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Abstract In this paper, the authors study the almost everywhere pointwise convergence
problem along a class of restricted curves in R × R given by {(y, t) : y ∈ Γ(x, t)} for each
t ∈ [0, 1], where Γ(x, t) = {γ(x, t, θ) : θ ∈ Θ} for a given compact set Θ in R of the fractional
Schrödinger propagator and Boussinesq operator. They focus on the relationship between
the upper Minkowski dimension of Θ and the optimal s for which

lim
y∈Γ(x,t)

(y,t)→(x,0)

eit(
√

−∆)a
f(y) = f(x), lim

y∈Γ(x,t)
(y,t)→(x,0)

Btf(y) = f(x), a.e.,

whenever f ∈ Hs(R).
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1 Introduction

1.1 The pointwise convergence along vertical lines

Let us consider the free Schrödinger equation in R
n × R, n ≥ 1,

i∂tu+△xu = 0

with initial datum f . Then the solution which is defined by Schrödinger propagator can be

formally written as

u(x, t) = eit△f(x) =
1

(2π)n

∫

Rn

ei(x·ξ+t|ξ|2)f̂(ξ)dξ,

where

f̂(ξ) =

∫

Rn

e−ix·ξf(x)dx.
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The problem which was considered by Carleson [6] is to determine the minimal regularity s for

which

lim
t→0

eit△f(x) = f(x), a.e. x ∈ R
n, (1.1)

whenever f ∈ Hs(Rn), where Hs(Rn) is the L2 Sobolev space of order s which is defined by

‖f‖Hs(Rn) =
(∫

Rn

(1 + |ξ|2)s|f̂(ξ)|2dξ
) 1

2

.

In 1979, Carleson [6] first proved that the almost everywhere convergence (1.1) holds for

any f ∈ H
1
4 (R) by making use of the stationary phase method. Dahlberg-Kenig [10] proved

the condition s ≥ 1
4 given by Carleson is sharp.

For the situation in higher dimensions, many researchers such as Carbery [5] and Cowling

[9] studied this problem, and Sjölin [28] and Vega [31] proved independently that (1.1) holds

when s > 1
2 in any dimensions. After that some important positive results have been obtained

by many references (see [1–2, 7, 11–12, 14, 17–19, 23–25, 30]). More recently, Bourgain [3] gave

counterexamples showing that (1.1) can fail if s < n
2(n+1) . Du-Guth-Li [13] and Du-Zhang [15]

improved the sufficient condition to the almost sharp range s > n
2(n+1) when n = 2 and n ≥ 3,

respectively. Hence, the Carleson problem was essentially solved except the endpoint.

1.2 The pointwise convergence along a wider approach region

A natural generalization of the pointwise convergence problem is to ask almost everywhere

convergence along a wider approach region instead of vertical lines. One may consider the

Schrödinger propagator eit∆f(x) converges to f(x) nontangentially for almost everywhere x ∈
R

n. That is, for α > 0 and f ∈ Hs(Rn), for which s such that

lim
(y,t)∈Γα(x)
(y,t)→(x,0)

eit∆f(y) = f(x), a.e. x ∈ R
n, (1.2)

where Γα(x) = {(y, t) ∈ R
n+1
+ : |y − x| < αt}. If s > n

2 , then by Sobolev imbedding theorem,

we find that

sup
(x,t)∈Rn×R

|eit∆f(x)| ≤ C‖f‖Hs(Rn).

Thus, (1.2) holds for s > n
2 . However, Sjögren-Sjölin [27] proved that (1.2) fails for s ≤ n

2 .

In fact, in [27], Sjögren-Sjölin proved that there is an f ∈ H
n
2 (Rn) and a strictly increasing

function γ(t) with γ(0) = 0, such that for all x ∈ R
n,

lim sup
(y,t)→(x,0)
|x−y|<γ(t)

|eit∆f(y)| = +∞.

In this section, we study the almost everywhere pointwise convergence problem along a

class of restricted curves in R × R given by {(y, t) : y ∈ Γ(x, t)} for each t ∈ [0, 1], where

Γ(x, t) = {γ(x, t, θ) : θ ∈ Θ} for a given compact set Θ in R of the fractional Schrödinger

propagator and Boussinesq operator. Let γ(x, t, θ) be a map from R × [0, 1] × Θ to R, which

satisfies the following conditions (A1)–(A3).
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(A1) (Bilipschitz condition in x) For fixed t ∈ [0, 1], θ ∈ Θ, γ(x, t, θ) has at least C1

regularity in x, and there exists a constant C1 ≥ 1 such that for each x, x′ ∈ R, t ∈ [0, 1], θ ∈ Θ,

C−1
1 |x− x′| ≤ |γ(x, t, θ)− γ(x′, t, θ)| ≤ C1|x− x′|.

(A2) (Hölder condition of order α in t) There exists a constant C2 > 0 and α ∈ (0, 1) such

that for each x ∈ R, t, t′ ∈ [0, 1], θ ∈ Θ,

|γ(x, t, θ)− γ(x, t′, θ)| ≤ C2|t− t′|α.

(A3) (Hölder condition of order 1 in θ) There exists a constant C3 > 0 such that for each

x ∈ R, t ∈ [0, 1], θ, θ′ ∈ Θ,

|γ(x, t, θ)− γ(x, t, θ′)| ≤ C3|θ − θ′|.

In order to characterize the size of Θ, we introduce the upper Minkowski dimension of Θ

which is defined by

β(Θ) = lim sup
δ→0+

logN(δ)

−logδ
,

where N(δ) is the minimum number of closed balls of diameter δ to cover Θ. As a consequence,

when Θ is a single point, β(Θ) = 0; when Θ is a compact subset of Rn with positive Lebesgue

measure, β(Θ) = n.

In recent years, many authors study the relationship between the upper Minkowski dimen-

sion of Θ and the optimal s for which

lim
y∈Γ(x,t)

(y,t)→(x,0)

eit∆f(y) = f(x), a.e.,

whenever f ∈ Hs(Rn).

Recently a lot of works have been done on this type of problems (see [8, 20–21, 26] and

the references given there). In [8], this question is considered when n = 1 for a class of

restricted straight lines. Exactly, for t ∈ [−1, 1], let Γ(x, t) = {x+ tθ : θ ∈ Θ}, where Θ is a

given compact set in R. In [8], Cho-Lee-Vargas proved that the corresponding non-tangential

convergence result holds for s > β(Θ)+1
4 . Then Shiraki [26] generalized this result to a wide

class of operators which includes the fractional Schrödinger propagator. Li-Wang-Yan [21]

obtained the corresponding non-tangential convergence result in any dimensions and improved

the straight line to more general curves with Lipschitz regularity in time variable. Very recently,

Li-Wang [20] gave an answer when the curves satisfy just lower α-Hölder regularity (0 < α < 1)

associated with Schrödinger propagator. So it is interesting to study that whether the conclusion

of Li-Wang [20] is true for fractional Schrödinger propagator and Boussinesq operator. First

we consider the fractional Schrödinger propagator which is defined by

eit(
√
−∆)af(x) =

1

(2π)n

∫

Rn

ei(x·ξ+t|ξ|a)f̂(ξ)dξ, a > 1.

In this paper, we focus on the relationship between the upper Minkowski dimension of Θ and

the optimal s for which

lim
y∈Γ(x,t)

(y,t)→(x,0)

eit(
√
−∆)af(y) = f(x), a.e., (1.3)
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whenever f ∈ Hs(R). And we have the following convergence result for fractional Schrödinger

propagator along a class of tangential curves.

Theorem 1.1 Let a > 1. Suppose that γ(x, t, θ) satisfies the conditions (A1)–(A3). The

convergence result (1.3) holds almost everywhere whenever f ∈ Hs(R) if

(1) α ∈
(
0, 1

2a

]
and s > s0 = aαβ(Θ)

2 + 1
2 − aα

2 ;

(2) α ∈
(

1
2a , 1

)
and s > s0 = β(Θ)+1

4 .

The fractional Schrödinger propagator is Schrödinger propagator when a = 2. Hence

Theorem 1.1 improves the previous known result in Li-Wang [20]. We study the fractional

Schrödinger propagator whose phase function is more complicated than Schrödinger propaga-

tor, which causes the difficulty when we establish the estimate of kernel. Theorem 1.1 is sharp

when α ∈
(

1
2a , 1

)
(see [26]). Besides, Theorem 1.1 extends the result of [26] to generalized

curve.

By a standard argument, Theorem 1.1 follows from the maximal function estimate below.

Theorem 1.2 Let a > 1. Suppose that γ(x, t, θ) satisfies the conditions (A1)–(A3), consid-

ering the Lp estimate of fractional Schrödinger maximal function
∥∥∥ sup

t∈(0,1),θ∈Θ

|eit(
√
−∆)af(γ(x, t, θ))|

∥∥∥
Lp(B(x0,R))

≤ C‖f‖Hs(R), f ∈ Hs(R), (1.4)

where B(x0, R) ⊂ R. Then

(1) for α ∈
(
0, 1

2a

]
, (1.4) holds if s > s0 = aαβ(Θ)

2 + 1
2 − aα

2 and p = 2;

(2) for α ∈
(

1
2a ,

1
a

)
, (1.4) holds if s > s0 = β(Θ)+1

4 and p = 4aα;

(3) for α ∈
[
1
a
, 1
)
, (1.4) holds if s > s0 = β(Θ)+1

4 and p = 4.

Moreover, the constant C depends only on C1, C2, C3,Θ and B(x0, R), but does not depend

on f .

As a result of Theorem 1.2, we achieve the sharp Lp estimate of fractional Schrödinger

maximal function along a class of tangential curves in R× R. In fact, we take Θ to be the set

only consisting of a single point θ0, which implies β(Θ) = 0. And here we rewrite γ(x, t, θ0)

as γ(x, t). Let γ(x, t) be a map from R × [0, 1] to R, which satisfies the following conditions

(A1)′–(A2)′.

(A1)′ (Bilipschitz condition in x) For fixed t ∈ [0, 1], γ(x, t) has at least C1 regularity in x,

and there exists a constant C1 ≥ 1 such that for each x, x′ ∈ R, t ∈ [0, 1],

C−1
1 |x− x′| ≤ |γ(x, t)− γ(x′, t)| ≤ C1|x− x′|.

(A2)′ (Hölder condition of order α in t) There exists a constant C2 > 0 and α ∈ (0, 1) such

that for each x ∈ R, t, t′ ∈ [0, 1],

|γ(x, t)− γ(x, t′)| ≤ C2|t− t′|α.

Theorem 1.3 Let a > 1. Suppose that γ(x, t) satisfies the conditions (A1)′–(A2)′ for ar-

bitrary x, x′ ∈ B(x0, r) ⊂ R and t, t′ ∈ [0, 1]. Considering the Lp estimate of fractional

Schrödinger maximal function
∥∥∥ sup

t∈(0,1)

|eit(
√
−∆)af(γ(x, t))|

∥∥∥
Lp(B(x0,r))

≤ C‖f‖Hs(R), (1.5)
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we have

(1) for s > 1
2 − aα

2 and α ∈
(
0, 1

2a

]
, (1.5) holds if p ≤ 2;

(2) for s > 1
4 and α ∈

(
1
2a ,

1
a

)
, (1.5) holds if p ≤ 4aα;

(3) for s > 1
4 and α ∈

[
1
a
, 1
)
, (1.5) holds if p ≤ 4.

Moreover, the constant C depends only on C1, C2 and B(x0, r), but does not depend on f .

It is clear that Theorem 1.3 improves the previous results of [26] when α ∈
(

1
2a , 1

)
. Next

we will show that the upper bound for p obtained by Theorem 1.3 cannot be improved when

γ(x, t) are chosen as in Theorem 1.4 below.

Theorem 1.4 Taking γ(x, t) = x−tα and considering the Lp estimate of fractional Schrödinger

maximal function

∥∥∥ sup
t∈(0,1)

|eit(
√
−∆)af(γ(x, t))|

∥∥∥
Lp(B(0,1))

≤ C‖f‖Hs(R), (1.6)

we have

(1) (1.6) holds for s > 1
2 − aα

2 and α ∈
(
0, 1

2a

]
only if p ≤ 2;

(2) (1.6) holds for s > 1
4 and α ∈

(
1
2a ,

1
a

)
only if p ≤ 4aα;

(3) (1.6) holds for s > 1
4 and α ∈

[
1
a
, 1
)
only if p ≤ 4.

Next we study the Boussinesq operator (see [4]) which is defined by

Btf(x) =
1

(2π)n

∫

Rn

ei(x·ξ+t|ξ|
√

1+|ξ|2)f̂(ξ)dξ.

In this paper, we also focus on the relationship between the upper Minkowski dimension of Θ

and the optimal s for which

lim
y∈Γ(x,t)

(y,t)→(x,0)

Btf(y) = f(x), a.e., (1.7)

whenever f ∈ Hs(R). And we have the following convergence result for Boussinesq operator

along a class of tangential curves.

Theorem 1.5 Suppose that γ(x, t, θ) satisfies the conditions (A1)–(A3). The convergence

result (1.7) holds almost everywhere whenever f ∈ Hs(R) if

(1) α ∈
(
0, 14

]
and s > s0 = αβ(Θ) + 1

2 − α;

(2) α ∈
(
1
4 , 1

)
and s > s0 = β(Θ)+1

4 .

By a standard argument, Theorem 1.5 follows from the maximal function estimate below.

Theorem 1.6 Suppose that γ(x, t, θ) satisfies the conditions (A1)–(A3), considering the Lp

estimate of Boussinesq maximal function

∥∥∥ sup
t∈(0,1),θ∈Θ

|Btf(γ(x, t, θ))|
∥∥∥
Lp(B(x0,R))

≤ C‖f‖Hs(R), f ∈ Hs(R), (1.8)

where B(x0, R) ⊂ R. Then

(1) for α ∈
(
0, 14

]
, (1.8) holds if s > s0 = αβ(Θ) + 1

2 − α and p = 2;

(2) for α ∈
(
1
4 ,

1
2

)
, (1.8) holds if s > s0 = β(Θ)+1

4 and p = 8α;

(3) for α ∈
[
1
2 , 1

)
, (1.8) holds if s > s0 = β(Θ)+1

4 and p = 4.
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Moreover, the constant C depends only on C1, C2, C3,Θ and B(x0, R), but does not depend

on f .

As a result of Theorem 1.6, we achieve the sharp Lp estimate of Boussinesq maximal function

along a class of tangential curves in R× R.

Theorem 1.7 Suppose that γ(x, t) satisfies the conditions (A1)
′
, (A2)

′
for arbitrary x, x′ ∈

B(x0, r) ⊂ R and t, t′ ∈ [0, 1]. Considering the Lp estimate of Boussinesq maximal function

∥∥∥ sup
t∈(0,1)

|Btf(γ(x, t))|
∥∥∥
Lp(B(x0,r))

≤ C‖f‖Hs(R), (1.9)

we have

(1) for s > 1
2 − α and α ∈

(
0, 14

]
, (1.9) holds if p ≤ 2;

(2) for s > 1
4 and α ∈

(
1
4 ,

1
2

)
, (1.9) holds if p ≤ 8α;

(3) for s > 1
4 and α ∈

[
1
2 , 1

)
, (1.9) holds if p ≤ 4.

Moreover, the constant C depends only on C1, C2 and B(x0, r), but does not depend on f .

Finally, we will show that the upper bound for p obtained by Theorem 1.7 cannot be

improved when γ(x, t) are chosen as in Theorem 1.8 below.

Theorem 1.8 Taking γ(x, t) = x − tα and considering the Lp estimate of Boussinesq

maximal function

∥∥∥ sup
t∈(0,1)

|Btf(γ(x, t))|
∥∥∥
Lp(B(0,1))

≤ C‖f‖Hs(R), (1.10)

we have

(1) (1.10) holds for s > 1
2 − α and α ∈

(
0, 14

]
only if p ≤ 2;

(2) (1.10) holds for s > 1
4 and α ∈

(
1
4 ,

1
2

)
only if p ≤ 8α;

(3) (1.10) holds for s > 1
4 and α ∈

[
1
2 , 1

)
only if p ≤ 4.

Finally we give the main idea for the proof of Theorem 1.2 and we prove Theorem 1.2 in

Section 2. By Littlewood-Paley decompositon, we study f with suppf̂ ⊂ {ξ ∈ R : |ξ| ∼ λ}, λ≫
1. We decompose Θ into small subsets {Θk} such that Θ = ∪kΘk with bounded overlap, where

each Θk is contained in a closed ball with diameter λ−µ. In order to prove Theorem 1.2, it is

enough to consider

∥∥∥ sup
t∈(0,1),θ∈Θk

|eit(
√
−∆)af(γ(x, t, θ))|

∥∥∥
Lp(B(x0,R))

≤ Cλν‖f‖L2(R), (1.11)

where p is chosen as in Theorem 1.2 and ν = max
{
1
2 − aα

2 ,
1
4

}
. Moreover, the constant C

depends on C1, C2, C3,Θ and B(x0, R), but does not depend on f and k. We use Hardy-

Littlewood-Sobolev’s inequality, Van der Corput’s lemma and Schur’s lemma to prove (1.11).

The main approach for the proof of Theorem 1.4 depends on [8]. Here we choose f̂(ξ) =

χ
B(0,λ

1
2 )
(ξ) and we give the proof of Theorem 1.4 in Section 2.

The proof of Theorem 1.6 is similar to Theorem 1.2 and the proof of Theorem 1.8 is similar

to Theorem 1.4. We give the proofs of Theorems 1.6 and 1.8 in Section 3.

Throughout this paper, we always use C to denote a positive constant, independent of

the main parameters involved, but whose value may change at each occurrence. The positive
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constants with subscripts, such as C1 and C2, do not change in different occurrences. For two

real functions f and g, we always use f . g or g & f to denote that f is smaller than a

positive constant C times g, and we always use f ∼ g as shorthand for f . g . f . We shall

use the notation f ≫ g, which means that there is a sufficiently large constant C, which does

not depend on the relevant parameters arising in the context in which the quantities f and g

appear, such that f ≥ Cg. If the function f has compact support, we use suppf to denote the

support of f .

2 Proofs of Theorems 1.2 and 1.4

In this section, we prove Theorems 1.2 and 1.4. We will use the following key lemma to

prove Theorem 1.2.

Lemma 2.1 Under the assumption of Theorem 1.2, if f is a Schwartz function and suppf̂ ⊂
Aλ = {ξ ∈ R : |ξ| ∼ λ}. Then for each k,

∥∥∥ sup
t∈(0,1),θ∈Θk

|eit(
√
−∆)af(γ(x, t, θ))|

∥∥∥
Lp(B(x0,R))

≤ Cλν‖f‖L2(R),

where p is chosen as in Theorem 1.2 and ν = max
{

1
2 − aα

2 ,
1
4

}
. Moreover, the constant C

depends on C1, C2, C3,Θ and B(x0, R), but does not depend on f and k.

2.1 Proof of Theorem 1.2

Using Littlewood-Paley decomposition, it is enough to demonstrate that for f with supp f̂ ⊂
Aλ = {ξ ∈ R : |ξ| ∼ λ}, λ≫ 1,

∥∥∥ sup
t∈(0,1),θ∈Θ

|eit(
√
−∆)af(γ(x, t, θ))|

∥∥∥
Lp(B(x0,R))

≤ Cλs0+ε‖f‖L2(R), ∀ε > 0, (2.1)

where s0 and p are chosen in Theorem 1.2.

We decompose Θ into small subsets {Θk} such that Θ = ∪kΘk with bounded overlap, where

each Θk is contained in a closed ball with diameter λ−µ, µ = min {1, aα}. By the definition of

β(Θ), we have

1 ≤ k ≤ λµβ(Θ)+ε. (2.2)

By Lemma 2.1, we get

∥∥∥ sup
t∈(0,1),θ∈Θk

|eit(
√
−∆)af(γ(x, t, θ))|

∥∥∥
Lp(B(x0,R))

≤ Cλν‖f‖L2(R),

which implies

sup
k

∥∥∥ sup
t∈(0,1),θ∈Θk

|eit(
√
−∆)af(γ(x, t, θ))|

∥∥∥
Lp(B(x0,R))

≤ Cλν+
(p−1)ε

p ‖f‖L2(R), (2.3)

where ν = max
{
1
2 − aα

2 ,
1
4

}
. We may combine the above inequalities (2.2)–(2.3) to conclude

∥∥∥ sup
t∈(0,1),θ∈Θ

|eit(
√
−∆)af(γ(x, t, θ))|

∥∥∥
Lp(B(x0,R))
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≤
(∑

k

∥∥∥ sup
t∈(0,1),θ∈Θk

|eit(
√
−∆)af(γ(x, t, θ))|

∥∥∥
p

Lp(B(x0,R))

) 1
p

≤ C
(∑

k

λpν+(p−1)ε‖f‖p
L2(R)

) 1
p

≤ Cλ
µβ(Θ)

p
+ν+ε‖f‖L2(R),

which implies (2.1). Theorem 1.2 follows from (2.1). In fact, from the above discussion, we get

µ = min{1, aα}, ν = max
{

1
2 − aα

2 ,
1
4

}
, s0 = µβ(Θ)

p
+ ν.

(1) For α ∈
(
0, 1

2a

]
, then µ = aα, ν = 1

2 − aα
2 . Since p = 2, we get s0 = aαβ(Θ)

2 + 1
2 − aα

2 ;

(2) for α ∈
(

1
2a ,

1
a

)
, then µ = aα, ν = 1

4 . Since p = 4aα, we get s0 = β(Θ)+1
4 ;

(3) for α ∈
[
1
a
, 1
)
, then µ = 1, ν = 1

4 . Since p = 4, we get s0 = β(Θ)+1
4 ,

which implies Theorem 1.2.

2.2 Four lemmas

In order to prove Lemma 2.1, we introduce the following four lemmas first.

Oscillatory integrals have played an important role in harmonic analysis from its outset. We

recall the following well-known variant of Van der Corput’s lemma.

Lemma 2.2 (Van der Corput’s lemma) (see [29]) For a < b, let F ∈ C∞([a, b]) be real

valued and ψ ∈ C∞([a, b]).

(i) If |F ′(x)| ≥ λ > 0, ∀x ∈ [a, b] and F ′(x) is monotonic on [a, b], then

∣∣∣
∫ b

a

eiF (x)ψ(x) dx
∣∣∣ ≤ C

λ

(
|ψ(b)|+

∫ b

a

|ψ′(x)|dx
)
,

where C does not depend on F , ψ or [a, b].

(ii) If |F ′′(x)| ≥ λ > 0, ∀x ∈ [a, b], then

∣∣∣
∫ b

a

eiF (x)ψ(x) dx
∣∣∣ ≤ C

λ
1
2

(
|ψ(b)|+

∫ b

a

|ψ′(x)|dx
)
,

where C does not depend on F , ψ or [a, b].

Lemma 2.3 Suppose that γ(x, t, θ) satisfies the conditions (A1)–(A3). Assume t(x) and

θ(x) are measurable functions defined on B(x0, R), t(x) ∈ (0, 1), θ(x) ∈ Θk. Let a > 1,

ρ ∈ C∞
c (R), λ≫ 1 and

K(x, y) =

∫

Aλ

eiγ(y,t(y),θ(y))·ξ−iγ(x,t(x),θ(x))·ξ+it(y)|ξ|a−it(x)|ξ|aρ
( ξ
λ

)
dξ.

(1) For x, y ∈ B(x0, R), then

|K(x, y)| ≤ Cλ.

(2) For x, y ∈ B(x0, R) and x 6= y, if |t(x) − t(y)| > 5a−1λ1−a(C1R + C2 + C3diam(Θ)),

then

|K(x, y)| ≤ Cλ−N , ∀N > 0.
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(3) For x, y ∈ B(x0, R) and x 6= y, if |t(x)− t(y)| ≤ 5a−1λ1−a(C1R+C2 +C3diam(Θ)) and

|x− y| ≥ 2C1C3diam(Θk), then

|K(x, y)| ≤ Cmax
{ λ

1
2

|x− y| 12
, λ1−

a
2 |x− y|− 1

2α

}
.

Proof of Lemma 2.3 We replace (1)–(3) in Lemma 2.3 by Cases 1–3, respectively. We

note that the constant C in Cases 2–3 depends only on C1, C2, C3, R and Θ.

The change of variables ξ = λη gives

K(x, y) = λ

∫

A1

eiλ[γ(y,t(y),θ(y))·η−γ(x,t(x),θ(x))·η+t(y)λa−1|η|a−t(x)λa−1|η|a]ρ(η)dη.

First, we consider Case 1. We have the following trivial estimate

|K(x, y)| = λ
∣∣∣
∫

A1

eiλ[γ(y,t(y),θ(y))·η−γ(x,t(x),θ(x))·η+t(y)λa−1|η|a−t(x)λa−1|η|a]ρ(η)dη
∣∣∣

≤ λ

∫

A1

|ρ(η)|dη

≤ Cλ.

Next we prove Cases 2–3. Denote

ψ(x, y, η) := γ(y, t(y), θ(y)) · η − γ(x, t(x), θ(x)) · η + λa−1t(y)|η|a − λa−1t(x)|η|a.

Then we get





∂

∂η
ψ(x, y, η) = γ(y, t(y), θ(y))− γ(x, t(x), θ(x)) + aλa−1ηa−1(t(y)− t(x));

∂2

∂η2
ψ(x, y, η) = a(a− 1)λa−1ηa−2(t(y)− t(x)).

Second, we consider Case 2.

(1) On one hand, since |t(x) − t(y)| > 5a−1λ1−a(C1R+ C2 + C3diam(Θ)), we have

|aλa−1ηa−1(t(y)− t(x))| ≥ aλa−15a−1λ1−a(C1R+ C2 + C3diam(Θ))

= 5(C1R+ C2 + C3diam(Θ)). (2.4)

(2) On the other hand, since γ(x, t, θ) satisfies the conditions (A1), (A2) and (A3), we find

|γ(y, t(y), θ(y))− γ(x, t(x), θ(x))|
≤ |γ(y, t(y), θ(y))− γ(x, t(y), θ(y))|+ |γ(x, t(y), θ(y))− γ(x, t(x), θ(y))|
+ |γ(x, t(x), θ(y)) − γ(x, t(x), θ(x))|

≤ C1|x− y|+ C2|t(x) − t(y)|α + C3|θ(x) − θ(y)|
≤ 2C1R+ C2 + C3diam(Θ). (2.5)

(2.4)–(2.5) imply that

∣∣∣ ∂
∂η
ψ(x, y, η)

∣∣∣ = |γ(y, t(y), θ(y))− γ(x, t(x), θ(x)) + aλa−1ηa−1(t(y)− t(x))|
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≥ |aλa−1ηa−1(t(y)− t(x))| − |γ(y, t(y), θ(y))− γ(x, t(x), θ(x))|
≥ 5(C1R+ C2 + C3diam(Θ))− (2C1R+ C2 + C3diam(Θ))

≥ 3(C1R+ C2 + C3diam(Θ)),

which implies that

|K(x, y)| ≤ Cλ−N , ∀N > 0.

Therefore, if |t(x)− t(y)| > 5a−1λ1−a(C1R+C2+C3diam(Θ)), then we obtain Case 2, and the

constant C depends only on C1, C2, C3, R and Θ.

Finally, we prove Case 3. Since γ(x, t, θ) satisfies the conditions (A1)–(A3), we find

|γ(y, t(y), θ(y))− γ(x, t(x), θ(x))|
≥ |γ(y, t(y), θ(y))− γ(x, t(y), θ(y))| − |γ(x, t(y), θ(y))− γ(x, t(y), θ(x))|
− |γ(x, t(y), θ(x)) − γ(x, t(x), θ(x))|

≥ C−1
1 |x− y| − C3|θ(x) − θ(y)| − C2|t(x)− t(y)|α

≥ C−1
1 |x− y| − C3diam(Θk)− C2|t(x)− t(y)|α. (2.6)

We divide Case 3 into three parts.

(1) |x−y| ≥ 2C1C3diam(Θk), |x−y| ≥ 100C1C2|t(x)−t(y)|α and |x−y| ≥ 100C1aλ
a−1|t(x)−

t(y)|.
By (2.6), we have

∣∣∣ ∂
∂η
ψ(x, y, η)

∣∣∣ ≥ |γ(y, t(y), θ(y))− γ(x, t(x), θ(x))| − |aλa−1ηa−1(t(y)− t(x))|

≥ C−1
1 |x− y| − C3diam(Θk)− C2|t(x)− t(y)|α − aλa−1|t(y)− t(x)|

≥ 1

100C1
|x− y|,

which implies

|K(x, y)| ≤ Cλ

[λ(100C1)−1|x− y|]N , ∀N > 0.

(2) |x−y| ≥ 2C1C3diam(Θk), |x−y| ≥ 100C1C2|t(x)−t(y)|α and |x−y| < 100C1aλ
a−1|t(x)−

t(y)|.
We have

∣∣∣ ∂
2

∂η2
ψ(x, y, η)

∣∣∣ = |a(a− 1)λa−1ηa−2(t(y)− t(x))|

≥ a(a− 1)λa−1 1

100C1aλa−1
|x− y|

=
a− 1

100C1
|x− y|.

Using Lemma 2.2, we have

|K(x, y)| ≤ λ
(
λ
a− 1

100C1
|x− y|

)− 1
2

=
(100C1

a− 1

) 1
2 λ

1
2

|x− y| 12
.

(3) |x− y| ≥ 2C1C3diam(Θk), |x− y| < 100C1C2|t(x) − t(y)|α.
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We have

∣∣∣ ∂
2

∂η2
ψ(x, y, η)

∣∣∣ = |a(a− 1)λa−1ηa−2(t(y)− t(x))|

≥ a(a− 1)λa−1
( |x− y|
100C1C2

) 1
α

= a(a− 1)λa−1(100C1C2)
− 1

α |x− y| 1
α .

Using Lemma 2.2, we have

|K(x, y)| ≤ λ(λa(a − 1)λa−1(100C1C2)
− 1

α |x− y| 1
α )−

1
2

= (a(a− 1))−
1
2 (100C1C2)

1
2αλ1−

a
2 |x− y|− 1

2α .

By the estimates of three parts, we get

|K(x, y)| ≤ Cmax
{ λ

1
2

|x− y| 12
, λ1−

a
2 |x− y|− 1

2α

}
.

Therefore, the proof of Lemma 2.3 is completed.

In order to prove Lemma 2.1, we also need the famous Hardy-Littlewood-Sobolev’s inequality

and Schur’s lemma.

Lemma 2.4 (Hardy-Littlewood-Sobolev’s inequality) (see [22]) The Riesz potential is an

operator defined by

Iαf(x) =

∫

Rn

f(y)

|x− y|n−α
dy =

(
f ∗ 1

| · |n−α

)
(x).

Suppose that 0 < α < n, 1 ≤ p < n
α
and 1

q
= 1

p
− α

n
.

(i) If f ∈ Lp(Rn)
(
1 < p < n

α

)
, then

‖Iαf‖Lq(Rn) ≤ C‖f‖Lp(Rn);

(ii) if f ∈ L1(Rn), then for all λ > 0,

|{x ∈ R
n : |Iαf(x)| > λ}| ≤

(C
λ
‖f‖L1(Rn)

) n
n−α

,

where C = C(α, n, p).

Schur’s lemma provides sufficient conditions for linear operators to be bounded on Lp(Rn).

So we describe the details as follows.

Lemma 2.5 (Schur’s lemma) (see [16]) Suppose that K(x, y) is a locally integral function

on a product of two σ-finite measure spaces (X,µ)× (Y, ν), and let T be a linear operator given

by

Tf(x) =

∫

Y

K(x, y)f(y)dν(y),

when f is bounded and compactly supported. Assume

sup
x∈X

∫

Y

|K(x, y)| dν(y) = A <∞,
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sup
y∈Y

∫

X

|K(x, y)| dµ(x) = B <∞.

Then the operator T extends to a bounded operator from Lp(Y ) to Lp(X) with norm A1− 1
pB

1
p

for 1 ≤ p ≤ ∞.

2.3 Proof of Lemma 2.1

By linearizing the maximal operator, we choose t(x), θ(x) be measurable functions defined

on B(x0, R), t(x) ∈ (0, 1), θ(x) ∈ Θk, such that

sup
t∈(0,1),θ∈Θk

|eit(
√
−∆)af(γ(x, t, θ))| ≤ C|eit(

√
−∆)af(γ(x, t(x), θ(x)))|.

Denote

Tf(x) :=

∫

Aλ

eiγ(x,t(x),θ(x))·ξ+it(x)|ξ|af(ξ)dξ.

It is enough to show that

‖Tf‖Lp(B(x0,R)) ≤ Cλν‖f‖L2(Aλ)

holds for all f with supp f ⊂ Aλ, here we use the Plancherel’s theorem to replace f̂ by f . It is

easy to see that the adjoint operator T ∗ of T is given by

T ∗g(ξ) =

∫

B(x0,R)

e−iγ(x,t(x),θ(x))·ξ−it(x)|ξ|ag(x)dx.

By duality, this is equivalent to demonstrating that

‖T ∗g‖L2(Aλ) ≤ Cλν‖g‖Lp′(B(x0,R)),
1

p
+

1

p′
= 1

holds for all g ∈ Lp′

(B(x0, R)).

Taking ρ ∈ C∞
c (R) such that ρ(x) = 1 if |x| ≤ 1, and ρ(x) = 0 if |x| > 2. Then we have

‖T ∗g‖2L2(Aλ)

=

∫

Aλ

ρ
( ξ
λ

)∫

B(x0,R)

e−iγ(x,t(x),θ(x))·ξ−it(x)|ξ|ag(x)dx

∫

B(x0,R)

eiγ(y,t(y),θ(y))·ξ+it(y)|ξ|ag(y)dydξ

=

∫

B(x0,R)

∫

B(x0,R)

g(x)g(y)

∫

Aλ

eiγ(y,t(y),θ(y))·ξ−iγ(x,t(x),θ(x))·ξ+it(y)|ξ|a−it(x)|ξ|aρ
( ξ
λ

)
dξdxdy

=

∫

B(x0,R)

∫

B(x0,R)

g(x)g(y)K(x, y)dxdy,

where

K(x, y) =

∫

Aλ

eiγ(y,t(y),θ(y))·ξ−iγ(x,t(x),θ(x))·ξ+it(y)|ξ|a−it(x)|ξ|aρ
( ξ
λ

)
dξ.

By Lemma 2.3, we have the following three estimates.

Case 1 For x, y ∈ B(x0, R),

|K(x, y)| ≤ Cλ.

Case 2 For x, y ∈ B(x0, R) and x 6= y, if |t(x)− t(y)| > 5a−1λ1−a(C1R+C2+C3diam(Θ)),

then

|K(x, y)| ≤ Cλ−N , ∀N > 0.
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Case 3 For x, y ∈ B(x0, R) and x 6= y, if |t(x)− t(y)| ≤ 5a−1λ1−a(C1R+C2+C3diam(Θ))

and |x− y| ≥ 2C1C3diam(Θk), then

|K(x, y)| ≤ Cmax
{ λ

1
2

|x− y| 12
, λ1−

a
2 |x− y|− 1

2α

}
.

To prove the desired estimates, it suffices to break B(x0, R)×B(x0, R) into Ω1,Ω2, where

{
Ω1 := {(x, y) ∈ B(x0, R)×B(x0, R) : |t(x)− t(y)| > 5a−1λ1−a(C1R+ C2 + C3diam(Θ))};
Ω2 := {(x, y) ∈ B(x0, R)×B(x0, R) : |t(x)− t(y)| ≤ 5a−1λ1−a(C1R+ C2 + C3diam(Θ))}.

By Case 2, we have

∣∣∣
∫ ∫

Ω1

g(x)g(y)K(x, y)dxdy
∣∣∣ ≤ Cλ−N‖g‖2

Lp′(B(x0,R))
, ∀N > 0,

where the constant C depends on C1, C2, C3, B(x0, R) and Θ.

To achieve the estimate on Ω2, we will consider the following three cases α ∈
(
0, 1

2a

]
, α ∈(

1
2a ,

1
a

)
and α ∈

[
1
a
, 1
)
, respectively.

(i) α ∈
(
0, 1

2a

]
.

∣∣∣
∫ ∫

Ω2

g(x)g(y)K(x, y)dxdy
∣∣∣

≤
∫ ∫

{(x,y)∈Ω2:|x−y|<2C1C3λ−aα}
|g(x)g(y)K(x, y)|dxdy

+

∫ ∫

{(x,y)∈Ω2:2C1C3λ−aα≤|x−y|<λ
α(a−1)
α−1 }

|g(x)g(y)K(x, y)|dxdy

+

∫ ∫

{(x,y)∈Ω2:|x−y|≥λ
α(a−1)
α−1 }

|g(x)g(y)K(x, y)|dxdy

= I1 + I2 + I3.

By Case 1, Hölder’s inequality and the L2 boundedness of Hardy-Littlewood maximal operator,

we get

I1 =

∫ ∫

{(x,y)∈Ω2:|x−y|<2C1C3λ−aα}
|g(x)g(y)K(x, y)|dxdy

≤ Cλ

∫ ∫

{(x,y)∈Ω2:|x−y|<2C1C3λ−aα}
|g(x)g(y)|dxdy

≤ Cλ1−aα

∫

R

M(|g|χB(x0,R))(y)|g(y)|χB(x0,R)(y)dy

≤ Cλ1−aα‖M(|g|χB(x0,R))‖L2(R)‖gχB(x0,R)‖L2(R)

≤ Cλ1−aα‖gχB(x0,R)‖2L2(R)

= Cλ1−aα‖g‖2L2(B(x0,R)). (2.7)

By Case 3, Hölder’s inequality and Lemma 2.5, we find

I2 =

∫ ∫

{(x,y)∈Ω2:2C1C3λ−aα≤|x−y|<λ
α(a−1)
α−1 }

|g(x)g(y)K(x, y)|dxdy
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≤ Cλ1−
a
2

∫ ∫

{(x,y)∈Ω2:2C1C3λ−aα≤|x−y|<λ
α(a−1)
α−1 }

|x− y|− 1
2α |g(x)g(y)|dxdy

≤ Cλ1−
a
2

∥∥∥
∫

{x∈R:2C1C3λ−aα≤|x−y|<λ
α(a−1)
α−1 }

|x− y|− 1
2αχB(x0,R)(x)|g(x)|dx

∥∥∥
L2(B(x0,R))

· ‖g‖L2(B(x0,R))

≤ Cλ1−
a
2 λ−aα(1− 1

2α )‖g‖2L2(B(x0,R))

= Cλ1−aα‖g‖2L2(B(x0,R)). (2.8)

By Hölder’s inequality and Lemma 2.4, we obtain

I3 =

∫ ∫

{(x,y)∈Ω2:|x−y|≥λ
α(a−1)
α−1 }

|g(x)g(y)K(x, y)|dxdy

≤ Cλ
1
2

∫

R

∫

R

|g(x)|χB(x0,R)(x)|g(y)|χB(x0,R)(y)
1

|x− y| 12
dxdy

≤ Cλ
1
2 ‖g‖

L
4
3 (B(x0,R))

∥∥∥|g|χB(x0,R) ∗
1

| · | 12

∥∥∥
L4(R)

≤ Cλ
1
2 ‖g‖2

L
4
3 (B(x0,R))

≤ Cλ
1
2 ‖g‖2L2(B(x0,R))

≤ Cλ1−aα‖g‖2L2(B(x0,R)), (2.9)

where we used α ∈
(
0, 1

2a

]
in the last inequality.

Therefore, we get µ = aα.

From the estimates of I1–I3, we obtain

‖T ∗g‖2L2(Aλ)
≤ Cλ1−aα‖g‖2L2(B(x0,R)).

Hence we get ν = 1
2 − aα

2 and p′ = 2, which implies p = 2.

(ii) α ∈
(

1
2a ,

1
a

)
.

|K(x, y)| ≤ Cmax
{ λ

1
2

|x− y| 12
, λ1−

a
2 |x− y|− 1

2α

}
≤ Cmax

{ λ
1
2

|x− y| 1
2aα

, λ1−
a
2 |x− y|− 1

2α

}
.

By Case 1 and Hölder’s inequality, we find

∣∣∣
∫ ∫

Ω2

g(x)g(y)K(x, y)dxdy
∣∣∣

≤
∫ ∫

{(x,y)∈Ω2:|x−y|<λ−aα}
|g(x)g(y)K(x, y)|dxdy

+

∫ ∫

{(x,y)∈Ω2:|x−y|≥λ−aα}
|g(x)g(y)K(x, y)|dxdy

≤ Cλ

∫ ∫

{(x,y)∈Ω2:|x−y|<λ−aα}
|g(x)g(y)|dxdy

+ Cλ
1
2

∫ ∫

{(x,y)∈Ω2:|x−y|≥λ−aα}
|g(x)g(y)| 1

|x− y| 1
2aα

dxdy

≤ Cλ
1
2

∫

R

∫

R

χB(x0,R)(x) |g(x)|χB(x0,R)(y)|g(y)|
1

|x− y| 1
2aα

dxdy
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≤ Cλ
1
2 ‖gχB(x0,R)‖Lp1(R)

∥∥∥|g|χB(x0,R) ∗
1

| · | 1
2aα

∥∥∥
Lp′1(R)

. (2.10)

Therefore, we obtain µ = aα. By Lemma 2.4, we have
∣∣∣
∫ ∫

Ω2

g(x)g(y)K(x, y)dxdy
∣∣∣ ≤ Cλ

1
2 ‖gχB(x0,R)‖Lp1(R)

∥∥∥|g|χB(x0,R) ∗
1

| · | 1
2aα

∥∥∥
L

p′1(R)

≤ Cλ
1
2 ‖g‖2

L
4aα

4aα−1 (B(x0,R))
. (2.11)

In fact, when we use Hardy-Littlewood-Sobolev’s inequality, it needs the condition

1

p′1
=

1

p1
−
(
1− 1

2aα

)
,

which implies

p1 =
4aα

4aα− 1
.

From (2.11), we obtain

‖T ∗g‖2L2(Aλ)
≤ Cλ

1
2 ‖g‖2

L
4aα

4aα−1 (B(x0,R))
.

Hence we get ν = 1
4 and p′ = 4aα

4aα−1 , which implies p = 4aα.

(iii) α ∈
[
1
a
, 1
)
.

|K(x, y)| ≤ Cmax
{ λ

1
2

|x− y| 12
, λ1−

a
2 |x− y|− 1

2α

}
.

By Hölder’s inequality and Lemma 2.4, we obtain
∣∣∣
∫ ∫

Ω2

g(x)g(y)K(x, y)dxdy
∣∣∣

≤
∫ ∫

{(x,y)∈Ω2:|x−y|<λ−1}
|g(x)g(y)K(x, y)|dxdy

+

∫ ∫

{(x,y)∈Ω2:|x−y|≥λ−1}
|g(x)g(y)K(x, y)|dxdy

≤ Cλ

∫ ∫

{(x,y)∈Ω2:|x−y|<λ−1}
|g(x)g(y)|dxdy

+ Cλ
1
2

∫ ∫

{(x,y)∈Ω2:|x−y|≥λ−1}
|g(x)g(y)| 1

|x− y| 12
dxdy

≤ Cλ
1
2

∫

R

∫

R

χB(x0,R)(x)|g(x)|χB(x0,R)(y)|g(y)|
1

|x− y| 12
dxdy

≤ Cλ
1
2 ‖g‖

L
4
3 (B(x0,R))

∥∥∥|g|χB(x0,R) ∗
1

| · | 12

∥∥∥
L4(R)

≤ Cλ
1
2 ‖g‖2

L
4
3 (B(x0,R))

, (2.12)

which implies µ = 1. From (2.12), we obtain

‖T ∗g‖2L2(Aλ)
≤ Cλ

1
2 ‖g‖2

L
4
3 (B(x0,R))

.

Hence we get ν = 1
4 and p′ = 4

3 , which implies p = 4.

From the discussions of (i)–(iii), we have µ = min{1, aα} and ν = max
{
1
2 − aα

2 ,
1
4

}
. Thus

we have shown the cases of (i)–(iii), and the proof is completed.
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2.4 Proof of Theorem 1.4

Adopting the arguments in [8], we choose

f̂(ξ) = χ
B(0,λ

1
2 )
(ξ).

As a consequence, we have

‖f‖Hs(R) ≤ Cλ
1
4+

s
2 . (2.13)

The change of variables ξ = λ
1
2 η gives

|eit(
√
−∆)af(γ(x, t))| =

∣∣∣ 1
2π

∫

R

ei(x−tα)·ξ+it|ξ|aχ
B(0,λ

1
2 )
(ξ)dξ

∣∣∣

=
λ

1
2

2π

∣∣∣
∫

B(0,1)

eiλ
1
2 (x−tα)·η+itλ

a
2 |η|adη

∣∣∣.

If t ∈
(
0, 1

200λ
− a

2

)
and x ∈ S =

⋃

t∈(0, 1
200λ

−
a
2 )

{
y : |y − tα| ≤ 1

200λ
− 1

2

}
, then

|λ 1
2 (x− tα) · η + tλ

a
2 |η|a| ≤ 1

100

and

|eit(
√
−∆)af(γ(x, t))| ≥ Cλ

1
2 . (2.14)

(1) When α ∈
(
0, 1

2a

]
, we get |S| ∼ λ−

aα
2 and it follows from (1.6) and (2.13)–(2.14) that

λ
1
2
− aα

2p . λ
1
4+

s
2 .

We obtain that p cannot be larger than 2 when s is sufficiently close to 1
2 − aα

2 , since λ can be

sufficiently large.

(2) When α ∈
(

1
2a ,

1
a

)
, we get |S| ∼ λ−

aα
2 and it follows from (1.6) and (2.13)–(2.14) that

λ
1
2− aα

2p . λ
1
4+

s
2 .

We obtain that p cannot be larger than 4aα when s is sufficiently close to 1
4 , since λ can be

sufficiently large.

(3) When α ∈
[
1
a
, 1
)
, we get |S| ∼ λ−

1
2 and it follows from (1.6) and (2.13)–(2.14) that

λ
1
2− 1

2p . λ
1
4+

s
2 .

Apparently, p cannot be larger than 4 when s is sufficiently close to 1
4 , since λ can be sufficiently

large.

3 Proofs of Theorems 1.6 and 1.8

In this section, we prove Theorems 1.6 and 1.8. Next we use the following lemma to prove

Theorem 1.6.
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Lemma 3.1 Under the assumption of Theorems 1.6, if f is a Schwartz function and

supp f̂ ⊂ Aλ = {ξ ∈ R : |ξ| ∼ λ}. Then for each k,

∥∥∥ sup
t∈(0,1),θ∈Θk

|Btf(γ(x, t, θ))|
∥∥∥
Lp(B(x0,R))

≤ Cλν‖f‖L2(R),

where p is chosen as in Theorem 1.6 and ν = max
{
1
2−α, 14

}
. Moreover, the constant C depends

on C1, C2, C3,Θ and B(x0, R), but does not depend on f and k.

3.1 Proof of Theorem 1.6

The proof of Theorem 1.6 is similar to Theorem 1.2. Here we give a simple proof. Using

Littlewood-Paley decomposition, we only need to show that for f with supp f̂ ⊂ Aλ = {ξ ∈ R :

|ξ| ∼ λ}, λ≫ 1,

∥∥∥ sup
t∈(0,1),θ∈Θ

|Btf(γ(x, t, θ))|
∥∥∥
Lp(B(x0,R))

≤ Cλs0+ε‖f‖L2(R), ∀ε > 0, (3.1)

where s0 and p are chosen in Theorem 1.6.

We also decompose Θ into small subsets {Θk} such that Θ = ∪kΘk with bounded overlap,

where each Θk is contained in a closed ball with diameter λ−µ, µ = min {1, 2α}. Using the

definition of β(Θ), we have

1 ≤ k ≤ λµβ(Θ)+ε. (3.2)

By Lemma 3.1, we get

sup
k

∥∥∥ sup
t∈(0,1),θ∈Θk

|Btf(γ(x, t, θ))|
∥∥∥
Lp(B(x0,R))

≤ Cλν+
(p−1)ε

p ‖f‖L2(R), (3.3)

where ν = max
{
1
2 − α, 14

}
. By (3.2)–(3.3), we obtain

∥∥∥ sup
t∈(0,1),θ∈Θ

|Btf(γ(x, t, θ))|
∥∥∥
Lp(B(x0,R))

≤ Cλ
µβ(Θ)

p
+ν+ε‖f‖L2(R),

which implies (3.1). Therefore, the proof of Theorem 1.6 is completed.

3.2 Proof of Lemma 3.1

The proof of Lemma 3.1 is similar to Lemma 2.1. By linearizing the maximal operator, we

choose t(x), θ(x) be measurable functions defined on B(x0, R), t(x) ∈ (0, 1), θ(x) ∈ Θk, such

that

sup
t∈(0,1),θ∈Θk

|Btf(γ(x, t, θ))| ≤ C|Bt(x)f(γ(x, t(x), θ(x)))|.

Set

Tf(x) :=

∫

Aλ

eiγ(x,t(x),θ(x))·ξ+it(x)|ξ|
√

1+ξ2f(ξ)dξ.

It is sufficient to demonstrate that

‖Tf‖Lp(B(x0,R)) ≤ Cλν‖f‖L2(Aλ)
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holds for all f with supp f ⊂ Aλ, here we use the Plancherel’s theorem to replace f̂ by f . It is

easy to see that the adjoint operator T ∗ of T is given by

T ∗g(ξ) =

∫

B(x0,R)

e−iγ(x,t(x),θ(x))·ξ−it(x)|ξ|
√

1+ξ2g(x)dx.

By duality, this is equivalent to showing that

‖T ∗g‖L2(Aλ) ≤ Cλν‖g‖Lp′(B(x0,R)),
1

p
+

1

p′
= 1

holds for all g ∈ Lp′

(B(x0, R)).

Taking ρ ∈ C∞
c (R) such that ρ(x) = 1 if |x| ≤ 1, and ρ(x) = 0 if |x| > 2. Then we have

‖T ∗g‖2L2(Aλ)
=

∫

B(x0,R)

∫

B(x0,R)

g(x)g(y)K(x, y)dxdy,

where

K(x, y) =

∫

Aλ

eiγ(y,t(y),θ(y))·ξ−iγ(x,t(x),θ(x))·ξ+it(y)|ξ|
√

1+ξ2−it(x)|ξ|
√

1+ξ2ρ
( ξ
λ

)
dξ.

We have the following kernel estimate.

Case 1 For x, y ∈ B(x0, R),

|K(x, y)| ≤ Cλ.

Case 2 For x, y ∈ B(x0, R) and x 6= y, if |t(x) − t(y)| > 5(C1R + C2 + C3diam(Θ))λ−1,

then

|K(x, y)| ≤ Cλ−N , ∀N > 0.

Case 3 For x, y ∈ B(x0, R) and x 6= y, if |t(x)− t(y)| ≤ 5(C1R+C2 +C3diam(Θ))λ−1 and

|x− y| ≥ 2C1C3diam(Θk), then

|K(x, y)| ≤ Cmax
{ λ

1
2

|x− y| 12
, |x− y|− 1

2α

}
.

We also note that the constant C in Cases 2–3 depends only on C1, C2, C3, R and Θ. By

rescaling, we find

K(x, y) = λ

∫

A1

eiλ[γ(y,t(y),θ(y))·η−γ(x,t(x),θ(x))·η+t(y)|η|
√

1+λ2η2−t(x)|η|
√

1+λ2η2]ρ(η)dη.

By the proof of Lemma 2.3, we can prove Cases 1–3 here.

To prove the desired estimates, it suffices to break B(x0, R)×B(x0, R) into Ω1,Ω2, where

{
Ω1 := {(x, y) ∈ B(x0, R)×B(x0, R) : |t(x) − t(y)| > 5(C1R+ C2 + C3diam(Θ))λ−1};
Ω2 := {(x, y) ∈ B(x0, R)×B(x0, R) : |t(x) − t(y)| ≤ 5(C1R+ C2 + C3diam(Θ))λ−1}.

By Case 2, we have

∣∣∣
∫ ∫

Ω1

g(x)g(y)K(x, y)dxdy
∣∣∣ ≤ Cλ−N‖g‖2

Lp′(B(x0,R))
, ∀N > 0,

where the constant C depends on C1, C2, C3, B(x0, R) and Θ.
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To achieve the estimate on Ω2, we will consider the following three cases α ∈
(
0, 14

]
, α ∈(

1
4 ,

1
2

)
and α ∈

[
1
2 , 1

)
, respectively.

(i) α ∈
(
0, 14

]
.

∣∣∣
∫ ∫

Ω2

g(x)g(y)K(x, y)dxdy
∣∣∣

≤
∫ ∫

{(x,y)∈Ω2:|x−y|<2C1C3λ−2α}
|g(x)g(y)K(x, y)|dxdy

+

∫ ∫

{(x,y)∈Ω2:2C1C3λ−2α≤|x−y|<λ
α

α−1 }
|g(x)g(y)K(x, y)|dxdy

+

∫ ∫

{(x,y)∈Ω2:|x−y|≥λ
α

α−1 }
|g(x)g(y)K(x, y)|dxdy

= I1 + I2 + I3.

By Case 1, Hölder’s inequality and the L2 boundedness of Hardy-Littlewood maximal operator,

we get

I1 ≤ Cλ

∫ ∫

{(x,y)∈Ω2:|x−y|<2C1C3λ−2α}
|g(x)g(y)|dxdy

≤ Cλ1−2α

∫

R

M(|g|χB(x0,R))(y)|g(y)|χB(x0,R)(y)dy

≤ Cλ1−2α‖g‖2L2(B(x0,R)). (3.4)

By Case 3, Hölder’s inequality and Lemma 2.5, we find

I2 ≤ C

∫ ∫

{(x,y)∈Ω2:2C1C3λ−2α≤|x−y|<λ
α

α−1 }
|x− y|− 1

2α |g(x)g(y)|dxdy

≤ Cλ−2α(1− 1
2α )‖g‖2L2(B(x0,R))

= Cλ1−2α‖g‖2L2(B(x0,R)). (3.5)

By Hölder’s inequality and Lemma 2.4, we obtain

I3 ≤ Cλ
1
2

∫

R

∫

R

|g(x)|χB(x0,R)(x)|g(y)|χB(x0,R)(y)
1

|x− y| 12
dxdy

≤ Cλ
1
2 ‖g‖

L
4
3 (B(x0,R))

∥∥∥|g|χB(x0,R) ∗
1

| · | 12

∥∥∥
L4(R)

≤ Cλ
1
2 ‖g‖2

L
4
3 (B(x0,R))

≤ Cλ1−2α‖g‖2L2(B(x0,R)), (3.6)

where we used α ∈ (0, 14 ] in the last inequality. Therefore, we get µ = 2α.

From the estimates of I1–I3, we obtain

‖T ∗g‖2L2(Aλ)
≤ Cλ1−2α‖g‖2L2(B(x0,R)).

Hence we get ν = 1
2 − α and p′ = 2, which implies p = 2.

(ii) α ∈
(
1
4 ,

1
2

)
.

|K(x, y)| ≤ Cmax
{ λ

1
2

|x− y| 12
, |x− y|− 1

2α

}
≤ Cmax

{ λ
1
2

|x− y| 1
4α

, |x− y|− 1
2α

}
.
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By Hölder’s inequality, we have
∣∣∣
∫ ∫

Ω2

g(x)g(y)K(x, y)dxdy
∣∣∣

≤ Cλ

∫ ∫

{(x,y)∈Ω2:|x−y|<λ−2α}
|g(x)g(y)|dxdy

+ Cλ
1
2

∫ ∫

{(x,y)∈Ω2:|x−y|≥λ−2α}
|g(x)g(y)| 1

|x− y| 1
4α

dxdy

≤ Cλ
1
2

∫

R

∫

R

χB(x0,R)(x)|g(x)|χB(x0,R)(y)|g(y)|
1

|x− y| 1
4α

dxdy

≤ Cλ
1
2 ‖gχB(x0,R)‖Lp1(R)

∥∥∥|g|χB(x0,R) ∗
1

| · | 1
4α

∥∥∥
L

p′1(R)
. (3.7)

Therefore, we obtain µ = 2α. By Lemma 2.4, we have
∣∣∣
∫ ∫

Ω2

g(x)g(y)K(x, y)dxdy
∣∣∣ ≤ Cλ

1
2 ‖gχB(x0,R)‖Lp1(R)

∥∥∥|g|χB(x0,R) ∗
1

| · | 1
4α

∥∥∥
L

p′1(R)

≤ Cλ
1
2 ‖g‖2

L
8α

8α−1 (B(x0,R))
. (3.8)

In fact, when we use Hardy-Littlewood-Sobolev’s inequality, it needs the condition 1
p′

1
= 1

p1
−(

1− 1
4α

)
, which implies p1 = 8α

8α−1 . From (3.8), we obtain

‖T ∗g‖2L2(Aλ)
≤ Cλ

1
2 ‖g‖2

L
8α

8α−1 (B(x0,R))
.

Hence we get ν = 1
4 and p′ = 8α

8α−1 , which implies p = 8α.

(iii) α ∈
[
1
2 , 1

)
.

|K(x, y)| ≤ Cmax
{ λ

1
2

|x− y| 12
, |x− y|− 1

2α

}
.

By Hölder’s inequality and Lemma 2.4, we obtain
∣∣∣
∫ ∫

Ω2

g(x)g(y)K(x, y)dxdy
∣∣∣

≤ Cλ

∫ ∫

{(x,y)∈Ω2:|x−y|<λ−1}
|g(x)g(y)|dxdy

+ Cλ
1
2

∫ ∫

{(x,y)∈Ω2:|x−y|≥λ−1}
|g(x)g(y)| 1

|x− y| 12
dxdy

≤ Cλ
1
2

∫

R

∫

R

χB(x0,R)(x)|g(x)|χB(x0,R)(y)|g(y)|
1

|x− y| 12
dxdy

≤ Cλ
1
2 ‖g‖

L
4
3 (B(x0,R))

∥∥∥|g|χB(x0,R) ∗
1

| · | 12
∥∥∥
L4(R)

≤ Cλ
1
2 ‖g‖2

L
4
3 (B(x0,R))

, (3.9)

which implies µ = 1. From (3.9), we find

‖T ∗g‖2L2(Aλ)
≤ Cλ

1
2 ‖g‖2

L
4
3 (B(x0,R))

.

Hence we get ν = 1
4 and p′ = 4

3 , which implies p = 4.

From the discussions of (i)–(iii), we have µ = min{1, 2α} and ν = max
{
1
2 − α, 14

}
.
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3.3 Proof of Theorem 1.8

By the proof of Theorem 1.4, we also take f̂(ξ) = χ
B(0,λ

1
2 )
(ξ). Then ‖f‖Hs(R) ≤ Cλ

1
4+

s
2 .

By rescaling, we find

|Btf(γ(x, t))| =
λ

1
2

2π

∣∣∣
∫

B(0,1)

eiλ
1
2 (x−tα)·η+itλ

1
2 |η|

√
1+λη2

dη
∣∣∣.

If t ∈
(
0, 1

200λ
−1

)
and x ∈ S =

⋃
t∈(0, 1

200λ
−1)

{
y : |y − tα| ≤ 1

200λ
− 1

2

}
, then

∣∣λ 1
2 (x − tα) · η +

tλ
1
2 |η|

√
1 + λη2

∣∣ ≤ 1
100 and

∣∣Btf(γ(x, t))
∣∣ ≥ Cλ

1
2 .

(1) When α ∈
(
0, 14

]
, we get |S| ∼ λ−α.

(2) When α ∈
(
1
4 ,

1
2

)
, we get |S| ∼ λ−α.

(3) When α ∈
[
1
2 , 1

)
, we get |S| ∼ λ−

1
2 .

Combining the proof of Theorem 1.4 with the estimates of |S|, we can prove Theorem 1.8.
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