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1 Introduction

Let H(D) denote the class of all holomorphic functions on the complex unit disk D, and

S(D) denote the collection of all the holomorphic self mappings of D. For 0 < p, q < ∞ and

−1 < γ < ∞, recall that the mixed-norm space Hp,q,γ = Hp,q,γ(D) consists of all f ∈ H(D)

such that

‖f‖Hp,q,γ
=

(

∫ 1

0

Mp
q (f, r)(1 − r)γrdr

)
1

p

< ∞,

where

Mq(f, r) =
( 1

2π

∫ 2π

0

|f(reiθ)|qdθ
)

1

q

.

For 0 < α < ∞, we denote by Zα the Zygmund type space of those functions f ∈ H(D)

satisfying

sup
z∈D

(1− |z|2)α|f ′′(z)| < ∞.

Zygmund type space is a Banach space with the norm defined as follows:

‖f‖Zα := |f(0)|+ |f ′(0)|+ sup
z∈D

(1− |z|2)α|f ′′(z)|.
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The little Zygmund type space, denoted by Zα
0 , is the closed subspace of Zα consisting of those

functions f ∈ Zα with

lim
|z|→1

(1− |z|2)α|f ′′(z)| = 0.

When α = 1, we get the classical Zygmund spaces Z and Z0. It is known that

|f ′(z)− f ′(0)| ≤ C‖f‖Z log
1

1− |z|2
. (1.1)

For 0 < β < ∞, the weighted Bloch space Bβ is the space of all f ∈ H(D) such that

‖f‖Bβ := sup
z∈D

(1− |z|2)β |f ′(z)| < ∞,

then ‖ · ‖Bβ is a complete semi-norm on Bβ, which is Möbius invariant. The weighted Bloch

space is a Banach space under the norm

‖f‖ := |f(0)|+ ‖f‖Bβ .

Let Bβ
0 denote the subspace of Bβ consisting of those f ∈ Bβ for which

lim
|z|→1

(1− |z|2)β |f ′(z)| = 0.

For δ ≥ 0, recall the space of weighted bounded analytic functions on D is

H∞,δ =
{

f ∈ H(D) : ‖f‖∞ = sup
z∈D

(1− |z|2)δ|f(z)| < ∞
}

.

We write non-weighted bounded analytic functions space H∞,0 as H∞. And let H∞,δ
0 be the

subspace of H∞,δ consisting of f ∈ H∞,δ with

lim
|z|→1

(1− |z|2)δ|f(z)| = 0.

It is well-known that, for δ > 0, H∞,δ = B1+δ and H∞,δ
0 = B1+δ

0 (see [12, Proposition 7]).

For f ∈ H(D), every ϕ ∈ S(D) induces a composition operator Cϕ by

Cϕf = f ◦ ϕ.

The boundedness and compactness of composition operators on various holomorphic functions

spaces have been studied intensively in the past few decades. Interested readers may refer to

books [1, 7]. If g ∈ H(D), the Volterra operator Jg is defined by

Jgf(z) =

∫ z

0

f(ζ)g′(ζ)dζ

and another integral operator Ig is defined by

Igf(z) =

∫ z

0

f ′(ζ)g(ζ)dζ,

where z ∈ D and f ∈ H(D). The operators Jg and Ig are close companions because of their

relations to the multiplication operator Mgf(z) = g(z)f(z). To see this, integration by parts

gives

Mgf = f(0)g(0) + Jgf + Igf.



Compact Intertwining Relation 635

The discussion of Volterra type operators Jg and Ig first arose in connection with semigroup of

composition operators, and readers can refer to [8] for the background.

If X and Y are two Banach spaces, the symbol B(X,Y ) denotes the collection of all bounded

linear operators fromX to Y . Let K(X,Y ) be the collection of all compact elements of B(X,Y ),

and Q(X,Y ) be the quotient set B(X,Y )/K(X,Y ).

For A ∈ B(X,X), B ∈ B(Y, Y ) and T ∈ B(X,Y ), the phrase “T intertwines A and B in

Q(X,Y )” (or “T intertwines A and B compactly”) means that

TA = BT mod K(X,Y ) with T 6= 0. (1.2)

To be more intuitive, the compact intertwining relation means the following commutative dia-

gram,

X
A

−−−−→ X




y
T





y
T

Y
B

−−−−→ Y

mod K(X,Y ).

We use notation A ∝K B (T ) to represent (1.2). In the series papers [9–11], Yuan, Zhou and

the second author firstly investigate the intertwining relations Cϕ ∝K Cϕ (Vg) on the Bergman

spaces, bounded analytic function spaces and Bloch spaces in the unit disk. The motivation

of this paper is to continue this topic and solve the “compact intertwining problem” (CIP for

short) for composition operators and Volterra type operators between the mixed norm spaces

and Zygmund spaces. Our aim in this paper is to answer the following question:

CIP What properties should g ∈ H(D) have, if

Cϕ|Hp,q,γ
∝K Cϕ|Zα (Vg : Hp,q,γ → Zα)

holds for every bounded Cϕ?

To state our results compactly and clearly, we use the symbol Ωco(V ) to represent the class

of g in CIP. The lower symbol “co” stands for “composition operator”, and “V ” in the bracket

for Volterra operators. Our main result reads as follows.

Theorem 1.1 To answer CIP for Volterra operators Jg and Ig, we have

(i) Ωco(Jg) = Bα−s−1
0 ∩ Zα−s

0 , and

(ii) Ωco(Ig) = Bα−s−1
0 ∩H∞,α−s−2

0 ,

where s = 1
p
+ γ+1

q
.

In the following discussion, we write A . B if there exists an absolute constant C > 0 such

that A ≤ C · B, and A ≈ B represents A . B and B . A.

2 Preliminaries

Before the discussion of our main results, we state a couple of lemmas which will be used

in the proofs of the main results. The following result is well known.

Lemma 2.1 (see [5, Lemma 1]) Assume that 0 < p, q < ∞, −1 < γ < ∞ and f ∈ Hp,q,γ .

Then for every nonnegative integer n, there exists a positive constant C, independent of f , such

that

|f (n)(z)| ≤ C
‖f‖Hp,q,γ

(1− |z|2)s+n
,
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where s = 1
p
+ γ+1

q
and does not change in the sequel unless specifically stated.

Boundedness of Jg and Ig are characterized respectively in [4] and [6], and we summarize

them as the following lemma.

Lemma 2.2 Assume that 0 < p, q < ∞, α > 0, −1 < γ < ∞ and g ∈ H(D). Then the

operator Jg : Hp,q,γ → Zα is bounded if and only if

sup
z∈D

(1− |z|2)α−s−1|g′(z)| < ∞

and

sup
z∈D

(1 − |z|2)α−s|g′′(z)| < ∞. (2.1)

The operator Ig : H(p, q, γ) → Zα is bounded if and only if

sup
z∈D

(1− |z|2)α−s−2|g(z)| < ∞

and

sup
z∈D

(1− |z|2)α−s−1|g′(z)| < ∞.

Next lemma is the main result of [3].

Lemma 2.3 Assume that ϕ ∈ S(D), then

(1) for 0 < α < 1, Cϕ is bounded on Zα if and only if

sup
z∈D

(1− |z|2)α

(1− |ϕ(z)|2)α
|ϕ′(z)|2 < ∞

and

sup
z∈D

(1− |z|2)α|ϕ′′(z)| < ∞.

(2) For α = 1, Cϕ is bounded on Zα if and only if

sup
z∈D

(1 − |z|2)

(1− |ϕ(z)|2)
|ϕ′(z)|2 < ∞

and

sup
z∈D

(1− |z|2)|ϕ′′(z)| log
1

1− |ϕ(z)|2
< ∞. (2.2)

(3) For α > 1, Cϕ is bounded on Zα if and only if

sup
z∈D

(1− |z|2)α

(1− |ϕ(z)|2)α
|ϕ′(z)|2 < ∞

and

sup
z∈D

(1− |z|2)α

(1− |ϕ(z)|2)α−1
|ϕ′′(z)| < ∞. (2.3)
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The following inequality is also well known (see [2, Theorem 1.1]).

Lemma 2.4 Let ϕ be an analytic function in D and |ϕ(z)| < 1 for each z ∈ D. Then

|ϕ(n)(z)| ≤
n!(1− |ϕ(z)|2)

(1− |z|2)n
(1 + |z|)n−1.

Let Tϕ,g = CϕJg − JgCϕ and Sϕ,g = CϕIg − IgCϕ, both of which are from Hp,q,γ to Zα.

The following lemma is a classic criterion for compactness, whose proof is an easy modification

of [1, Proposition 3.11].

Lemma 2.5 Suppose that 0 < p, q < ∞, α > 0 and −1 < γ < ∞. Suppose further that

ϕ ∈ S(D) and g ∈ H(D). Then Tϕ,g (resp. Sϕ,g) is a compact operator from Hp,q,γ to Zα if

and only if Tϕ,g (resp. Sϕ,g) is bounded, and for any bounded sequence {fk}k∈N in Hp,q,γ which

converges to zero uniformly on compact subsets of D as k → ∞, we have ‖Tϕ,gfk‖Zα → 0 (resp.

‖Sϕ,gfk‖Zα → 0) as k → ∞.

3 Proof of Theorem 1.1(i)

First we consider the compactness of Tϕ,g = CϕJg − JgCϕ from Hp,q,γ to Zα.

Theorem 3.1 Let 0 < p, q < ∞, α > 0 and −1 < γ < ∞. Assume that ϕ ∈ S(D) and

g ∈ H(D). Then Tϕ,g = CϕJg − JgCϕ is a bounded operator from Hp,q,γ to Zα if and only if

sup
z∈D

(1− |z|2)α

(1− |ϕ(z)|2)s+1
|ϕ′(z)||(g ◦ ϕ)′(z)− g′(z)| < ∞ (3.1)

and

sup
z∈D

(1− |z|2)α

(1− |ϕ(z)|2)s
|(g ◦ ϕ)′′(z)− g′′(z)| < ∞. (3.2)

Proof Suppose that (3.1)–(3.2) hold. For any f ∈ Hp,q,γ , we have

Tϕ,gf(z) = Cϕ

(

∫ z

0

f(ζ)g′(ζ)dζ
)

− Jg(f ◦ ϕ)(z)

=

∫ ϕ(z)

0

f(ζ)g′(ζ)dζ −

∫ z

0

f(ϕ(ζ))g′(ζ)dζ.

It follows from Lemma 2.1 that

‖Tϕ,gf‖Zα ≈ sup
z∈D

(1− |z|2)α|(Tϕ,gf)
′′(z)|

≤ sup
z∈D

(1− |z|2)α|ϕ′(z)||f ′(ϕ(z))||(g ◦ ϕ)′(z)− g′(z)|

+ sup
z∈D

(1− |z|2)α|f(ϕ(z))||(g ◦ ϕ)′′(z)− g′′(z)|

. sup
z∈D

(1− |z|2)α

(1− |ϕ(z)|2)s+1
|ϕ′(z)||(g ◦ ϕ)′(z)− g′(z)|‖f‖Hp,q,γ

+ sup
z∈D

(1− |z|2)α

(1 − |ϕ(z)|2)s
|(g ◦ ϕ)′′(z)− g′′(z)|‖f‖Hp,q,γ

.‖f‖Hp,q,γ
,
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where the last inequality follows from (3.1)–(3.2). Hence Tϕ,g is bounded from Hp,q,γ to Zα.

Conversely, suppose Tϕ,g is bounded. There exists a constant C > 0 such that ‖Tϕ,gf‖Zα ≤

C‖f‖Hp,q,γ
for any f ∈ Hp,q,γ .

Taking f(z) ≡ 1, we deduce that

sup
z∈D

(1− |z|2)α|(g ◦ ϕ)′′(z)− g′′(z)| < ∞. (3.3)

Taking f(z) = z, we get

(1 − |z|2)α|ϕ′(z)||(g ◦ ϕ)′(z)− g′(z)|

≤(1 − |z|2)α|(Tϕ,gf)
′′(z)|+ (1 − |z|2)α|ϕ(z)||(g ◦ ϕ)′′(z)− g′′(z)|

≤(1 − |z|2)α|(Tϕ,gf)
′′(z)|+ (1 − |z|2)α|(g ◦ ϕ)′′(z)− g′′(z)|. (3.4)

Combining (3.3) and (3.4), we obtain

sup
z∈D

(1− |z|2)α|ϕ′(z)||(g ◦ ϕ)′(z)− g′(z)| < ∞. (3.5)

Now, for any fixed w ∈ D, we use the test function

fw(z) =
( 1− |w|2

(1− w̄z)2

)s

, ∀z ∈ D. (3.6)

It is from straightforward computations that fw ∈ Hp,q,γ with sup
w∈D

‖fw‖Hp,q,γ
< C, and

|f ′
ϕ(λ)(ϕ(λ))| = 2

(1

p
+

γ + 1

q

) |ϕ(λ)|

(1− |ϕ(λ)|2)s+1
.

Therefore,

‖Tϕ,g‖Hp,q,γ→Zα &‖Tϕ,gfϕ(λ)‖Zα

≥(1− |λ|2)α|fϕ(λ)(ϕ(λ))||(g ◦ ϕ)′′(λ) − g′′(λ)|

− (1− |λ|2)α|f ′
ϕ(λ)(ϕ(λ))||ϕ

′(λ)||(g ◦ ϕ)′(λ) − g′(λ)|

≈
(1− |λ|2)α

(1− |ϕ(λ)|2)s
|(g ◦ ϕ)′′(λ)− g′′(λ)|

−
(1− |λ|2)α

(1− |ϕ(λ)|2)s+1
|ϕ(λ)||ϕ′(λ)||(g ◦ ϕ)′(λ) − g′(λ)|.

Rearranging the inequality above, we have

(1 − |λ|2)α

(1− |ϕ(λ)|2)s
|(g ◦ ϕ)′′(λ)− g′′(λ)|

.
(1 − |λ|2)α

(1− |ϕ(λ)|2)s+1
|ϕ(λ)||ϕ′(λ)||(g ◦ ϕ)′(λ)− g′(λ)| + ‖Tϕ,g‖Hp,q,γ→Zα . (3.7)

For any fixed λ ∈ D we set

hλ(z) :=
( 1− |ϕ(λ)|2

(1 − ϕ(λ)z)2

)s

−
1

(1− |ϕ(λ)|2)s
, ∀z ∈ D.
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Then hλ(z) ∈ Hp,q,γ with sup
λ∈D

‖hλ(z)‖Hp,q,γ
< C and hλ(ϕ(λ)) = 0, |h′

λ(ϕ(λ))| = |f ′
ϕ(λ)(ϕ(λ))|.

Hence

‖Tϕ,g‖Hp,q,γ→Zα & ‖Tϕ,ghλ‖Zα

&
(1− |λ|2)α

(1− |ϕ(λ)|2)s+1
|ϕ(λ)||ϕ′(λ)||(g ◦ ϕ)′(λ) − g′(λ)|. (3.8)

It follows from (3.5) and (3.8) that

sup
|ϕ(λ)|≤ 1

2

(1− |λ|2)α|ϕ′(λ)|

(1 − |ϕ(λ)|2)s+1
|(g ◦ ϕ)′(λ) − g′(λ)|

≤ sup
|ϕ(λ)|≤ 1

2

(4

3

)s+1

(1− |λ|2)α|ϕ′(λ)||(g ◦ ϕ)′(λ)− g′(λ)| < ∞ (3.9)

and

sup
|ϕ(λ)|> 1

2

(1− |λ|2)α|ϕ′(λ)|

(1 − |ϕ(λ)|2)s+1
|(g ◦ ϕ)′(λ) − g′(λ)|

≤ sup
|ϕ(λ)|> 1

2

2
(1− |λ|2)α|ϕ(λ)||ϕ′(λ)|

(1− |ϕ(λ)|2)s+1
|(g ◦ ϕ)′(λ) − g′(λ)| < ∞. (3.10)

The desired inequality (3.1) can be deduced from (3.9)–(3.10). Similarly (3.2) can be deduced

from (3.3) and (3.7).

Theorem 3.2 Let 0 < p, q < ∞, α > 0 and −1 < γ < ∞. Assume that ϕ ∈ S(D) and

g ∈ H(D). Then Tϕ,g is compact from Hp,q,γ to Zα if and only if Tϕ,g is bounded and the

following two conditions are satisfied

lim
|ϕ(z)|→1

(1− |z|2)α

(1− |ϕ(z)|2)s+1
|ϕ′(z)||(g ◦ ϕ)′(z)− g′(z)| = 0 (3.11)

and

lim
|ϕ(z)|→1

(1− |z|2)α

(1− |ϕ(z)|2)s
|(g ◦ ϕ)′′(z)− g′′(z)| = 0. (3.12)

Proof We first suppose that Tϕ,g : Hp,q,γ → Zα is bounded and (3.11)–(3.12) hold. Let

{fk} be an arbitrary bounded sequence with ‖fk‖Hp,q,γ
≤ M , and which converges to zero

uniformly on compact subsets of D. From (3.11)–(3.12), for any small ε > 0, there is a δ > 0

such that
(1 − |z|2)α

(1− |ϕ(z)|2)s+1
|ϕ′(z)||(g ◦ ϕ)′(z)− g′(z)| <

ε

M

and
(1− |z|2)α

(1 − |ϕ(z)|2)s
|(g ◦ ϕ)′′(z)− g′′(z)| <

ε

M
,

whenever ϕ(z) ∈ D\(1− δ)D. Hence we have

‖Tϕ,gfk‖Zα ≈ sup
z∈D

(1 − |z|2)α|(Tϕ,gfk)
′′(z)|
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≤ sup
z∈D

(1− |z|2)α

(1− |ϕ(z)|2)s+1
|ϕ′(z)||(g ◦ ϕ)′(z)− g′(z)|(1− |ϕ(z)|2)s+1|f ′

k(ϕ(z))|

+ sup
z∈D

(1 − |z|2)α

(1− |ϕ(z)|2)s
|(g ◦ ϕ)′′(z)− g′′(z)|(1− |ϕ(z)|2)s|fk(ϕ(z))|

= max
{

sup
ϕ(z)∈(1−δ)D

Q1, sup
ϕ(z)∈D\(1−δ)D

Q1

}

+max
{

sup
ϕ(z)∈(1−δ)D

Q2, sup
ϕ(z)∈D\(1−δ)D

Q2

}

,

where

Q1 =
(1− |z|2)α

(1 − |ϕ(z)|2)s+1
|ϕ′(z)||(g ◦ ϕ)′(z)− g′(z)|(1− |ϕ(z)|2)s+1|f ′

k(ϕ(z))|

and

Q2 =
(1 − |z|2)α

(1− |ϕ(z)|2)s
|(g ◦ ϕ)′′(z)− g′′(z)|(1− |ϕ(z)|2)s|fk(ϕ(z))|.

According to Cauchy’s estimate, the first supremum of Q1 will be smaller than ε for sufficient

large k since fk converges to zero on compact subsets of D. Note that

sup
ϕ(z)∈D\(1−δ)D

Q1 <
ε

M
· sup
z∈D

(1− |ϕ(z)|2)s+1|f ′
k(ϕ(z))| =

ε

M
C‖fk‖Hp,q,γ

< εC.

It is clear that we can also do the same estimates of the supremums of Q2.

Conversely, suppose Tϕ,g is compact, hence bounded. Let {zk} be a sequence in D such that

|ϕ(zk)| → 1 as k → ∞. We consider the test functions defined by

fk(z) :=
( 1− |ϕ(zk)|

2

(1 − ϕ(zk)z)2

)s

.

A direct computation shows that fk ∈ Hp,q,γ with supk ‖fk‖Hp,q,γ
< C and {fk} converges to

0 uniformly on compact subsets of D as k → ∞. And one can show that

|f ′
ϕ(zk)

(ϕ(zk))| = 2
(1

p
+

γ + 1

q

) |ϕ(zk)|

(1 − |ϕ(zk)|2)s+1
. (3.13)

It follows from Lemma 2.5 that

lim
k→∞

‖Tϕ,gfk‖Zα = 0.

Therefore,

‖Tϕ,gfk‖Zα ≥
(1− |zk|

2)α

(1− |ϕ(zk)|2)s
|(g ◦ ϕ)′′(zk)− g′′(zk)|

−
2s(1− |zk|

2)α

(1− |ϕ(zk)|2)s+1
|ϕ(zk)||ϕ

′(zk)||(g ◦ ϕ)
′(zk)− g′(zk)|.

Consequently,

lim
|ϕ(zk)|→1

(1− |zk|
2)α

(1− |ϕ(zk)|2)s
|(g ◦ ϕ)′′(zk)− g′′(zk)|

= lim
|ϕ(zk)|→1

(1 − |zk|
2)α

(1− |ϕ(zk)|2)s+1
|ϕ(zk)||ϕ

′(zk)||(g ◦ ϕ)
′(zk)− g′(zk)| (3.14)
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as long as one of these two limits exists.

Next, we set

pk(z) :=
( 1− |ϕ(zk)|

2

(1− ϕ(zk)z)2

)s

−
1

(1− |ϕ(zk)|2)s
.

Then {pk} ⊂ Hp,q,γ with supk ‖pk‖Hp,q,γ
< C and converges to 0 uniformly on compact subsets

of D as k → ∞. Since Tϕ,g is compact, we have ‖Tϕ,gpk‖Zα → 0. Note that pk(ϕ(zk)) = 0 and

p′k(ϕ(zk)) = f ′
k(ϕ(zk)). We have

‖Tϕ,gpk‖Zα &
(1− |zk|

2)α

(1− |ϕ(zk)|2)s+1
|ϕ(zk)||ϕ

′(zk)||(g ◦ ϕ)
′(zk)− g′(zk)|.

Therefore,

0 = lim
k→∞

(1 − |zk|
2)α

(1− |ϕ(zk)|2)s+1
|ϕ(zk)||ϕ

′(zk)||(g ◦ ϕ)
′(zk)− g′(zk)|

= lim
|ϕ(zk)|→1

(1− |zk|
2)α

(1− |ϕ(zk)|2)s+1
|ϕ′(zk)||(g ◦ ϕ)

′(zk)− g′(zk)|.

This together with (3.14) implies

lim
|ϕ(zk)|→1

(1 − |zk|
2)α

(1− |ϕ(zk)|2)s
|(g ◦ ϕ)′′(zk)− g′′(zk)| = 0.

Now we are ready to prove the first assertion of Theorem 1.1.

Proof of Theorem 1.1(i) First, we prove Bα−s−1
0 ∩ Zα−s

0 ⊂ Ωco(Jg). For every g ∈

Bα−s−1
0 ∩ Zα−s

0 , we have

lim
|z|→1

(1− |z|2)α−s−1|g′(z)| = 0

and

lim
|z|→1

(1− |z|2)α−s|g′′(z)| = 0.

By [1, Corollary 2.40], we can see that 1−|z|
1−|ϕ(z)| ≤ 1+|z||ϕ(0)|

1−|ϕ(0)| for every ϕ ∈ S(D) and z ∈ D.

Together with Lemma 2.4, we have

(1− |z|2)α

(1 − |ϕ(z)|2)1+s
|ϕ′(z)||(g ◦ ϕ)′(z)− g′(z)|

≤
(1− |z|2)α

(1 − |ϕ(z)|2)1+s
|ϕ′(z)|(|g′(ϕ(z))||ϕ′(z)|+ |g′(z)|)

≤
(1− |z|2)α

(1 − |ϕ(z)|2)α
|ϕ′(z)|2(1 − |ϕ(z)|2)α−s−1|g′(ϕ(z))|

+ 2s
(1 + |z||ϕ(0)|

1− |ϕ(0)|

)s

(1− |z|2)α−s−1|g′(z)|,

which converges to 0 as |ϕ(z)| → 1 by the boundedness of Cϕ on Zα. Therefore we obtain

(3.11). Next we see that

(1− |z|2)α

(1 − |ϕ(z)|2)s
|(g ◦ ϕ)′′(z)− g′′(z)|
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≤
(1− |z|2)α

(1− |ϕ(z)|2)s
(|g′′(ϕ(z))||ϕ′(z)|2 + |g′(ϕ(z))||ϕ′′(z)|+ |g′′(z)|)

≤
(1 − |z|2)α

(1− |ϕ(z)|2)α
|ϕ′(z)|2(1− |ϕ(z)|2)α−s|g′′(ϕ(z))|

+
(1− |z|2)α

(1− |ϕ(z)|2)α−1
|ϕ′′(z)|(1− |ϕ(z)|2)α−s−1|g′(ϕ(z))|

+
(1− |z|2)s

(1− |ϕ(z)|2)s
(1 − |z|2)α−s|g′′(z)| := I1 + I2 + I3.

It is obvious that both I1 and I3 converge to 0 as |ϕ(z)| → 1. When α > 1, we can see I2
converges to 0 as |ϕ(z)| → 1 by (2.3). When α = 1, by (2.2), (1.1) and g ∈ Z1, we obtain

I2 = (1− |z|2)|ϕ′′(z)|(1− |ϕ(z)|2)−s|g′(ϕ(z))|

= (1− |z|2)|ϕ′′(z)| log
1

1− |ϕ(z)|2
1

log 1
1−|ϕ(z)|2

|g′(ϕ(z))|

(1− |ϕ(z)|2)s

≤ C
1

log 1
1−|ϕ(z)|2

|g′(ϕ(z))|

(1− |ϕ(z)|2)s

.
‖g‖Z

|g′(ϕ(z))|

|g′(ϕ(z))|

(1− |ϕ(z)|2)s

=
(1− |z|2)s

(1− |ϕ(z)|2)s
(1− |z|2)1−s|g′′(z)|.

Therefore I2 converges to 0. And hence (3.12) holds true for every ϕ ∈ S(D). That is g ∈

Ωco(Jg).

To prove Ωco(Jg) ⊂ Bα−s−1
0 ∩Zα−s

0 , suppose g ∈ Ωco(Jg), then Lemmas 2.2–2.3 and Theorem

3.2 hold for every ϕ ∈ S(D). Putting ϕ(z) = eiθz in (3.11)–(3.12) where θ ranges over [0, 2π],

we have

lim
|z|→1

(1− |z|2)α−s|ei2θg′′(eiθz)− g′′(z)| = 0 (3.15)

and

lim
|z|→1

(1− |z|2)α−s−1|eiθg′(eiθz)− g′(z)| = 0. (3.16)

It is necessary to estimate the upper bound of the left hand side in (3.15),

(1− |z|2)α−s|ei2θg′′(eiθz)− g′′(z)|

≤ (1 − |z|2)α−s|ei2θg′′(eiθz)|+ (1 − |z|2)α−s|g′′(z)|

= (1 − |eiθz|2)α−s|g′′(eiθz)|+ (1− |z|2)α−s|g′′(z)| := I4 + I5.

(2.1) implies I4 and I5 are finite, thus the left-hand-side in (3.15) is bounded independent of θ.

Similarly, the left-hand-side in (3.16) is also bounded independent of θ.

We write g(z) =
∞
∑

n=0
anz

n, and integrate the left-hand-side of (3.15) with respect to θ from

0 to 2π,

0 =

∫ 2π

0

lim
|z|→1

(1 − |z|2)α−s|ei2θg′(eiθz)− g′(z)|dθ
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= lim
|z|→1

∫ 2π

0

(1 − |z|2)α−s|ei2θg′(eiθz)− g′(z)|dθ

= lim
|z|→1

∫ 2π

0

(1 − |z|2)α−s
∣

∣

∣

∞
∑

n=1

n(n− 1)anz
n−2(einθ − 1)

∣

∣

∣
dθ

≥ lim
|z|→1

(1 − |z|2)α−s
∣

∣

∣

∞
∑

n=1

n(n− 1)anz
n−2

∫ 2π

0

(einθ − 1)dθ
∣

∣

∣

= 2π lim
|z|→1

(1− |z|2)α−s|g′′(z)|,

where dominant convergent theorem is applied in second line. Thus g ∈ Zα−s
0 . Similarly,

integrate the left-hand-side of (3.16) with respect to θ from 0 to 2π, we can get g ∈ Bα−s−1
0 ,

hence g ∈ Bα−s−1
0 ∩ Zα−s

0 .

4 Proof of Theorem 1.1(ii)

We consider compact intertwining relations Cϕ ∝K Cϕ (Ig : Hp,q,γ → Zα) in this section.

The first step is to investigate Sϕ,g : Hp,q,γ → Zα.

Theorem 4.1 Let 0 < p, q < ∞, α > 0 and −1 < γ < ∞. Assume that ϕ ∈ S(D) and

g ∈ H(D). Then Sϕ,g : Hp,q,γ → Zα is bounded if and only if the following two supremums

sup
z∈D

(1− |z|2)α

(1− |ϕ(z)|2)s+1
|ϕ′′(z)[g(ϕ(z))− g(z)] + ϕ′(z)[(g ◦ ϕ)′(z)− g′(z)]| (4.1)

and

sup
z∈D

(1− |z|2)α

(1 − |ϕ(z)|2)s+2
|ϕ′(z)|2|g(ϕ(z))− g(z)| (4.2)

are finite.

Proof Suppose Sϕ,g is bounded from Hp,q,γ to Zα. Note that

Sϕ,gf(z) =

∫ ϕ(z)

0

f ′(ζ)g(ζ)dζ −

∫ z

0

(f ◦ ϕ)′(ζ)g(ζ)dζ

and

(Sϕ,gf)
′′(z) =ϕ′′(z)f ′(ϕ(z))[g(ϕ(z)) − g(z)] + ϕ′(z)f ′(ϕ(z))[(g ◦ ϕ)′(z)− g′(z)]

+ f ′′(ϕ(z))(ϕ′(z))2[g(ϕ(z))− g(z)].

Taking f(z) = z, we deduce that

sup
z∈D

(1 − |z|2)α|ϕ′′(z)[g(ϕ(z))− g(z)] + ϕ′(z)[(g ◦ ϕ)′(z)− g′(z)]| < ∞. (4.3)

Taking f(z) = z2, note that |ϕ(z)| ≤ 1, and we get

2(1− |z|2)α|ϕ′(z)|2|g(ϕ(z))− g(z)|

≤ (1 − |z|2)α|(Sϕ,gf)
′′(z)|

+ 2(1− |z|2)α|ϕ(z)||ϕ′′(z)[g(ϕ(z))− g(z)] + ϕ′(z)[(g ◦ ϕ)′(z)− g′(z)]|
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≤ (1 − |z|2)α|(Sϕ,gf)
′′(z)|+ 2(1− |z|2)α|ϕ′′(z)[g(ϕ(z))− g(z)]

+ ϕ′(z)[(g ◦ ϕ)′(z)− g′(z)]|. (4.4)

Combining (4.3) and (4.4), we obtain

sup
z∈D

(1− |z|2)α|ϕ′(z)|2|g(ϕ(z))− g(z)| < ∞. (4.5)

Now choosing the test function (3.6) for λ ∈ D, one can see that

|f ′′
ϕ(λ)(ϕ(λ))| ≈

|ϕ(λ)|2

(1− |ϕ(λ)|2)s+2
.

Therefore,

‖Sϕ,g‖Hp,q,γ→Zα & ‖Sϕ,gfϕ(λ)‖Zα

≥(1 − |λ|2)α|ϕ′′(λ)f ′
ϕ(λ)(ϕ(λ))[g(ϕ(λ)) − g(λ)] + ϕ′(λ)f ′

ϕ(λ)(ϕ(λ))[(g ◦ ϕ)′(λ)− g′(λ)]|

− (1− |λ|2)α|f ′′
ϕ(λ)(ϕ(λ))||ϕ

′(λ)|2|g(ϕ(λ)) − g(λ)|

≈
(1− |λ|2)α

(1 − |ϕ(λ)|2)s+1
|ϕ(λ)||ϕ′′(λ)[g(ϕ(λ)) − g(λ)] + ϕ′(λ)[(g ◦ ϕ)′(λ) − g′(λ)]|

−
(1 − |λ|2)α

(1− |ϕ(λ)|2)s+2
|ϕ(λ)|2|ϕ′(λ)|2|g(ϕ(λ)) − g(λ)|.

Hence, we get

(1 − |λ|2)α

(1− |ϕ(λ)|2)s+1
|ϕ(λ)||ϕ′′(λ)[g(ϕ(λ)) − g(λ)] + ϕ′(λ)[(g ◦ ϕ)′(λ)− g′(λ)]|

.
(1 − |λ|2)α

(1− |ϕ(λ)|2)s+2
|ϕ(λ)|2|ϕ′(λ)|2|g(ϕ(λ)) − g(λ)|+ ‖Sϕ,g‖Hp,q,γ→Zα . (4.6)

Then we set

qλ(z) =
2s(1− |ϕ(λ)|2)s+1

(1 − ϕ(λ)z)2s+1
−

(2s+ 1)(1− |ϕ(λ)|2)s

(1− ϕ(λ)z)2s
.

A direct computation shows that qλ(z) ∈ Hp,q,γ with sup
k

‖qλ(z)‖Hp,q,γ
< C and q′λ(ϕ(λ)) = 0,

|q′′λ(ϕ(λ))| ≈ |f ′′
ϕ(λ)(ϕ(λ))|. Hence

‖Sϕ,g‖Hp,q,γ→Zα & ‖Sϕ,gqλ‖Zα

&
(1− |λ|2)α

(1 − |ϕ(λ)|2)s+2
|ϕ(λ)|2|ϕ′(λ)|2|g(ϕ(λ)) − g(λ)|. (4.7)

It follows from (4.5) and (4.7) that

sup
|ϕ(λ)|≤ 1

2

(1 − |λ|2)α|ϕ′(λ)|2

(1− |ϕ(λ)|2)s+2
|g(ϕ(λ)) − g(λ)|

≤ sup
|ϕ(λ)|≤ 1

2

(4

3

)s+2

(1− |λ|2)α|ϕ′(λ)|2|g(ϕ(λ)) − g(λ)| < ∞ (4.8)

and

sup
|ϕ(λ)|> 1

2

(1− |λ|2)α|ϕ′(λ)|2

(1 − |ϕ(λ)|2)s+2
|g(ϕ(λ)) − g(λ)|
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≤ sup
|ϕ(λ)|> 1

2

4
(1− |λ|2)α|ϕ(λ)|2|ϕ′(λ)|2

(1 − |ϕ(λ)|2)s+2
|g(ϕ(λ)) − g(λ)| < ∞. (4.9)

(4.8)–(4.9) give the desired result (4.2). Similarly, (4.3) and (4.6) give (4.1).

And by Lemma 2.1, we can get sufficient part. The proof is paralleled to those of Theorem

3.1 and hence omitted.

Theorem 4.2 Let 0 < p, q < ∞, α > 0 and −1 < γ < ∞. Assume that ϕ ∈ S(D) and

g ∈ H(D). Then Sϕ,g : Hp,q,γ → Zα is compact if and only if Sϕ,g is bounded and the following

conditions are satisfied :

lim
|ϕ(z)|→1

(1− |z|2)α

(1 − |ϕ(z)|2)s+1
|ϕ′′(z)[g(ϕ(z))− g(z)]

+ ϕ′(z)[(g ◦ ϕ)′(z)− g′(z)]| = 0 (4.10)

and

lim
|ϕ(z)|→1

(1− |z|2)α

(1 − |ϕ(z)|2)s+2
|ϕ′(z)|2|g(ϕ(z))− g(z)| = 0. (4.11)

Proof Suppose Sϕ,g is compact, hence bounded. Let {zk}k∈N be a sequence in D such

that |ϕ(zk)| → 1 as k → ∞. We choose the test function (3.6). And one can show that

|f ′′
ϕ(zk)

(ϕ(zk))| ≈
|ϕ(zk)|

2

(1 − |ϕ(zk)|2)s+2
. (4.12)

Since Sϕ,g = CϕJg − JgCϕ is compact, it follows from Lemma 2.5 that

lim
k→∞

‖Sϕ,gfk‖Zα = 0.

Therefore by (3.13) and (4.12), we get

‖Sϕ,gfk‖Zα &
(1− |zk|

2)α

(1− |ϕ(zk)|2)s+1
|ϕ(zk)||ϕ

′′(zk)[g(ϕ(zk))− g(zk)]

+ ϕ′(zk)[(g ◦ ϕ)
′(zk)− g′(zk)]|

−
(1− |zk|

2)α

(1− |ϕ(zk)|2)s+2
|ϕ(zk)|

2|ϕ′(zk)|
2|g(ϕ(zk))− g(zk)|.

Consequently,

lim
|ϕ(zk)|→1

(1− |zk|
2)α

(1− |ϕ(zk)|2)s+1
|ϕ(zk)||ϕ

′′(zk)[(g ◦ ϕ)(zk)− g(zk)]

+ ϕ′(zk)[(g ◦ ϕ)
′(zk)− g′(zk)]|

= lim
|ϕ(zk)|→1

(1− |zk|
2)α

(1− |ϕ(zk)|2)s+2
|ϕ(zk)|

2|ϕ′(zk)|
2|(g ◦ ϕ)(zk)− g(zk)|

if one of these limits exists. The rest of proof is similar as Theorem 3.2.

For the sufficient part of the theorem, suppose that (4.10)–(4.11) holds. For any bounded

sequence {fk} in Hp,q,γ which converges to zero uniformly on compact subsets of D, and by

Cauchy’s estimate, f ′
k and f ′′

k also converge to zero on compact subsets of D. Then we can

prove the sufficiency by the same arguments as the proof of Theorem 3.2.
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According to the compactness of Sϕ,g : Hp,q,γ → Zα in the above theorem, we can use the

same arguments as the proof of Theorem 1.1 (i) to obtain

Ωco(Ig) = Bα−s−1
0 ∩H∞,α−s−2

0 .
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