1 , |(βI −A)−1x|H , where β ∈ ρ(A) (the resolvent of A) is fixed. Let

B ∈ L(U,H−1) satisfy the following condition. There exists a number γ ∈
(
0, 12

)
and a constant

c > 0, such that the control u to the state map kernel eAτB satisfies the singular estimate

|eAτBu|H ≤
c

τγ
|u|U (1.1)

for every u ∈ U and 0 < τ < 1.

We consider the following controlled linear stochastic evolution equation (SEE for short):
{
dx = (Ax +A1x+Bu)ds+ (Cx+Du)dW (s) in (t, T ],

x(t) = η ∈ H,
(1.2)

where A1(·) ∈ L1(0, T ;L(H)), C(·) ∈ L2(0, T ;L(H)), D(·) ∈ L∞(0, T ;L(H,U)) and u(·) ∈

U [t, T ] , L2
F
(t, T ;U).

The control system (1.2) covers many systems of stochastic partial differential equations

with boundary controls. For these systems, the control operators are unbounded. To guarantee

the well-posedness of such systems, people introduce the notion of admissible control operator

(see [14]). The estimate (1.1) can be used to guarantee that B is an admissible control operator.

Then, it follows from the well-posedness of control systems with admissible control operators

that, for any η ∈ H and u(·) ∈ U [t, T ], the control system (1.2) admits a unique solution

x(·) ∈ CF([t, T ];L
2(Ω;H)) (see [17]).

Consider the following cost functional:

J (t, η;u(·)) , E〈Gx(T ), x(T )〉 + E

∫ T

t

(〈Qx(s), x(s)〉 + 〈Ru(s), u(s)〉)ds, (1.3)

where

G ∈ S(H), Q(·) ∈ L1(0, T ; S(H)), R(·) ∈ L∞(0, T ; S(U)).

Problem (SLQ) For any given initial pair (t, η) ∈ [0, T )×H , find a control u(·) ∈ U [t, T ]

such that

V (t, η) , J (t, η;u(·)) = inf
u(·)∈U [t,T ]

J (t, η;u(·)). (1.4)

Any u(·) ∈ U [t, T ] satisfying (1.4) is called an optimal control of Problem (SLQ) for the

initial pair (t, η), and the corresponding x(·) ≡ x(·; t, η, u(·)) is called an optimal state process;

the pair (x(·), u(·)) is called an optimal pair. The function V (·, ·) is called a value function of

Problem (SLQ).

When H = R
n (n ∈ N), Problem (SLQ) is extensively studied. Early works focus on the

following case (see [1, 7]):

G ≥ 0, R(s) ≥ δI, Q(s) ≥ 0 a.e. s ∈ [0, T ] (1.5)
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for some δ > 0. Unfortunately, the condition (1.5) is not satisfied by several important examples

(see [21]). A breakthrough is done in [3], in which the authors found that Problem (SLQ) might

still be solvable when R(s) is not positive definite for a.e. s ∈ [0, T ]. This new phenomenon

inspires many further researches (see [4–5, 11, 18–19] and the rich references therein).

When H is an infinite dimensional space, the system (1.2) is used to describe a lot of random

phenomena appearing in physics, chemistry, biology, and so on (see [12, 17]). Thus, there are

many works addressing the optimal control problems for SEEs. In particular, we refer the

readers to [2, 6, 8–10, 16] and the rich references therein for Problem (SLQ) for controlled

SEEs. In those works, the condition (1.5) was assumed. As we said before, this is not satisfied

for several important examples of Problem (SLQ). The condition (1.5) is dropped in [15] when

B is a bounded linear operator. The main purpose of this paper is to generalize the result in

[15] to the case that B is an admissible control operator. Compared with the works in [15],

the unboundedness of the control operator B leads to many technical difficulties. To overcome

them, we borrow some ideas from [10, 20]. More details can be found in Section 3.

The unbounded operator B leads to some substantial technical difficulties. For example, the

system (1.2) admits a unique solution x(·) ∈ CF([t, T ];L
2(Ω;H)), but B ∈ L(U,H−1). Hence,

we use the smoothing effect of the operator semigroup generated by the operator A to deal with

the unboundedness. In this paper, we prove that the existence of the strongly regular solution

to the Riccati equation is equivalence to the uniform convexity of the cost functional. Under

the strongly regular solution to the Riccati equation, we obtain the existence of the optimal

feedback control for Problem (SLQ).

An outline of this paper is as follows. In Section 2, we present some preliminary results and

the main result of the paper. Section 3 is devoted to the proof of the main result and giving an

example of the uniform convexity of the cost functional.

2 Preliminaries and the Main Result

In this section, we provide the main result of this paper. To begin with, let us first introduce

the notion of the optimal feedback operator.

Definition 2.1 We call Θ(·) ∈ L2,S(t, T ;L(U,H)) an optimal feedback operator of Problem

(SLQ) on [t, T ] if

J (t, η; Θ(·)x(·)) ≤ J (t, η;u(·)), ∀η ∈ H, u(·) ∈ U [t, T ], (2.1)

where x(·) is the mild solution to (1.2) with u(·) = Θ(·)x(·).

To study the optimal feedback operator of Problem (SLQ), we introduce the Riccati equation
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associated with Problem (SLQ) below:

{
Ṗ + P (A+A1) + (A+A1)

∗P + C∗PC +Q− L∗K−1L = 0 in [t, T ),

P (T ) = G,
(2.2)

where

L(·) = B(·)∗P (·) +D(·)∗P (·)C(·), K(·) = R(·) +D(·)∗P (·)D(·).

Definition 2.2 We call P (·) ∈ CS([t, T ]; S(H)) a mild solution to (2.2) if for any η ∈ H

and s ∈ [t, T ],

P (s)η = e(T−s)A∗

Ge(T−s)Aη +

∫ T

s

e(τ−s)A∗

(PA1 +A∗
1P

+ C∗PC +Q− L∗K−1L)e(τ−s)Aηdτ. (2.3)

Definition 2.3 A mild solution P (·) of (2.2) is strongly regular if

K(s) ≥ λI, a.e. s ∈ [t, T ]

for some λ > 0.

To deal with (2.2), we need to concern the operator-valued equations:




Ṗ + P (A+A1 +BΘ) + (A+A1 +BΘ)∗P

+(C +DΘ)∗P (C +DΘ) + Θ∗RΘ+Q = 0 in [t, T ),

P (T ) = G,

(2.4)

where Θ(·) ∈ L2,S(t, T ;L(H,U)). We also introduce the definition of the mild solution to (2.4).

Definition 2.4 We call P (·) ∈ CS([t, T ]; S(H)) a mild solution to (2.4) if for any s ∈ [t, T ],

P (s)η = e(T−s)A∗

Ge(T−s)Aη +

∫ T

s

e(τ−s)A∗

[P (A1 +BΘ) + (A1 +BΘ)∗P

+ (C +DΘ)∗P (C +DΘ) + Θ∗RΘ+Q]e(τ−s)Aηdτ, ∀η ∈ H. (2.5)

We need the following lemmas.

Lemma 2.1 (see [15, Lemma 3.6]) Let Â(·) ∈ L1(0, T ;L(H)), Ĉ(·) ∈ L2(0, T ;L(H)),

Ĝ ∈ S(H), Q̂(·) ∈ L1(0, T ; S(H)) and P (·) be the solution to the following equation:

{
Ṗ + P (A+ Â) + (A+ Â)∗P + Ĉ∗PĈ + Q̂ = 0 in [t, T ),

P (T ) = Ĝ.
(2.6)

Then (2.6) admits a unique solution P (·) ∈ CS([t, T ]; S(H)). Moreover,

Ĝ ≥ 0, Q̂(s) ≥ 0, a.e. s ∈ [t, T ], (2.7)

then P (·) ∈ CS([t, T ]; S+(H)).
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Lemma 2.2 (see [13, Proposition 6.5.3]) (1) The map Lt ≡
∫ τ

t
e(τ−s)ABds is continuous

from Cγ([t, T ];U) to C([t, T ];H) for γ < 1
2 ;

(2) The adjoint map L∗
t ≡

∫ T

t
B∗e(τ−t)A∗

dτ is continuous from Cγ([t, T ];H) to C([t, T ];U)

for γ < 1
2 .

The main result of this paper is stated as follows.

Theorem 2.1 The following statements are equivalent :

(1) The map u(·) 7→ J (0, 0;u(·)) is uniformly convex, i.e., there exists a constant λ > 0

such that

J (0, 0;u(·)) ≥ λE

∫ T

0

|u(s)|2Uds, ∀u(·) ∈ U [0, T ]. (2.8)

(2) The Riccati equation (2.2) admits a strongly regular solution P (·) ∈ CS([0, T ]; S(H)).

In such case, the unique optimal control u(·) of Problem (SLQ) is

u(·) = Θ(·)x(·), (2.9)

where

Θ = −K(·)−1L(·). (2.10)

3 Problem (SLQ)

In this section, we study the optimal feedback of Problem (SLQ) with that the weighted

operator R(·) ≥ λI may not hold. Since the operator B in the stochastic control system (1.2)

is unbounded, we use the smoothing effect of the operator semigroup of A to overcome the

difficulty caused by the unboundedness.

We now define four operators as follows:

Ψt : H → X [t, T ] , L2
F
(t, T ;H), Ψtη = x(·; t, η, 0), ∀η ∈ H,

where x(·; t, η, 0) is the solution to (1.2) with u ≡ 0;

Ξt : U [t, T ] → X [t, T ], Ξtu = x(·; t, 0, u), ∀u ∈ U [t, T ],

where x(·; t, 0, u) is the solution to (1.2) with η = 0;

Ψ̂t : H → L2
FT

(Ω;H), Ψ̂tη = x(T ; t, η, 0), ∀η ∈ H

and

Ξ̂t : U [t, T ] → L2
FT

(Ω;H), Ξ̂tu = x(T ; t, 0, u), ∀η ∈ H.
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By the inequality (1.1), the system (1.2) is well-posed. We can obtain that the four operators

are bounded linear operators. Therefore, the state process x(·) and its terminal value x(T ) can

be written as

x(·) = (Ψtη)(·) + (Ξtu)(·), x(T ) = Ψ̂tη + Ξ̂tu

for any t ∈ [0, T ) and (η, u(·)) ∈ H × U [t, T ].

The following lemma shows that how to handle the unbounded operator B by using the

smoothing effect of the operator semigroup generated by A.

Lemma 3.1 Let Ĉ = C +DΘ. Assume that Ĉ(·) and Θ(·) are given bounded operator-

valued function for every s ∈ [t, T ) satisfying the following conditions :

|Ĉ(s)x|H ≤
r|x|H

(T − s)γ
, |Θ(s)x|H ≤

r|x|H
(T − s)γ

, ∀x ∈ H (3.1)

for some suitably chosen r > 0. Then, for (2.4), there exists a unique mild solution P (·) ∈

CS([t, T ]; S(H)) such that

|B∗P (s)x|H ≤
C|x|H

(T − s)γ
, |PB(s)u|H ≤

C|u|U
(T − s)γ

, ∀x ∈ H, ∀u ∈ U. (3.2)

Proof We first show that there exists a unique local-in-time solution

P (·) ∈ CS([T0, T ]; S(H))

to (2.4). To prove the existence of a solution P , we use a fixed point argument on the map Γ

given by

Γ(f, g, h)(s) ,




Γ1(f, g, h)(s)

Γ2(f, g, h)(s)

Γ3(f, g, h)(s)




for s ∈ [t, T ] on the space X ≡ CS([t, T ];L(H)) × Cγ,S([t, T ];L(H,U)) × Cγ,S([t, T ];L(U,H))

equipped with the norm

|(f, g, h)|X = |f |CS([t,T ];L(H)) + |g|Cγ,S([t,T ];L(H,U)) + |h|Cγ,S([t,T ];L(U,H)),

where

Γ1(f, g, h)(s) ,

∫ T

s

e(τ−s)A∗

(fA1 +A∗
1f + hΘ+Θ∗g + Ĉ∗fĈ +Θ∗RΘ+Q)e(τ−s)Adτ

+ e(T−s)A∗

Ge(T−s)A,

Γ2(f, g, h)(s) , B∗

∫ T

s

e(τ−s)A∗

(fA1 +A∗
1f + hΘ+Θ∗g + Ĉ∗fĈ +Θ∗RΘ+Q)e(τ−s)Adτ

+B∗e(T−s)A∗

Ge(T−s)A,
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Γ3(f, g, h)(s) ,

∫ T

s

e(τ−s)A∗

(fA1 +A∗
1f + hΘ+Θ∗g + Ĉ∗fĈ +Θ∗RΘ+Q)e(τ−s)ABdτ

+ e(T−s)A∗

Ge(T−s)AB.

In order to deal with the unboundedness of the control operator B, we wish to find a

fixed point of the system of three equations defined by three variables (operators) which are

f = P, g = B∗P and h = PB.

First, we prove that Γ maps X into X by working component by component. Let (f, g, h) ∈

X . Let ε be small enough and η ∈ H . We obtain

Γ1(f, g, h)(s)η − Γ1(f, g, h)(s+ ε)η

=

∫ T

s

e(τ−s)A∗

(fA1 + hΘ+A∗
1f +Θ∗g + Ĉ∗fĈ +Θ∗RΘ+Q)e(τ−s)Aηdτ

−

∫ T

s+ε

e(τ−s−ε)A∗

(fA1 + hΘ+A∗
1f +Θ∗g + Ĉ∗fĈ +Q+Θ∗RΘ)e(τ−s−ε)Aηdτ

+ e(T−s)A∗

Ge(T−s)Aη − e(T−s−ε)A∗

Ge(T−s−ε)Aη

=

∫ T

s+ε

e(τ−s−ε)A∗

[eεA
∗

(fA1 + hΘ+A∗
1f +Θ∗g + Ĉ∗fĈ +Q+Θ∗RΘ)e(τ−s)Aη

− (fA1 + hΘ+A∗
1f +Θ∗g + Ĉ∗fĈ +Q+Θ∗RΘ)e(T−s−ε)Aη]dτ

+

∫ s+ε

s

e(τ−s)A∗

(fA1 + hΘ+A∗
1f +Θ∗g + Ĉ∗fĈ + Θ∗RΘ+Q)e(τ−s)Aηdτ

+ e(T−s−ε)A∗

(eεA
∗

Ge(T−s)Aη −Ge(T−s−ε)Aη).

Therefore, by setting

Π = fA1 + hΘ+A∗
1f +Θ∗g + Ĉ∗fĈ +Θ∗RΘ+Q,

we see that

|Γ1(f, g, h)(s)η − Γ1(f, g, h)(s+ ε)η|H

≤
∣∣∣
∫ T

s+ε

e(τ−s−ε)A∗

[eεA
∗

Πe(τ−s)Aη −Πe(τ−s−ε)Aη]dτ
∣∣∣
H
+
∣∣∣
∫ s+ε

s

e(τ−s)A∗

Πe(τ−s)Aηdτ
∣∣∣
H

+ |e(T−s−ε)A∗

(eεA
∗

Ge(T−s)Aη −Ge(T−s−ε)Aη)|H . (3.3)

Since

|e(τ−s−ε)A∗

[eεA
∗

Πe(τ−s)Aη −Πe(τ−s−ε)Aη]|H ≤ C(t)|Πe(τ−s)Aη|H ,

by Lebesgue’s dominated convergence theorem and strong continuity of the operator semigroup

{esA}s≥0,

lim
ε→0

∣∣∣
∫ T

s+ε

e(τ−s−ε)A∗

[eεA
∗

Πe(τ−s)Aη −Πe(τ−s−ε)Aη]dτ
∣∣∣
H

= 0.
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The second integrand in (3.3) approaches to 0 as ε → 0 by using the absolute continuity of the

integral. Further, the third integrand in (3.3) approaches to 0 as ε → 0, which follows from the

strong continuity of {esA}s≥0. Therefore, for (3.3), when ε → 0, we have

|Γ1(f, g, h)(s)η − Γ1(f, g, h)(s+ ε)η|H → 0.

This means that Γ1(f, g, h) ∈ CS([t, T ];L(H)).

Similarly, we deduce that

|Γ2(f, g, h)(s)η − Γ2(f, g, h)(s+ ε)η|U

≤
∣∣∣B∗

∫ T

s+ε

e(τ−s−ε)A∗

[eεA
∗

Πe(τ−s)Aη −Πe(τ−s−ε)Aη]dτ
∣∣∣
U

+
∣∣∣B∗

∫ s+ε

s

e(τ−s)A∗

Πe(τ−s)Aηdτ
∣∣∣
U

+ |B∗e(T−s−ε)A∗

(eεA
∗

Ge(T−s)Aη −Ge(T−s−ε)Aη)|U

and

|Γ3(f, g, h)(s)u− Γ3(f, g, h)(s+ ε)u|H

≤
∣∣∣
∫ T

s+ε

e(τ−s−ε)A∗

[eεA
∗

Πe(τ−s)ABu−Πe(τ−s−ε)ABu]dτ
∣∣∣
H

+
∣∣∣
∫ s+ε

s

e(τ−s)A∗

Πe(τ−s)ABudτ
∣∣∣
U

+ |e(T−s−ε)A∗

(eεA
∗

Ge(T−s)ABu−Ge(T−s−ε)ABu)|H .

When ε → 0, we conclude that

|Γ2(f, g, h)(s)η − Γ2(f, g, h)(s+ ε)η|U → 0

and

|Γ3(f, g, h)(s)u− Γ3(f, g, h)(s+ ε)u|H → 0.

Therefore, the right continuity holds. The left continuity can be proved similarly.

We denote the ball B(0, r;X) , {y ∈ X | |y|X ≤ r}. Let (f, g, h) and (f0, g0, h0) be in

B(0, r;X). Our next goal is to determine r and t so that Γ : B(0, r;X) → B(0, r;X), and

Γ is a contraction on B(0, r;X) for suitably chosen r and t. To meet these two conditions,

we firstly estimate the norms of Γ1,Γ2 and Γ3, and thus, the norm of Γ. Then we estimate

|Γ(f, g, h)−Γ(f0, g0, h0)|X . Finally, we combine the conditions on r. Now, we demonstrate the

process.

For s ∈ [t, T ], we obtain

|Γ1(f, g, h)|CS([t,T ];L(H))
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≤ sup
t≤s≤T

∫ T

s

CM2e2α(T−s)
[ 2r2

(T − τ)γ
+

r3

(T − τ)2γ
+

r2

(T − τ)2γ
|R|L(U)

+ 2r|A1|L(H) + |Q|L(H)

]
dτ + CM2e2α(T−t)|G|L(H)

≤ CM2e2α(T−t)
{r3(T − t)1−2γ

1− 2γ
+ r2

[2(T − t)1−γ

1− γ
+

(T − t)1−2γ

1− 2γ
||R|L(U)|L∞(t,T )

]

+ ||Q|L(H)|L1(t,T ) + 2r||A1|L(H)|L1(t,T )

}
+ CM2e2α(T−t)

≤ CM2e2α(T−t) + 3Ct(r
3 + r2 + r + 1)M2e2α(T−t),

where

Ct = max
{
C||A1|L(H)|L1(t,T ), C||Q|L(H)|L1(t,T ), C

(T − t)1−γ

1− γ
,

C
(T − t)1−2γ

1− 2γ
, C

(T − t)1−2γ

1− 2γ
||R|L(U)|L∞(t,T )

}
.

We next estimate |Γ2(f, g, h)|Cγ,S([t,T ];L(H,U)) as follows:

|Γ2(f, g, h)|Cγ,S([t,T ];L(H,U))

= sup
s∈[t,T ]

(T − s)γ
∣∣∣B∗e(T−s)A∗

Ge(T−s)A +B∗

∫ T

s

e(τ−s)A∗

Πe(τ−s)Adτ
∣∣∣
L(H,U)

≤ sup
s∈[t,T ]

(T − s)γ
[ 1

(T − s)γ
|G|L(H)M

2e2α(T−s) +

∫ T

s

1

(τ − s)γ
|Π|L(H)M

2e2α(τ−s)dτ
]

≤ C(T )M2e2α(T−t)
{
r3

(T − t)1−2γ

1− 2γ
+ r2

[2(T − t)1−γ

1− γ
+

(T − t)1−2γ

1− 2γ
||R|L(U)|L∞(t,T )

]

+ 2r||A1|L(H)|L1(t,T ) + ||Q|L(H)|L1(t,T )

}
+ CM2e2α(T−t)

≤ CM2e2α(T−t) + 3C̃tM
2e2α(T−t)(r3 + r2 + r + 1),

where

C̃t = max
{
Ct, C(T )||A1|L(H)|L1(t,T ), C(T )||Q|L(H)|L1(t,T ), C(T )

(T − t)1−γ

1− γ
,

C(T )
(T − t)1−2γ

1− 2γ
, C(T )

(T − t)1−2γ

1− 2γ
||R|L(U)|L∞(t,T )

}
.

Finally, we estimate |Γ3(f, g, h)|Cγ,S([t,T ];L(U,H)) as following:

|Γ3(f, g, h)|Cγ,S([t,T ];L(U,H))

= sup
s∈[t,T ]

(T − s)γ
∣∣∣e(T−s)A∗

Ge(T−s)AB +

∫ T

s

e(τ−s)A∗

Πe(τ−s)ABdτ
∣∣∣
L(U,H)

≤ sup
s∈[t,T ]

(T − s)γ
[ 1

(T − s)γ
|G|L(H)M

2e2α(T−s) +

∫ T

s

1

(τ − s)γ
|Π|L(H)M

2e2α(τ−s)dτ
]

≤ CM2e2α(T−t) + 3C̃tM
2e2α(T−t)(r3 + r2 + r + 1),

where C̃t has been set as previously mentioned.
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Let t = T0 such that T − T0 is sufficiently small. We impose the condition

3CM2e2α(T−t) + 9C̃tM
2e2α(T−t)(r3 + r2 + r + 1) < r.

Let r = 12CM2e2αT and so that

C̃t <
C

r3 + r2 + r + 1
. (3.4)

This guarantees that Γ acts from B(0, r;X) into B(0, r;X) for our choices of r and t.

For s ∈ [t, T ], we deduce that

|Γ1(f, g, h)(s)− Γ1(f0, g0, h0)(s)|CS([t,T ];L(H))

= sup
s∈[t,T ]

∣∣∣
∫ T

s

e(τ−s)A∗

Πe(τ−s)Adτ −

∫ T

s

e(τ−s)A∗

Π0e
(τ−s)Adτ

∣∣∣
L(H)

≤ M2e2αT sup
s∈[t,T ]

{[
2||A1|L(H)|L1(s,T ) +

r2(T − s)1−2γ

1− 2γ

]
|f − f0|CS([t,T ];L(H))

+
r(T − s)1−γ

1− γ
|g − g0|Cγ,S([t,T ];L(H,U)) +

r(T − s)1−γ

1− γ
|h− h0|Cγ,S([t,T ];L(U,H))

}

≤ M2e2αT (C̃t + C̃tr + C̃tr
2)|(f − f0, g − g0, h− h0)|X .

Combining C̃t <
C

r3+r2+r+1 with r = 12CM2e2αT , we conclude that

M2e2αT (C̃t + C̃tr
2 + C̃tr) <

1

12
.

Next,

|Γ2(f, g, h)(t)− Γ2(f0, g0, h0)(t)|Cγ,S ([t,T ];L(H,U))

= sup
s∈[t,T ]

(T − s)γ
∣∣∣B∗

∫ T

s

e(τ−s)A∗

Πe(τ−s)Adτ −B∗

∫ T

s

e(τ−s)A∗

Π0e
(τ−s)Adτ

∣∣∣
L(H,U)

≤ sup
s∈[t,T ]

(T − s)γ
∣∣∣
∫ T

s

1

(τ − s)γ
(Π−Π0)e

(τ−s)Adτ
∣∣∣
L(H,U)

≤ sup
s∈[t,T ]

C(T )M2e2αT
{[

2||A1|L(H)|L1(s,T ) +
r2(T − s)1−2γ

1− 2γ

]
|f − f0|CS([t,T ];L(H))

+
r(T − s)1−γ

1− γ
|g − g0|Cγ,S([t,T ];L(U,H)) +

r(T − s)1−γ

1− γ
|h− h0|Cγ,S([t,T ];L(H,U))

}

≤ M2e2αT (C̃t + C̃tr + C̃tr
2)|(f − f0, g − g0, h− h0)|X .

Using C̃t <
C

r3+r2+r+1 and r = 12CM2e2αT again, we have

M2e2αT (C̃t + C̃tr
2 + C̃tr) <

1

12
.

Furthermore,

|Γ3(f, g, h)(t)− Γ3(f0, g0, h0)(t)|Cγ,S([t,T ];L(U,H))
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= sup
s∈[t,T ]

(T − s)γ
∣∣∣
∫ T

s

e(τ−s)A∗

Πe(τ−s)ABdτ −

∫ T

s

e(τ−s)A∗

Π0e
(τ−s)ABdτ

∣∣∣
L(U,H)

≤ sup
s∈[t,T ]

(T − s)γ
∣∣∣
∫ T

s

e(τ−s)A∗

(Π−Π0)
1

(τ − s)γ
dτ

∣∣∣
L(U,H)

≤ sup
s∈[t,T ]

M2e2αTC(T )
{[

2||A1|L(H)|L1(s,T ) +
r2(T − s)1−2γ

1− 2γ

]
|f − f0|CS([t,T ];L(H))

+
r(T − s)1−γ

1− γ
|g − g0|Cγ,S([t,T ];L(U,H)) +

r(T − s)1−γ

1− γ
|h− h0|Cγ,S([t,T ];L(H,U))

}

≤ M2e2αT (C̃t + C̃tr + C̃tr
2)|(f − f0, g − g0, h− h0)|X .

Combining C̃t <
C

r3+r2+r+1 with r = 12CM2e2αT , we obtain

M2e2αT (C̃t + C̃tr
2 + C̃tr) <

1

12
.

That guarantees Γ is a contraction from B(0, r;X) into B(0, r;X) for our choices of r and t.

Hence Γ(f, g, h) has a unique fixed point (f, g, h) ∈ X . Estimate (3.2) follows from B∗P in

Cγ([t, T ];U) and PB ∈ Cγ([t, T ];H). Since PB admits a unique solution in Cγ([t, T ];H), it has

(PB)∗ = B∗P ∗. Therefore, if P ∈ CS([t, T ];L(H)) satisfying (2.4), then P ∗ ∈ CS([t, T ];L(H))

does. Hence, we have P = P ∗. That is, P ∈ CS([t, T ]; S(H)).

We next prove that there exists a global solution to (2.4). Let Tmax ≥ T0. We extend the

solution from [Tmax, T ] to any time interval [t, T ]. Since

〈P (s)η, η〉 ≤ J (s, η; 0) = E

( ∫ T

s

〈Qx(τ), x(τ)〉dτ + 〈Gx(T ), x(T )〉
)

≤ CM2T e2αT |η|2H + CM2e2αT |η|2H

≤ CT |η|
2
H ,

it implies that |P (s)|L(H) ≤ CT for all s ∈ [Tmax, T ]. We use the bound to reiterate the above

proof on a new interval [T1, Tmax] with G = P (Tmax). This bound yields that the choice of C in

(3.4) is global and all the estimates are uniform and that r and the time step Tmax−T1 are the

same. Therefore, the solution can be extended by repeated iteration on the equal time steps to

any initial time t ≥ 0.

Finally, we claim that there exists a unique solution P ∈ CS([t, T ];L(H)) to (2.4) satisfying

B∗P ∈ Cγ([t, T ];U). Assume that there is another solution P̃ (s) to (2.4), then

inf
u(·)∈U [s,T ]

J (s, η;u) = 〈P (s)η, η〉 = 〈P̃ (s)η, η〉, ∀η ∈ H.

Hence, for any ξ, ζ ∈ H , we have

0 = 〈(P (s)− P̃ (s))(ξ + ζ), (ξ + ζ)〉

= 〈(P (s)− P̃ (s))ξ, ξ〉 + 〈(P (s)− P̃ (s))ξ, ζ〉
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+ 〈(P (s)− P̃ (s))ζ, ξ〉 + 〈(P (s)− P̃ (s))ζ, ζ〉

= 2〈(P (s)− P̃ (s))ξ, ζ〉

by self-adjointness of P and P̃ . Thus, P (s) = P̃ (s).

We next give a result about the differentiability of P .

Lemma 3.2 Let P be a mild solution to (2.4). Then for any η, ξ ∈ D(A), 〈P (·)η, ξ〉 is

differentiable in [t, T ] and

d

ds
〈Pη, ξ〉 = −〈Pη, (A+A1 +BΘ)ξ〉 − 〈P (A+A1 +BΘ)η, ξ〉

− 〈P (C +DΘ)η, (C +DΘ)ξ〉 − 〈RΘη,Θξ〉 − 〈Qη, ξ〉. (3.5)

Proof We can obtain that the operators B∗P and PB are bounded on U and H from

Lemma 3.1. Hence, for any η, ξ ∈ H , using (2.5), we can obtain

〈P (s)η, ξ〉

= 〈Ge(T−s)Aη, e(T−s)Aξ〉+

∫ T

s

〈[P (A1 +BΘ) + (A1 +BΘ)∗P

+ (C +DΘ)∗P (C +DΘ) + Θ∗RΘ+Q]e(τ−s)Aη, e(τ−s)Aξ〉dτ

= 〈Ge(T−s)Aη, e(T−s)Aξ〉+

∫ T

s

[〈P (A1 +BΘ)e(τ−s)Aη, e(τ−s)Aξ〉

+ 〈P e(τ−s)Aη, (A1 +BΘ)e(τ−s)Aξ〉+ 〈Qe(τ−s)Aη, e(τ−s)Aξ〉

+ 〈P (C +DΘ)e(τ−s)Aη, (C +DΘ)e(τ−s)Aξ〉+ 〈RΘe(τ−s)Aη,Θe(τ−s)Aξ〉]dτ. (3.6)

Taking η, ξ ∈ D(A) and using (3.6), we can get that 〈P (s)η, ξ〉 is differentiable with respect to

s. Further, we conclude (3.5).

Lemma 3.3 Let Θ(·) ∈ L2,S(t, T ;L(H,U)). Assume that P (·) ∈ CS([t, T ]; S(H)) is the

mild solution to (2.4). Then

J (t, η; Θ(·)x(·) + u(·)) = 〈P (t)η, η〉 + E

∫ T

t

{2〈(L+KΘ)x, u〉+ 〈Ku, u〉}ds. (3.7)

Proof Taking (t, η) ∈ [0, T )×H and u(·) ∈ U [t, T ], let x(·) satisfy the following equation:

{
dx = [(A+A1 +BΘ)x+Bu]ds+ [(C +DΘ)x+Du]dW (s) in [t, T ],

x(t) = η.
(3.8)

(3.8) admits a unique solution x(·) ∈ CF([t, T ];L
2(Ω;H)) for the admissibility of B. Let R(λ) ,

λI(λI −A)−1 for λ ∈ ρ(A) and xλ(·) = R(λ)x(·). Then xλ(·) is the mild solution to





dxλ = {Axλ + R(λ)[(A1 +BΘ)x+Bu]}ds+ R(λ)[(C +DΘ)x

+Du]dW (s) in [t, T ],

xλ(t) = R(λ)η.

(3.9)
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Applying Ito’s formula to s 7→ 〈P (s)x(s), x(s)〉 and Lemma 3.2, we conclude that

E

[
〈Gxλ(T ), xλ(T )〉+

∫ T

t

(〈Qxλ, xλ〉+ 〈R(Θxλ + u),Θxλ + u〉)ds
]

= 〈P (t)R(λ)η,R(λ)η〉 + E

∫ T

t

{−〈P (t)xλ, (A+A1 +BΘ)xλ〉

− 〈P (s)(A +A1 +BΘ)xλ, xλ〉 − 〈P (C +DΘ)xλ, (C +DΘ)xλ〉 − 〈RΘxλ,Θxλ〉

− 〈Qxλ, xλ〉+ 〈PAxλ, xλ〉+ 〈PR(λ)[(A1 +BΘ)x+Bu], xλ〉+ 〈Pxλ, Axλ〉

+ 〈Qxλ, xλ〉+ 〈PR(λ)[(C +DΘ)x+Du],R(λ)[(C +DΘ)x+Du]〉

+ 〈Pxλ,R(λ)[(A+BΘ)x+Bu]〉+ 〈R(Θxλ + u),Θxλ + u〉}ds

= 〈P (t)η, η〉+

∫ T

t

[2〈(L+KΘ)x, u〉+ 〈Ku, u〉]ds+ F (λ), (3.10)

where

F (λ) = 〈P (t)R(λ)η,R(λ)η〉 − 〈P (t)η, η〉 + E

∫ T

t

{〈PR(λ)(A1 +BΘ)x, xλ〉

− 〈P (A1 +BΘ)xλ, xλ〉+ 〈Pxλ,R(λ)(A +BΘ)x〉 − 〈P (s)(A1 +BΘ)xλ, xλ〉

+ 〈PR(λ)(C +DΘ)x,R(λ)(C +DΘ)x〉 − 〈P (C +DΘ)xλ, (C +DΘ)xλ〉

+ 〈PR(λ)Bu, xλ〉 − 〈PBu, x〉+ 〈Pxλ,R(λ)Bu〉 + 〈PR(λ)Du,R(λ)Du〉

− 〈PDu,Du〉+ 〈PR(λ)(C +DΘ)x,R(λ)Du〉 − 〈P (C +DΘ)x,Du〉

− 〈Px,Bu〉+ 〈PR(λ)Du,R(λ)(C +DΘ)x〉 − 〈PDu, (C +DΘ)x〉}ds.

Since

lim
λ→∞

R(λ)ζ = ζ in H (3.11)

for any ζ ∈ H , we obtain

lim
λ→∞

〈P (t)R(λ)η,R(λ)η〉 = 〈P (t)η, η〉

and

lim
λ→∞

xλ = x in CF([t, T ];L
2(Ω;H)). (3.12)

By (3.11)–(3.12), it yields that

lim
λ→∞

[〈P (s)R(λ)(A1(s) + B(s)Θ(s))x(s), xλ(s)〉

− 〈P (s)(A1(s) +B(s)Θ(s))xλ(s), xλ(s)〉] = 0, P-a.s. (3.13)

for a.e. s ∈ [t, T ]. Since B ∈ L(U,H−1), we obtain R(λ)B ∈ L(U,H). Therefore, from Lemma

3.2, we get that

|〈P (s)R(λ)(A1(s) +B(s)Θ(s))x(s), xλ(s)〉| − 〈P (s)(A1(s) +B(s)Θ(s))x(s), xλ(s)〉
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≤ C[|P (s)|L(H)|A1(s)|L(H) + |P (s)|L(H)|(λI −A)−1B(s)|L(U ;H)|Θ|L(U ;H)

+ |P (s)B(s)|L(U ;H)|Θ(s)|L(U ;H)]|x(s)|
2
H .

By (3.13) and Lebesgue’s dominated convergence theorem, it holds that

lim
λ→∞

E

∫ T

t

[〈P (s)R(λ)(A1(s) +B(s)Θ(s))x(s), xλ(s)〉

− 〈P (s)(A1(s) +B(s)Θ(s))xλ(s), xλ(s)〉]ds = 0.

Using a same argument, it has

lim
λ→+∞

F (λ) = 0.

Letting λ tend to +∞ in both sides of (3.10), we obtain (3.7).

Lemma 3.4 Let Θ(·) ∈ L2,S((t, T );L(H ;U)), the following inequality holds

E

∫ T

t

|u(s)−Θ(s)x(s)|2Uds ≥ c0E

∫ T

t

|u(s)|2Uds,

where c0 is a constant.

Proof Define a bounded linear operator as follows

Υ : U [t, T ] → U [t, T ],

where Υu = u − Θx. Therefore, the operator Υ is bijective and its inverse Υ−1 is given by

Υ−1u = u+Θx̂, where x̂ is the solution to

{
dx̂(s) = [(A+ A1 +BΘ)x̂+Bu]ds+ [(C +DΘ)x̂+Du]dW (s) in (t, T ],

x̂(t) = 0.
(3.14)

Because of the admissibility of control operator B, the (3.14) is well-posed. Applying the

bounded inverse theorem, the operator Υ−1 is bounded with the norm |Υ−1|L(U [t,T ]) > 0.

Therefore, we have

E

∫ T

t

|u(s)|2Uds = E

∫ T

t

|(Υ−1Υu)(s)|2Uds ≤ |Υ−1|L(U [t,T ])E

∫ T

t

|(Υu)(s)|2Uds

= |Υ−1|L(U [t,T ])E

∫ T

t

|u(s)−Θ(s)x(s)|2Uds.

When choosing c0 = |Υ−1|−1
L(U [t,T ]), we derive that

E

∫ T

t

|u(s)−Θ(s)x(s)|2Uds ≥ c0E

∫ T

t

|u(s)|2Uds.

This completes the proof.
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Proposition 3.1 Suppose that the map u(·) 7→ J (0, 0;u(·)) is uniformly convex. Then

Problem (SLQ) admits a unique optimal control, and there exists a constant α ∈ R such that

V (t, η) ≥ α|η|2, ∀(t, η) ∈ [0, T ]×H. (3.15)

Proof Since u(·) 7→ J (0, 0;u(·)) is uniformly convex, then for some constant λ > 0 and

for any u(·) ∈ U [0, T ], we get that

J (0, 0;u(·)) ≥ λE

∫ T

0

|u(s)|2Uds.

For any t ∈ [0, T ) and u(·) ∈ U [t, T ], define the zero-extension of u(·) as follows:

v(s) ,

{
0, s ∈ [0, t),

u(s), s ∈ [t, T ).
(3.16)

It holds that v(·) ∈ U [0, T ], because the initial state is 0, the solution x(·) of

{
dx(s) = [(A+A1)x+Bv]ds+ (Cx+Dv)dW (s) in [0, T ),

x(0) = 0
(3.17)

satisfies x(s) = 0, s ∈ [0, T ], and that (3.17) admits a unique mild solution

x(·) ∈ CF([0, T ];L
2(Ω;H))

by the admissibility of the unbounded operator B. Thus, we have

J (t, 0;u(·)) = J (0, 0; v(·)) ≥ λE

∫ T

0

|v(s)|2Uds = λE

∫ T

t

|u(s)|2Uds.

Therefore, for any given (t, x) ∈ [0, T )×H , the map u(·) 7→ J (t, 0;u(·)) is uniformly convex.

Let u(·) ∈ U [t, T ] be an optimal control. Then, we can rewrite the cost functional as follows:

J (t, η;u(·))

= E

∫ T

0

[〈G(Ψ̂tη + Ξ̂tu), Ψ̂tη + Ξ̂tu〉+ 〈Q(Ψtη + Ξtu),Ψtη + Ξtu〉+ 〈Ru, u〉]ds

= E

∫ T

0

[〈(Ξ̂∗
tGΞ̂t + Ξ∗

tQΞt +R)u, u〉+ 2〈(Ξ̂∗
tGΨ̂t + Ξ∗

tQΨt)η, u〉

+ 〈(Ψ̂∗
tGΨ̂t +Ψ∗

tQΨt)η, η〉]ds

= J (t, η; 0) + J (t, 0;u(·)) + 2

∫ T

t

〈(Ξ̂∗
tGΨ̂t + Ξ∗

tQΨt)η, u〉ds

≥ λE

∫ T

t

|u(s)|2Uds+ J (t, η; 0)−
λ

2
E

∫ T

t

|u(s)|2Uds−
1

2λ
E

∫ T

t

|(Ξ̂∗
tGΨ̂t + Ξ∗

tQΨt)η|
2
Hds

≥
λ

2
E

∫ T

t

|u(s)|2Uds+ J (t, η; 0)−
λ

2
E

∫ T

t

|u(s)|2Uds

−
1

2λ
E

∫ T

t

|(Ξ̂∗
tGΨ̂t + Ξ∗

tQΨt)η|
2
Hds, (3.18)
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where the operators Ψt,Ξt, Ψ̂t, Ξ̂t are defined at the beginning of Section 3. (3.18) implies

that the map u(·) 7→ J (t, η;u(·)) is coercivity and that is continuous and convex. Therefore,

u(·) 7→ J (t, 0;u(·)) has a unique minimizer. Further, by (3.18), it implies that

V (t, η) ≥ J (t, η; 0)−
1

2λ
E

∫ T

t

|(Ξ̂∗
tGΨ̂t + Ξ∗

tQΨt)η|
2
Hds. (3.19)

Because the functions on the right-hand side of (3.19) are quadratic in x and continuous in t,

we derive (3.15).

Proposition 3.2 Let (2.8) hold. Then for any Θ(·) ∈ L2,S(t, T ;L(U,H)), the solution

P (·) ∈ CS([t, T ]; S(H)) to (2.4) satisfies

K(s) ≥ λI, a.e. s ∈ [t, T ], P (s) ≥ αI, ∀s ∈ [t, T ], (3.20)

where α ∈ R is the constant appearing in (3.15).

Proof For any u(·) ∈ U [0, T ], by the admissibility of B, let x(·) be the solution of

{
dx(s) = [(A+A1 +BΘ)x+Bu]ds+ [(C +DΘ)x+Du]dW (s) in [0, T ],

x(0) = 0.
(3.21)

Let P (·) be the solution to (2.4). Since (2.8) holds, we derive that

J (0, 0;Θ(·)x(·) + u(·)) ≥ λE

∫ T

0

|Θ(s)x(s) + u(s)|2ds. (3.22)

Because of Lemma 3.1, we know that the operator B∗P ∈ L(H) appearing in L is bounded.

Further, using Lemma 3.3, we deduce that

J (0, 0;Θ(·)x(·) + u(·)) = E

∫ T

0

[2〈(L+KΘ)x, u〉+ 〈Ku, u〉]ds. (3.23)

Hence, for any u(·) ∈ U [0, T ], we get that

E

∫ T

0

{2〈[L+ (K − λI)Θ]x, u〉+ 〈(K − λI)u, u〉}ds = λE

∫ T

0

|Θ(s)x(s)|2ds ≥ 0. (3.24)

We first prove that K − λI ≥ 0 for a.e. s ∈ [t, T ]. In fact, if there exists a constant α > 0

and a measurable set T ∈ [t, T ] such that

K − λI < −αI for a.e. s ∈ T , (3.25)

where the Lebesgue measure m(T ) > 0. Let N > 0 such that 1
N

≤ m(T ). Let {Tn}
∞
n=1

be a sequence of measurable subsets of T such that m(Tn) = 1
N+n

. We assume ζ ∈ U and

un = nχTn
ζ for n = 1, 2, · · · . Let xn be the solution to (3.21) with u = un. Under the singular

estimate (1.1), we obtained that

|xn|CF([t,T ];L2(Ω;H)) ≤ c,
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where c is a constant independent of n. It follows from (3.25) that

lim
n→∞

1

n2

∫ T

t

[〈(K − λI)un, un〉+ 2〈[(K − λI)Θ + L]xn, un〉]ds ≤ −α|ζ|2U . (3.26)

From (3.24), it holds that

lim
n→∞

1

n2

∫ T

t

[〈(K − λI)un, un〉+ 2〈[(K − λI)Θ + L]xn, un〉]ds ≥ 0, (3.27)

which contradicts (3.26). Thus, we have

K − λI ≥ 0 for a.e. s ∈ [t, T ]. (3.28)

Therefore, we get the first inequality in (3.20).

We next prove the second inequality in (3.20). For any (t, η) ∈ [0, T )×H and u(·) ∈ U [t, T ],

we assume that x(·) is the solution of

{
dx(s) = [(A+A1 +BΘ)x+Bu]ds+ [(C +DΘ)x+Du]dW (s) in (t, T ],

x(t) = η.

Since B∗P ∈ L(H) appearing in L is bounded and Lemma 3.3, we have

J (t, η; Θ(·)x(·) + u(·))

= 〈P (t)η, η〉 + E

∫ T

t

{2〈(L+KΘ)x, u〉+ 〈Ku, u〉}ds. (3.29)

According to Proposition 3.1, we get that

J (t, η; Θ(·)x(·) + u(·)) ≥ V (t, η) ≥ α|x|2. (3.30)

Setting u(·) = 0 in (3.30) and using (3.29), we deduce that

〈P (t)η, η〉 ≥ α|x|2, ∀(t, η) ∈ [0, T ]×H.

Thus, it implies the second inequality in (3.20).

In the following, we prove the main result. When the cost functional is uniformly convex,

we apply some iteration scheme with (2.4) to obtain the solvability of Riccati equation (2.2)

and further get the strongly regular solution of (2.2).

Furthermore, we derive the optimal feedback control of Problem (SLQ).

Proof of Theorem 2.1 Without loss of generality, we assume that t = 0.

(1) ⇒ (2). We define the initial variable P0. Assume that P0 is the solution to

{
Ṗ0 + P0(A+ A1) + (A+A1)

∗P0 + C∗P0C +Q = 0 in [0, T ],

P0(T ) = G.
(3.31)
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Using the same argument in Lemma 3.1, we can easily obtain B∗P0 ∈ L(H,U) and P0B ∈

L(U,H). By Proposition 3.2 and taking Θ = 0 in (3.31), we can get that

R(s) +D(s)∗P0(s)D(s) ≥ λI, P0(s) ≥ αI, a.e. s ∈ [0, T ]. (3.32)

We next set up the following iteration scheme as follows:




Ṗi+1 + Pi+1(A+A1 +BΘi) + (A+A1 +BΘi)

∗Pi+1

+C∗
i Pi+1Ci +Θ∗

iRΘi +Q = 0,
Pi+1(T ) = G,

where

Ki = R+D∗PiD, Li = B∗Pi +D∗PiC,

Θi = −K−1
i Li, Ci = C +DΘi

for i = 0, 1, 2, · · · . Applying Lemma 3.1 and setting P = Pi+1 and Θ = Θi in (2.4), we see that

|B∗Pi(τ)x|U ≤
C

(T − τ)γ
|x|H , |P (τ)Biu|H ≤

C

(T − τ)γ
|u|U ,

∀x ∈ H, τ ∈ [t, T ), i = 0, 1, 2, · · · .

By (3.32), we can derive that Θ0 = −K−1
0 L0 ∈ L2,S(0, T ;L(H ;U)). Noticing Proposition 3.2,

we obtain

K1 ≥ λI, P1(s) ≥ αI a.e. s ∈ [0, T ] (3.33)

by replacing P and Θ in (2.4) with P1 and Θ0, respectively. Similarly, we derive that

Ki+1 ≥ λI, Pi+1(s) ≥ αI a.e. s ∈ [0, T ], i = 0, 1, 2, · · · . (3.34)

We denote

∆i , Pi − Pi+1, Λi , Θi−1 −Θi, i ≥ 1.

Therefore, for i ≥ 1, we conclude that

−∆i(s)η = Pi+1(s)η − Pi(s)η

=

∫ T

s

e(τ−s)A∗

[(Pi(s)− Pi+1(s))(A1 +BΘi) + (A1 +BΘi)
∗(Pi(s)− Pi+1(s))

+ C∗
i−1PiCi−1 +Θ∗

i−1RΘi−1 − C∗
i Pi+1Ci −Θ∗

iRΘi]e
(τ−s)Aηdτ

=

∫ T

s

e(τ−s)A∗

[∆i(A1 +BΘi) + (A1 + BΘi)
∗∆i + Pi(BΘi−1 −BΘi)

+ (BΘi−1 −BΘi)
∗Pi + C∗

i ∆iCi + C∗
i−1PiCi−1

+Θ∗
i−1RΘi−1 − C∗

i PiCi −Θ∗
iRΘi]e

(τ−s)Aηdτ. (3.35)
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By calculating, we deduce that

C∗
i−1PiCi−1 − C∗

i PiCi

= (C +DΘi−1)
∗Pi(C +DΘi−1)− (C +DΘi)

∗Pi(C +DΘi)

= Θ∗
i−1D

∗PiDΘi−1 −Θ∗
iD

∗PiDΘi +Θ∗
i−1D

∗PiC

+ C∗PiDΘi−1 −Θ∗
iD

∗PiC − C∗PiDΘi

= (Θi−1 −Θi)
∗D∗PiD(Θi−1 −Θi) + (C +DΘi)

∗PiD(Θi−1 −Θi)

+ (Θi−1 −Θi)
∗D∗Pi(C +DΘ)

= Λ∗
iD

∗PiDΛi + C∗
i PiDΛi + Λ∗

iD
∗PiCi. (3.36)

Likewise, we see that

B∗Pi +D∗PiCi +RΘi = B∗Pi +D∗PiC + (R+D∗PiD)Θi = 0, (3.37)

Θ∗
i−1RΘi−1 −Θ∗

iRΘi = Λ∗
iRΛi + Λ∗

iRΘi +Θ∗
iRΛi. (3.38)

From (3.35)–(3.38), we can obtain that

−∆i(s)−

∫ T

s

e(τ−s)A∗

[∆i(A1 +BΘi) + (A1 +BΘi)
∗∆i + C∗

i ∆iCi]e
(τ−s)Adτ

=

∫ T

s

e(τ−s)A∗

(PiBΛi + Λ∗
iB

∗Pi + Λ∗
iD

∗PiDΛi + C∗
i PiDΛi + Λ∗

iD
∗PiCi

+ Λ∗
iRΛi + Λ∗

iRΘi +Θ∗
iRΛi)e

(τ−s)Adτ

=

∫ T

s

e(τ−s)A∗

[Λ∗
iKiΛi + (PiB + C∗

i PiD +Θ∗
iR)Λi

+ Λ∗
i (B

∗Pi +D∗PiCi +RΘi)]e
(τ−s)Adτ

=

∫ T

s

e(τ−s)A∗

[Λ∗
iKiΛi −∆i−1BΛi + (Pi−1B + C∗

i PiD +Θ∗
iR)Λi]e

(τ−s)Adτ. (3.39)

Taking Ĝ = 0, Â = A1 +BΘi, Ĉ = Ci and Q̂ = Λ∗
iKiΛi in (2.6), by (3.39), we can derive that

∆i(·) is a solution to (2.6). Applying Lemma 2.1, we obtain ∆i(·) ≥ 0, that is, Pi(·)−Pi+1(·) ≥ 0

for i ≥ 1. By (3.33), we get that for any s ∈ [0, T ],

P1(s) ≥ Pi(s) ≥ Pi+1(s) ≥ αI, ∀i ≥ 1.

Hence, we get that the sequence {Pi}
∞
i=1 is uniformly bounded. Further, there exist constants

c̃ > 0 and c > 0 such that

|Pi(s)|L(H) ≤ c̃, |Ki(s)|L(H) ≤ c̃,

|Θi(s)|L(H,U) ≤
c

(T − s)γ
, (3.40)

|Ci(s)|L(H) ≤ |C(s)|L(H) + |D(s)|L(H)
c

(T − s)γ
.
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We next show the convergence of the sequence {Pi, B
∗Pi, PiB}∞i=1. Observe that

Λi = K−1
i D∗∆i−1DK−1

i−1(B
∗Pi +D∗PiC)−K−1

i−1(B
∗∆i−1 +D∗∆i−1C). (3.41)

Therefore, it follows from (3.40)–(3.41) that

|Λi(s)
∗Ki(s)Λi(s)|L(H)

= |(Θi−1(s)Ki(s)Λi(s))
∗Ki(s)(Θi−1(s)−Θi(s))|L(H)

≤ (|Θi−1(s)|L(H,U) + |Θi(s)|L(H,U))|Ki(s)|L(U)|Θi−1(s)−Θi(s)|L(H,U)

≤
[ 2c2

(T − s)2γ
c̃+

2c2

(T − s)γ
+

2c

(T − s)γ
c̃|C(s)|L(H)

]
|∆i−1|L(H)

+
2c

(T − s)γ
c̃|B∗∆i−1(s)|L(H,U). (3.42)

Combining (3.39) with ∆i(T ) = 0, we derive that

∆i(s) =

∫ T

s

e(τ−s)A∗

[∆i(A1 +BΘi) + (A1 +BΘi)
∗∆i + C∗

i ∆iCi + Λ∗
iKiΛi

−∆i−1BΛi + (Pi−1B + C∗
i PiD +Θ∗

iR)Λi]e
(τ−s)Adτ. (3.43)

It holds from (3.40), (3.42)–(3.43) that

|∆i(s)|L(H)

≤

∫ T

s

CMe2αT
{[

2|A1(τ)|L(H) +
(
|C(τ)|L(H) +

c

(T − τ)γ

)2]
|∆i(τ)|L(H)

+
c

(T − τ)γ
|B∗∆i(τ)|L(H,U) +

c

(T − τ)γ
|∆i(τ)B|L(U,H)

+
[2c3|C(τ)|L(H)

(T − τ)γ
+ c2

( 4c̃

(T − τ)2γ
+

5c̃|C(τ)|L(H)

(T − τ)γ
+ |C(τ)|L(H)

)

+ c
(5c̃|C(τ)|L(H)

(T − τ)γ
+ |C(τ)|L(H)

)
+

|C(τ)|L(H)

(T − τ)γ

]
|∆i−1(τ)|L(H)

+
[ c2

(T − τ)γ
+ c

( 4c̃

(T − τ)γ
+ |C(τ)|L(H)

) 1

(T − τ)γ

]
|B∗∆i−1(τ)|L(H,U)

+
2c

(T − τ)γ
|∆i−1B|L(U,H)

}
dτ, (3.44)

|B∗∆i(s)|L(H,U)

≤

∫ T

s

CMeαT

(τ − s)γ

{[
2|A1(τ)|L(H) +

(
|C(τ)|L(H) +

c

(T − τ)γ

)2]
|∆i(τ)|L(H)

+
c

(T − τ)γ
|B∗∆i(τ)|L(H,U) +

c

(T − τ)γ
|∆i(τ)B|L(U,H)

+
[
c3
(2|C(τ)|L(H)

(T − τ)γ

)
+ c2

( 4c̃

(T − τ)2γ
+

5c̃|C(τ)|L(H)

(T − τ)γ
+ |C(τ)|L(H)

)

+ c
(5c̃|C(τ)|L(H)

(T − τ)γ
+ |C(τ)|L(H)

)
+

|C(τ)|L(H)

(T − τ)γ

]
|∆i−1(τ)|L(H)
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+
[ c2

(T − τ)γ
+ c

( 4c̃

(T − τ)γ
+ |C(τ)|L(H)

) 1

(T − τ)γ

]
|B∗∆i−1(τ)|L(H,U)

+
cr

(T − τ)γ
|∆i−1B|L(U,H)

}
dτ (3.45)

and

|∆i(s)B|L(H,U)

≤

∫ T

s

CMeαT
{[

2|A1(τ)|L(H) +
(
|C(τ)|L(H) +

c

(T − τ)γ

)2]
|∆i(τ)|L(H)

+
c

(T − τ)γ
|B∗∆i(τ)|L(H,U) +

c

(T − τ)γ
|∆i(τ)B|L(U,H)

+
[
c3
(2|C(τ)|L(H)

(T − τ)γ

)
+ c2

( 4c̃

(T − τ)2γ
+

5c̃|C(τ)|L(H)

(T − τ)γ
+ |C(τ)|L(H)

)

+ c
(5c̃|C(τ)|L(H)

(T − τ)γ
+ |C(τ)|L(H)

)
+

|C(τ)|L(H)

(T − τ)γ

]
|∆i−1(τ)|L(H)

+
[ c2

(T − τ)γ
+ c

( 4c̃

(T − τ)γ
+ |C(τ)|L(H)

) 1

(T − τ)γ

]
|B∗∆i−1(τ)|L(H,U)

+
2c

(T − τ)γ
|∆i−1B|L(U,H)

} 1

(τ − s)γ
dτ. (3.46)

From (3.44)–(3.46), we see that

|∆i(s)|L(H) + |B∗∆i(s)|L(H,U) + |∆i(s)B|L(U,H)

≤

∫ T

s

φ(τ)[|∆i(τ)|L(H) + |B∗∆i(τ)|L(H,U) + |∆i(τ)B|L(U,H)

+ |∆i−1(τ)|L(H) + |B∗∆i−1(τ)|L(H,U) + |∆i−1(τ)B|L(U,H) ]dτ, ∀s ∈ [0, T ], ∀i ≥ 1,

where φ(·) is a nonnegative integrable function, which is independent of ∆(·). Further, by

Gronwall’s inequality, it infers that

|∆i(s)|L(H) + |B∗∆i(s)|L(H,U) + |∆i(s)B|L(U,H)

≤ e
∫

T

0
φ(τ)dτ

∫ T

s

φ(τ)(|∆i−1(τ)|L(H) + |B∗∆i−1(τ)|L(H,U) + |∆i−1(τ)B|L(U,H))dτ

= c

∫ T

s

[φ(τ)|(∆i−1(τ)|L(H) + |B∗∆i−1(τ)|L(H,U) + |∆i−1(τ)B|L(U,H))]dτ,

where c = e
∫

T

0
φ(τ)dτ . Setting a , max

0≤τ≤T
|∆0(τ)|L(H) and by induction, it has

|∆i(s)|L(H) + |B∗∆i(s)|L(H,U) + |∆i(s)B|L(U,H) ≤ a
ci

i!

(∫ T

s

φ(τ)dτ
)i

, ∀s ∈ [0, T ]. (3.47)

Therefore, the inequality (3.47) implies that the sequence {Pi, B
∗Pi, PiB}∞i=1 is uniform con-

vergence in X .

We denote (P, g(s), h(s)) ∈ X the limit of {Pi, B
∗Pi, PiB}∞i=1 with g(s) = B∗P (s), h(s) =

P (s)B. Then

K(s) = lim
i→∞

Ki(s) ≥ λI a.e. s ∈ [0, T ].
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Furthermore, when i → ∞, it holds that

Θi → −K−1L ≡ Θ in L2.S(0, T ;L(H,U)),

Ci → C +DΘ in L2(0, T ;L(H)).

Hence, the operator P (·) solves (2.2) in the sense of mild solution.

(2) ⇒ (1). Since the operator B is unbounded, we need to estimate PB ∈ L(U,H) and

B∗P ∈ L(H,U) when P is the mild solution to (2.2). Let P (·) ∈ CS([t, T ]; S(H)) be the mild

solution to (2.4). For any v(·) ∈ U [t, T ], the system (1.2) with the control u(·) = Θ(·)x(·)+ v(·)

becomes
{
dx = [(A+A1 +BΘ)x +Bv]ds+ [(C +DΘ)x+Dv]dW (s) in [t, T ],

x(t) = η.
(3.48)

By Itô’s formula and Lemma 3.2, we have

J (t, η; Θx(·) + v(·))

= 〈P (t)η, η〉+ E

∫ T

t

{〈[Ṗ + P (A+A1 +BΘ) + (A+A1 +BΘ)∗P

+ (C +DΘ)∗P (C +DΘ) +Q+Θ∗RΘ]x, x〉

+ 〈Kv, v〉+ 2〈[(L+KΘ)]x, v〉}ds

= 〈P (t)η, η〉+ E

∫ T

t

{2〈[L+KΘ]x, v〉+ 〈Kv, v〉}ds. (3.49)

Because Θ is an optimal feedback operator, we have

J (t, η; Θx(·) + v(·)) ≥ J (t, η; Θx(·)) = 〈P (t)η, η〉.

This, together with (3.49), implies that

E

∫ T

t

[〈Kv, v〉+ 〈(KΘ+ L)x, v〉]ds ≥ 0. (3.50)

We next show that K(s) ≥ 0 for a.e. s ∈ [t, T ] by contradiction. Otherwise, there exists

δ > 0 and a measurable set T ∈ [t, T ] with Lebesgue measure m(T ) > 0 such that

K(s) < −δI for a.e. s ∈ T . (3.51)

Let N > 0 such that 1
N

≤ m(T ). Let {Tn}
∞
n=1 be a sequence of the measurable subsets of

T such that m(Tn) = 1
N+n

. Let ζ ∈ U and vn = nχTn
ζ for n = 1, 2, · · · . Denote by xn the

solution of (3.48) with η = 0 and v = vn. Under the singular estimate (1.1), then we obtained

that

|xn|CF([t,T ];L2(Ω;H)) ≤ C,



606 Y. Wang

where C is a constant independent of n. This, together with (3.51), implies that

lim
n→∞

1

n2

∫ T

t

[〈Kvn, vn〉+ 〈(KΘ+ L)xn, vn〉]ds ≤ −δ|ζ|2U . (3.52)

On the other hand, by (3.50), we have

lim
n→∞

1

n2

∫ T

t

[〈Kvn, vn〉+ 〈(KΘ+ L)xn, vn〉]ds ≥ 0, (3.53)

which contradicts (3.52). Therefore, we see that

K(s) ≥ 0 for a.e. s ∈ [t, T ]. (3.54)

We use the following iteration scheme

Pi+1(s)η = e(T−s)A∗

Ge(T−s)Aη +

∫ T

s

e(τ−s)A∗

[Pi+1(A1 +BΘi) + (A1 +BΘi)
∗Pi+1

+ (C +DΘi)
∗Pi+1(C +DΘi) + Θ∗

iRΘi +Q]e(τ−s)Aηdτ, (3.55)

where

Θi = −K
†
iLi, Ki = R+D∗PiD,

Li = B∗Pi +D∗PiC, P0 = e(T−s)A∗

Ge(T−s)A.

Using the result of Lemma 3.1, each iteration Pi is well defined and bounded with

|Pi|CS([t,T ]L(H))
≤ CT , |B∗P (s)x|H ≤

C|x|H
(T − s)γ

, |PB(s)u|H ≤
C|u|U

(T − s)γ
,

∀x ∈ H and i = 0, 1, 2, · · · . Thanks to (3.54), each Ki(s)
† is well defined and bounded on H

at each step. Taking estimates, it implies that the sequence {Pi, B
∗Pi, PiB}∞i=1 is convergence

in X for (T − t) is sufficiently small, and thus converging to some (P, p(s), q(s)) ∈ X with

p(s) = B∗P (s) and q(s) = P (s)B. Passing through the limit in (3.55), we obtain (2.2).

Further, when P (s) is the mild solution to (2.2), B∗P and PB are bounded.

Let P (·) be the strongly regular solution of (2.2). Then there exists a λ ≥ 0 such that

K(s) ≥ λI for a.e. s ∈ [0, T ]. (3.56)

Because B∗P ∈ L(H,U) and (3.56) hold, we have Θ ≡ −K−1L ∈ L2,S(0, T ;L(H ;U)). For any

u(·) ∈ U [0, T ], let x(u)(·) be the solution of

{
dx(u)(s) = [Ax(u)(s) +Bu(s)]ds+ [Cx(u)(s) +Du(s)]dW (s) in [0, T ],

x(u)(0) = 0.
(3.57)

Applying Itô’s formula to s 7→ 〈P (s)x(u)(s), x(u)(s)〉, it has

J (0, 0;u(·))
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= E

∫ T

0

{〈[Ṗ + P (A+A1) + (A+A1)
∗P + C∗PC +Q]x(u), x(u)〉

+ 2〈(B∗P +D∗PC)x(u), u〉+ 〈(R +D∗PD)u, u〉}dτ

= E

∫ T

0

[〈Θ∗KΘx(u), x(u)〉 − 2〈KΘx(u), u〉+ 〈Ku, u〉]dτ

= E

∫ T

0

〈K(u−Θx(u)), u−Θx(u)〉dτ.

Due to (3.56) and Lemma 3.4, we deduce that

J (0, 0;u(·))

= E

∫ T

0

〈K(u−Θx(u)), u− Θx(u)〉dτ

≥ λc0E

∫ T

0

|u(τ)|2Udτ, ∀u(·) ∈ U [0, T ]

for some γ = λc0 > 0. Hence, the statement (1) holds.

In the end, we introduce an example about the uniform convexity of the cost functional.

Let O ⊂ Rm(m ∈ N) be a bounded domain with the C2 boundary ∂O. We consider the

following stochastic Schrödinger equation





dx+ i∆xdt = axdt+ bxdW (t) + cũdW (t) in O × (0, T ],

x = v on ∂O × [0, T ],

x(0) = x0 in O,

(3.58)

where a, b, c ∈ L∞
F
(0, T ;W 1,+∞

0 (O)) and x0 ∈ H−1(O).

Let H = H−1(O) and U = L2(O)×L2(∂O). Define an unbounded linear operator on H as

follows:




D(A) = H1
0 (O),

〈Af, g〉H−1(O),H1
0 (O) =

∫

G

∇f(ξ) · ∇g(ξ)dξ, ∀f, g ∈ H1
0 (O).

Define a map AD : L2(∂O) → L2(O) as follows:

ADg = h,

where h is the solution to
{
∆h = 0 in O,

h = g on ∂O.

Define three operators A1, C ∈ L(L2
F
(0, T ;H)) and D ∈ L(L2

F
(0, T ;U), L2

F
(0, T ;H)) as

A1ξ = aξ, Cξ = bξ, Du = cu, ∀ξ ∈ L2
F
(0, T ;H), ∀u ∈ L2

F
(0, T ;U).
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Write A = iA. The operators B,D are B = (0, AAD) and D = (D, 0). The system can be

expressed in an abstract form as follows

{
dx = (Ax +A1x+Bu)dt+ (Cx+Du)dW (t) in [0, T ],

x(0) = x0,
(3.59)

where u =
(
ũ

v

)
with |u|L2

F
(0,T ;U) = |ũ|L2

F
(0,T ;U) + |v|L2

F
(0,T ;U). Therefore, The operator B is an

admissible control operator with respect to the semigroup {S(t)}t≥0 generated by A (see [14]).

That is, there exists a constant
≈

C > 0 such that for any u ∈ L2
F
(0, T ;U),

E

∣∣∣
∫ T

0

S(T − s)Bu(s)ds
∣∣∣
H

≤
≈

C|u|L2
F
(0,T ;U).

Further, we have

E

∣∣∣
∫ T

0

S(T − s)AADv(s)ds
∣∣∣
H

≤
≈

C|v|L2
F
(0,T ;U). (3.60)

There is a unique mild solution x(·) ∈ CF([0, T ];L
2(Ω;H)) to the system (3.59).

We consider the following cost functional

J (t, x0;u(·)) , E〈Gx(T ), x(T )〉 + E

∫ T

t

(〈Qx, x〉 + 〈Ru, u〉)ds, (3.61)

where G ∈ S(H), Q(·) ∈ L1(0, T ; S(H)) and R(·) ∈ L∞(0, T ; S(U)). Assume that Q(·) ≥ 0 and

that R(·) ≥ λI may not hold. We next study the uniform convexity of the cost functional. We

make some assumptions.

(AS1) Assume that D = σI for σ >
≈

C.

(AS2) There exists a positive constant α ≥ C0(|R|L∞(0,T ;L(U)) + ξ0) with ξ0 > 0 such that

〈Ru, u〉 ≥ α|v|2.

(AS3) There is a β ≥ C0(|R|L∞(0,T ;L(U)) + ξ0) with ξ0 > 0 such that for any ζ ∈ H ,

〈Gζ, ζ〉 ≥ µ0|ζ|
2
H .

Let x̂(·) = D(·)u(·) = Dũ(·). Further, the system (3.59) becomes

{
dx = (Ax +A1x+AADv)ds+ (Cx + x̂)dW (s) in [0, T ),

x(T ) ∈ L2
FT

(Ω;H),
(3.62)

where x(T ) is the value of solution to (3.59) at the time T . Thus, the system (3.62) is well-posed.

Since the inequality (3.60) holds, the following inequality holds:

|x(·), x̂(·)|CF([0,T ];L2(Ω;H))×L2
F
(0,T ;H) ≤ C|x(T )|L2

FT
(Ω;H) + C|v|L2

F
(0,T ;U). (3.63)

Further, the inequality (3.63) implies that there exists a positive constant C0 such that

|ũ(·)|2L2
F
(0,T ;U) ≤ C0|x(T )|

2
L2

FT
(Ω;H) + C0|v|

2
L2

F
(0,T ;U). (3.64)
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From the inequality (3.63), the state process x(·) can be controlled by the final state process

x(T ), which means that we only need to consider the operator G is large enough to supply the

negative of the operator R(·), when R(·) ≥ λI may not hold in the cost functional (3.61). The

map u(·) 7→ J (0, 0;u(·)) is uniformly convex, that is, for some λ > 0, it holds that

J (0, 0;u(·)) ≥ λE

∫ T

0

|u(s)|2Uds, ∀u(·) ∈ U [t, T ]. (3.65)

According to (3.64), (AS2)–(AS3), we deduce that

∫ T

0

〈Ru, u〉dt+ 〈Gx(T ), x(T )〉

≥ α|v|2L2
F
(0,T ;U) + β|x(T )|2L2

FT
(Ω;H)

≥ (α− β)|v|2L2
F
(0,T ;U) + β(|v|2L2

F
(0,T ;U) + |x(T )|2L2

FT
(Ω;H))

≥ (α− β)|v|2L2
F
(0,T ;U) +

β

C0
|ũ|2L2

F
(0,T ;U)

≥
β

C0
(|v|2L2

F
(0,T ;U) + |ũ|2L2

F
(0,T ;U))

≥ (|R|L∞(0,T ;L(U)) + ξ0)|u|
2
L2

F
(0,T ;U),

where β < α <
(
1 + 1

C0

)
β. Therefore, taking λ = ξ0, the following inequality

J (0, t;u(·)) = E〈Gx(T ), x(T )〉 + E

∫ T

t

(〈Qx, x〉 + 〈Ru, u〉)ds

≥ λE

∫ T

t

|u(s)|2Uds

holds for any Q(·) ≥ 0.

Further, we can derive the following result.

Theorem 3.1 Under the assumptions (AS1)–(AS3), the map u(·) 7→ J (t, η;u(·)) is uni-

formly convex.
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[14] Lü, Q., Stochastic well-posed systems and well-posedness of some stochastic partial differential equations
with boundary control and observation, SIAM J. Control Optim., 53, 2015, 3457–3482.
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