The Parabolic Quaternionic Monge-Ampère Type Equation on HyperKähler Manifolds*

Jixiang FU¹ Xin XU² Dekai ZHANG³

Abstract This paper proves the long-time existence and uniqueness of solutions to a parabolic quaternionic Monge-Ampère type equation on compact hyperKähler manifolds. Moreover, it is shown that after normalization, the solution converges smoothly to the unique solution of the Monge-Ampère equation for (n-1)-quaternionic psh functions.

 Keywords Quaternionic Monge-Ampère type equation, Parabolic equation, HyperKähler manifold
 2020 MR Subject Classification 53C26, 58J35, 32W20

1 Introduction

A hypercomplex manifold is a smooth manifold M together with a triple (I, J, K) of complex structures satisfying the quaternionic relation IJ = -JI = K. A hyperhermitian metric on a hypercomplex manifold (M, I, J, K) is a Riemannian metric g which is hermitian with respect to I, J and K.

On a hyperhermitian manifold (M, I, J, K, g), let $\Omega = \omega_J - \mathrm{i}\omega_K$ where ω_J and ω_K are the fundamental forms corresponding to J and K, respectively. Then g is called hyperKähler (HK for short) if $\mathrm{d}\Omega = 0$, and called hyperKähler with torsion (HKT for short) if $\partial\Omega = 0$. Throughout this paper we use ∂ and $\overline{\partial}$ to denote the complex partial differential operator with respect to the complex structure I.

Analogous to the complex Calabi-Yau equation on Kähler manifolds which was solved by Yau [26], Alesker and Verbitsky introduced a quaternionic Calabi-Yau equation on hyperhermitian manifolds in [4],

$$(\Omega + \partial \partial_J u)^n = e^f \Omega^n,$$

$$\Omega + \partial \partial_J u > 0,$$
(1.1)

where f is a given smooth function on M and $\partial_J := J^{-1} \circ \overline{\partial} \circ J$. They conjectured that the equation is solvable on HKT manifolds with holomorphically trivial canonical bundle with

Manuscript received October 28, 2023. Revised March 15, 2024.

¹Shanghai Center for Mathematical Sciences, Fudan University, Shanghai 200438, China.

E-mail: majxfu@fudan.edu.cn

²School of Mathematical Sciences, Fudan University, Shanghai 200433, China.

E-mail: 20110180015@fudan.edu.cn

³Corresponding author. School of Mathematical Sciences, Key Laboratory of Mathematics and Engineering Applications (Ministry of Education), Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai 200241, China. E-mail: dkzhang@math.ecnu.edu.cn

^{*}This work was supported by the National Natural Science Foundation of China (Nos. 12141104, 11901102).

respect to I and further obtained the C^0 estimate in this setting (cf. [4]). Alesker [1] solved the equation on a flat hyperKähler manifold and the parabolic case was solved by Bedulli-Gentili-Vezzoni [5] and Zhang [27]. In [2], Alesker and Shelukhin proved the C^0 estimate without any extra assumptions and the proof was later simplified by Sroka [22]. Recently Dinew and Sroka [11] solved the equation on a compact HK manifold. Bedulli, Gentili and Vezzoni [6] considered the parabolic method. More partial results can be found in [3–5, 16–17, 23, 27] and the conjecture remains open.

By adopting the techniques of Dinew and Sroka [11], we solved the quaternionic form-type Calabi-Yau equation in [15] on compact HK manifolds, which is parallel to the complex case where the form-type Calabi-Yau equation was proposed by Fu, Wang and Wu [13–14] and solved by Tosatti and Weinkove [25] on Kähler manifolds.

Specifically, let (M, I, J, K, g, Ω) be a hyperhermitian manifold of quaternionic dimension n, and g_0 be another hyperhermitian metric on M with induced (2,0)-form Ω_0 . Given a smooth function f on M, the quaternionic form-type Calabi-Yau equation is

$$\Omega_u^n = e^{f+b} \Omega^n \tag{1.2}$$

in which b is a uniquely determined constant, and Ω_u is determined by

$$\Omega_u^{n-1} = \Omega_0^{n-1} + \partial \partial_J (u \Omega^{n-2}), \tag{1.3}$$

where $\Omega_0^{n-1} + \partial \partial_J(u\Omega^{n-2})$ is strictly positive. When Ω is HKT, i.e., $\partial \Omega = 0$, (1.2) is equivalent to the following Monge-Ampère equation for (n-1)-quaternionic psh functions

$$\left(\Omega_h + \frac{1}{n-1} \left(\left(\frac{1}{2} \Delta_{I,g} u \right) \Omega - \partial \partial_J u \right) \right)^n = e^{f+b} \Omega^n,
\Omega_h + \frac{1}{n-1} \left(\left(\frac{1}{2} \Delta_{I,g} u \right) \Omega - \partial \partial_J u \right) > 0,$$
(1.4)

where Ω_h is related to Ω_0 by $(n-1)! * \Omega_h = \Omega_0^{n-1}$ with * being a Hodge star-type operator. This is explained in [15, Section 2].

On locally flat compact HK manifolds which admits quaternionic coordinates, Gentili and Zhang solved a class of fully non-linear elliptic equations including (1.4) in [19] and the parabolic case in [18]. In [15], using the approach by Dinew and Sroka [11], we solved (1.4) on compact HK manifolds without the flatness assumption in [19].

In this article, we consider the parabolic version of (1.4) on a compact hyperKähler manifold

$$\frac{\partial}{\partial t}u = \log \frac{\left(\Omega_h + \frac{1}{n-1} \left(\left(\frac{1}{2}\Delta_{I,g}u\right)\Omega - \partial\partial_J u \right) \right)^n}{\Omega^n} - f \tag{1.5}$$

with $u(\cdot,0) = u_0 \in C^{\infty}(M,\mathbb{R})$ satisfying

$$\Omega_h + \frac{1}{n-1} \left(\left(\frac{1}{2} \Delta_{I,g} u_0 \right) \Omega - \partial \partial_J u_0 \right) > 0.$$
 (1.6)

Our main result is as follows.

Theorem 1.1 Let (M, I, J, K, g, Ω) be a compact hyperKähler manifold of quaternionic dimension n, and Ω_h be a strictly positive (2,0)-form with respect to I. Let f be a smooth function on M. Then there exists a unique solution u to (1.5) on $M \times [0, \infty)$ with $u(\cdot, 0) = u_0$ satisfying (1.6). And if we normalize u by

$$\widetilde{u} := u - \frac{\int_{M} u \,\Omega^{n} \wedge \overline{\Omega}^{n}}{\int_{M} \Omega^{n} \wedge \overline{\Omega}^{n}}, \tag{1.7}$$

then \widetilde{u} converges smoothly to a function \widetilde{u}_{∞} as $t \to \infty$, and \widetilde{u}_{∞} is the unique solution to (1.4) up to a constant $\widetilde{b} \in \mathbb{R}$.

This gives a parabolic solution to the original equation (1.4). There are plenty of results on parabolic flows on compact complex manifolds, for example, [8, 10, 12, 20–21, 28].

The article is organized as follows. In Section 2, we introduce some basic notations and useful lemmas. In Section 3, we prove the u_t and the C^0 estimate. We derive the C^1 estimate in Section 4 and the complex Hessian estimate in Section 5. The Theorem 1.1 is proved in Section 6.

2 Preliminaries

On a hyperhermitian manifold (M,I,J,K,g) of quaternionic dimension n, we denote the (p,q)-forms with respect to I by $\Lambda_I^{p,q}(M)$. A form $\alpha \in \Lambda_I^{2k,0}(M)$ is called J-real if $J\alpha = \overline{\alpha}$, and denoted by $\alpha \in \Lambda_{I,\mathbb{R}}^{2k,0}(M)$. In particular, we have $\Omega = \omega_J - \mathrm{i}\omega_K$ is a J-real (2,0)-form.

Definition 2.1 (cf. [15, Definition 2.2]) A J-real (2,0)-form α is said to be positive (resp. strictly positive) if $\alpha(X, \overline{X}J) \geq 0$ (resp. $\alpha(X, \overline{X}J) > 0$) for any non-zero (1,0)-vector X. We denote all strictly positive J-real (2,0)-forms by $\Lambda_{I,\mathbb{R}}^{2,0}(M)_{>0}$.

Note that Ω is determined by g and is strictly positive. Conversely any $\Omega \in \Lambda_{I,\mathbb{R}}^{2k,0}(M)_{>0}$ induces a hyperhermitian metric by $g = \text{Re}(\Omega(\cdot, \cdot J))$. Thus there is a bijection between strictly positive J-real (2,0)-forms and hyperhermitian metrics.

Definition 2.2 For $\chi \in \Lambda_{I,\mathbb{R}}^{2,0}(M)$, define

$$S_m(\chi) = \frac{C_n^m \chi^m \wedge \Omega^{n-m}}{\Omega^n} \quad \text{for } 0 \le m \le n.$$
 (2.1)

In particular for $u \in C^{\infty}(M, \mathbb{R})$ we have

$$S_1(\partial \partial_J u) = \frac{1}{2} \Delta_{I,g} u. \tag{2.2}$$

For convenience we denote

$$\widetilde{\Omega} = \Omega_h + \frac{1}{n-1} (S_1(\partial \partial_J u) \Omega - \partial \partial_J u). \tag{2.3}$$

It is easily checked that $\widetilde{\Omega}$ is a *J*-real (2,0)-form, thus one can define the corresponding hyperhermitian metric and the induced fundamental form by

$$g_u = \operatorname{Re}(\widetilde{\Omega}(\cdot, \cdot J)), \quad \omega_u = g_u(\cdot I, \cdot).$$
 (2.4)

Lemma 2.1

$$\omega_u = \omega_h + \frac{1}{n-1} \Big(S_1(\partial \partial_J u) \omega - \frac{1}{2} (i \partial \overline{\partial} u - i J \partial \overline{\partial} u) \Big). \tag{2.5}$$

Proof It is shown in [23, Proposition 3.2] that

$$\operatorname{Re}(\partial \partial_J u(\cdot I, \cdot J)) = \frac{1}{2} (\mathrm{i} \partial \overline{\partial} u - \mathrm{i} J \partial \overline{\partial} u).$$

Hence by definition

$$\omega_{u} = g_{u}(\cdot I, \cdot) = \operatorname{Re}(\widetilde{\Omega}(\cdot I, \cdot J))$$

$$= \operatorname{Re}(\Omega_{h}(\cdot I, \cdot J)) + \frac{1}{n-1} (S_{1}(\partial \partial_{J} u) \operatorname{Re}(\Omega(\cdot I, \cdot J)) - \operatorname{Re}(\partial \partial_{J} u(\cdot I, \cdot J)))$$

$$= \omega_{h} + \frac{1}{n-1} \Big(S_{1}(\partial \partial_{J} u) \omega - \frac{1}{2} (i \partial \overline{\partial} u - i J \partial \overline{\partial} u) \Big).$$

We also need the following lemma.

Lemma 2.2 (cf. [15, Lemma 3.2])

$$S_1(\partial \partial_J u) = S_1(\widetilde{\Omega}) - S_1(\Omega_h), \tag{2.6}$$

$$\partial \partial_J u = (n-1)\Omega_h - S_1(\Omega_h)\Omega + S_1(\widetilde{\Omega})\Omega - (n-1)\widetilde{\Omega}. \tag{2.7}$$

Remark 2.1 On a hyperhermitian manifold (M, I, J, K, g, Ω) of quaternionic dimension n, we can find local I-holomorphic geodesic coordinates such that Ω and another J-real (2, 0)-form $\widetilde{\Omega}$ are simultaneously diagonalizable at a point $x \in M$, i.e.,

$$\Omega = \sum_{i=0}^{n-1} \mathrm{d}z^{2i} \wedge \mathrm{d}z^{2i+1}, \quad \widetilde{\Omega} = \sum_{i=0}^{n-1} \widetilde{\Omega}_{2i2i+1} \mathrm{d}z^{2i} \wedge \mathrm{d}z^{2i+1},$$

and the Christoffel symbol of ∇^O and first derivatives of J vanish at x, i.e.,

$$J_{\overline{k},i}^l = J_{k,i}^{\overline{l}} = J_{k,\overline{i}}^{\overline{l}} = J_{\overline{k},\overline{i}}^l = 0.$$

Such local coordinates which were introduced in [11], are called the normal coordinates around the point x.

The linearized operator \mathcal{P} of the flow (1.5) is derived in the following lemma.

Lemma 2.3 The linearized operator P has the form:

$$\mathcal{P}(v) = v_t - \frac{A \wedge \partial \partial_J(v)}{\widetilde{\Omega}^n},\tag{2.8}$$

where $A = \frac{n}{n-1} (S_{n-1}(\widetilde{\Omega})\Omega^{n-1} - \widetilde{\Omega}^{n-1})$ and $v \in C^{2,1}(M \times [0,T))$.

Proof Let w(s) be the variation of u and $v = \frac{\mathrm{d}}{\mathrm{d}s}\big|_{s=0}w(s)$. It is sufficient to compute the variation of $\widetilde{\Omega}^n = \left(\Omega_h + \frac{1}{n-1}(S_1(\partial \partial_J u)\Omega - \partial \partial_J u)\right)^n$. We have

$$\delta(\widetilde{\Omega}^n) = \frac{\mathrm{d}}{\mathrm{d}s}\Big|_{s=0} \Big(\Omega_h + \frac{1}{n-1} (S_1(\partial \partial_J w(s))\Omega - \partial \partial_J w(s))\Big)^n$$

$$\begin{split} &= \frac{n}{n-1} \widetilde{\Omega}^{n-1} \wedge \left(S_1(\partial \partial_J v) \Omega - \partial \partial_J v \right) \\ &= \frac{n}{n-1} \widetilde{\Omega}^{n-1} \wedge \Omega \cdot \frac{n\Omega^{n-1} \wedge \partial \partial_J v}{\Omega^n} - \frac{n}{n-1} \widetilde{\Omega}^{n-1} \wedge \partial \partial_J v \\ &= \frac{n}{n-1} S_{n-1}(\widetilde{\Omega}) \Omega^{n-1} \wedge \partial \partial_J v - \frac{n}{n-1} \widetilde{\Omega}^{n-1} \wedge \partial \partial_J v \\ &= A \wedge \partial \partial_J v. \end{split}$$

Then

$$\mathcal{P}(v) = v_t - \delta \left(\log \frac{\widetilde{\Omega}^n}{\Omega^n} \right) = v_t - \frac{A \wedge \partial \partial_J(v)}{\widetilde{\Omega}^n}$$

as claimed.

3 The u_t Estimate and C^0 Estimate

We first prove the uniform estimate of u_t .

Lemma 3.1 Let u be a solution to (1.5) on $M \times [0,T)$. Then there exists a constant C depending only on the fixed data $(I, J, K, g, \Omega, \Omega_h)$ and f such that

$$\sup_{M \times [0,T)} \left| u_t \right| \le C. \tag{3.1}$$

Proof One can see that u_t satisfies

$$\mathcal{P}(u_t) = \frac{\partial}{\partial t}(u_t) - \frac{A \wedge \partial \partial_J(u_t)}{\widetilde{\Omega}^n} = 0.$$
 (3.2)

For any $T_0 \in (0, T)$, by maximum principle,

$$\begin{split} \max_{M \times [0, T_0]} |u_t| &\leq \max_{M} |u_t(x, 0)| \\ &\leq \max_{M} \Big| \log \frac{\left(\Omega_h + \frac{1}{n-1} (S_1(\partial \partial_J u_0)\Omega - \partial \partial_J u_0)\right)^n}{\Omega^n} \Big| + \max_{M} |f|. \end{split}$$

Since T_0 is arbitrary, we have the desired estimate.

Using the C^0 estimate for the elliptic equation, which has been proved by Sroka [23] and Fu, Xu and Zhang [15], we have the following Lemma.

Lemma 3.2 Let u be a solution to (1.5) on $M \times [0,T)$. Then there exists a uniform constant C depending only on the fixed data $(I,J,K,g,\Omega,\Omega_h)$ and f such that

$$\sup_{M \times [0,T)} |\widetilde{u}| \le \sup_{t \in [0,T)} \left(\sup_{x \in M} u(x,t) - \inf_{x \in M} u(x,t) \right) \le C. \tag{3.3}$$

Proof The flow is equivalent to the following

$$\widetilde{\Omega}^n = e^{u_t + f} \Omega^n. \tag{3.4}$$

Since u_t is uniformly bounded, we can apply the C^0 -estimate for the elliptic equation such that for any $t \in (0,T)$,

$$|u(x,t) - \sup_{M} u(\cdot,t)| \le C, \quad \forall x \in M.$$
(3.5)

Since $\int_M \widetilde{u}(\cdot,t) \Omega^n \wedge \overline{\Omega}^n = 0$, there exists $x_0 \in M$ such that $\widetilde{u}(x_0,t) = 0$. Then we have

$$\begin{aligned} |\widetilde{u}(x,t)| &= |\widetilde{u}(x,t) - \widetilde{u}(x_0,t)| = |u(x,t) - u(x_0,t)| \\ &\leq |u(x,t) - \sup_{M} u(\cdot,t)| + |u(x_0,t) - \sup_{M} u(\cdot,t)| \\ &\leq 2C, \quad \forall x \in M. \end{aligned}$$

Hence the C^0 estimate follows.

4 The C^1 Estimate

Although the gradient estimate is unnecessary for the proof of the main result, we provide it as the gradient estimate for fully nonlinear equations has independent interest.

Theorem 4.1 Let u be a solution to (1.5) on $M \times [0,T)$. Then there exists a constant C depending only on the fixed data $(I, J, K, g, \Omega, \Omega_h)$ and f such that

$$\sup_{M \times [0,T)} |\mathrm{d}u|_g \le C. \tag{4.1}$$

Proof A simple computation in local coordinates shows that

$$n\partial u \wedge \partial_J u \wedge \Omega^{n-1} = \frac{1}{4} |\mathrm{d}u|_g^2 \Omega^n.$$

Define

$$\beta := \frac{1}{4} |\mathrm{d}u|_g^2.$$

Following [7], we consider

$$G = \log \beta - \varphi(\widetilde{u}),$$

where φ is a function to be determined and \widetilde{u} is the normalization of u. For any $T_0 \in (0,T)$, suppose $\max_{M \times [0,T_0]} G = G(p_0,t_0)$ with $(p_0,t_0) \in M \times [0,T_0]$. We want to show $\beta(p_0,t_0)$ is uniformly bounded. If $t_0 = 0$, we have the estimate. In the following, we assume $t_0 > 0$.

We choose the normal coordinates around p_0 (see Remark 2.1) and all the calculation is at (p_0, t_0) ,

$$0 \le \partial_t G = \frac{\beta_t}{\beta} - \varphi' \widetilde{u}_t;$$
$$\partial G = \frac{\partial \beta}{\beta} - \varphi' \partial u = 0;$$
$$\partial_J G = \frac{\partial_J \beta}{\beta} - \varphi' \partial_J u = 0;$$

$$\partial \partial_J G = \frac{\partial \partial_J \beta}{\beta} - \frac{\partial \beta \wedge \partial_J \beta}{\beta^2} - \varphi'' \partial u \wedge \partial_J u - \varphi' \partial \partial_J u$$
$$= \frac{\partial \partial_J \beta}{\beta} - ((\varphi')^2 + \varphi'') \partial u \wedge \partial_J u - \varphi' \partial \partial_J u.$$

Then we have

$$0 \leq \mathcal{P}(G) = G_{t} - \frac{\partial \partial_{J} G \wedge A \wedge \overline{\Omega}^{n}}{\widetilde{\Omega}^{n} \wedge \overline{\Omega}^{n}}$$

$$= \frac{\beta_{t}}{\beta} - \varphi' \widetilde{u}_{t} - \frac{\partial \partial_{J} \beta \wedge A \wedge \overline{\Omega}^{n}}{\beta \widetilde{\Omega}^{n} \wedge \overline{\Omega}^{n}} + ((\varphi')^{2} + \varphi'') \frac{\partial u \wedge \partial_{J} u \wedge A \wedge \overline{\Omega}^{n}}{\widetilde{\Omega}^{n} \wedge \overline{\Omega}^{n}}$$

$$+ \varphi' \frac{\partial \partial_{J} u \wedge A \wedge \overline{\Omega}^{n}}{\widetilde{\Omega}^{n} \wedge \overline{\Omega}^{n}}. \tag{4.2}$$

We first deal with $\partial_t \beta$. By taking ∂_t on both sides of $\beta \Omega^n = n \partial u \wedge \partial_J u \wedge \Omega^{n-1}$, we get

$$\beta_t = \sum_{j=0}^{2n-1} (u_{t,j} u_{\overline{j}} + u_j u_{t,\overline{j}}). \tag{4.3}$$

We next compute $\partial \partial_J \beta$. Taking ∂_J on both sides of $\beta \overline{\Omega}^n = n \overline{\partial} u \wedge \overline{\partial}_J u \wedge \overline{\Omega}^{n-1}$ and noticing $\partial_J \overline{\Omega} = 0$ (since Ω is hyperKähler), we have

$$\partial_J \beta \wedge \overline{\Omega}^n = n \partial_J \overline{\partial} u \wedge \overline{\partial}_J u \wedge \overline{\Omega}^{n-1} - n \overline{\partial} u \wedge \partial_J \overline{\partial}_J u \wedge \overline{\Omega}^{n-1}.$$

Then taking ∂ on both sides, we obtain

$$\partial \partial_J \beta \wedge \overline{\Omega}^n = n \partial \partial_J \overline{\partial} u \wedge \overline{\partial_J} u \wedge \overline{\Omega}^{n-1} + n \partial_J \overline{\partial} u \wedge \partial \overline{\partial_J} u \wedge \overline{\Omega}^{n-1} - n \partial \overline{\partial} u \wedge \partial_J \overline{\partial_J} u \wedge \overline{\Omega}^{n-1} + n \overline{\partial} u \wedge \partial_J \overline{\partial_J} u \wedge \overline{\Omega}^{n-1}.$$

From the equation

$$\widetilde{\Omega}^n = e^{u_t + f} \Omega^n, \tag{4.4}$$

by taking $\overline{\partial}$ on both sides we get

$$n(\overline{\partial}S_1(\partial\partial_J u)\wedge\Omega-\overline{\partial}\partial\partial_J u)\wedge\widetilde{\Omega}^{n-1}=(n-1)(\overline{\partial}e^{u_t+f}\wedge\Omega^n-n\overline{\partial}\Omega_h\wedge\widetilde{\Omega}^{n-1}).$$

The left hand side can be calculated as the following:

$$n(\overline{\partial}S_{1}(\partial\partial_{J}u)\wedge\Omega-\overline{\partial}\partial\partial_{J}u)\wedge\widetilde{\Omega}^{n-1}$$

$$=n\left(\overline{\partial}S_{1}(\partial\partial_{J}u)\wedge\Omega^{n}\cdot\frac{\Omega\wedge\widetilde{\Omega}^{n-1}}{\Omega^{n}}-\overline{\partial}\partial\partial_{J}u\wedge\widetilde{\Omega}^{n-1}\right)$$

$$=n\left(\overline{\partial}\left(\frac{\partial\partial_{J}u\wedge\Omega^{n-1}}{\Omega^{n}}\cdot\Omega^{n}\right)\cdot S_{n-1}(\widetilde{\Omega})-\overline{\partial}\partial\partial_{J}u\wedge\widetilde{\Omega}^{n-1}\right)$$

$$=(S_{n-1}(\widetilde{\Omega})\Omega^{n-1}-\widetilde{\Omega}^{n-1})\wedge n\overline{\partial}\partial\partial_{J}u$$

$$=(n-1)A\wedge\overline{\partial}\partial\partial_{J}u.$$

Hence we obtain

$$A \wedge n \overline{\partial} \partial \partial_J u = -n^2 \widetilde{\Omega}^{n-1} \wedge \overline{\partial} \Omega_h + n \overline{\partial} e^{u_t + f} \wedge \Omega^n.$$

By taking $\overline{\partial_J}$ on both sides of (4.4), we obtain

$$A\wedge n\overline{\partial_J}\partial\partial_J u=-n^2\widetilde{\Omega}^{n-1}\wedge\overline{\partial_J}\Omega_h+n\overline{\partial_J}\mathrm{e}^{u_t+f}\wedge\Omega^n.$$

Thus for the third term of (4.2), we have

$$\partial \partial_J \beta \wedge A \wedge \overline{\Omega}^n = I_1 + I_2 + n \partial_J \overline{\partial} u \wedge \partial \overline{\partial}_J u \wedge \overline{\Omega}^{n-1} \wedge A - n \partial \overline{\partial} u \wedge \partial_J \overline{\partial}_J u \wedge \overline{\Omega}^{n-1} \wedge A, \quad (4.5)$$

where

$$I_{1} = (-n^{2}\widetilde{\Omega}^{n-1} \wedge \overline{\partial}\Omega_{h} + n\overline{\partial}e^{u_{t}+f} \wedge \Omega^{n}) \wedge \overline{\partial}_{J}u \wedge \overline{\Omega}^{n-1},$$

$$I_{2} = (n^{2}\widetilde{\Omega}^{n-1} \wedge \overline{\partial}_{J}\Omega_{h} - n\overline{\partial}_{J}e^{u_{t}+f} \wedge \Omega^{n}) \wedge \overline{\partial}u \wedge \overline{\Omega}^{n-1}.$$

By direct computation,

$$\begin{split} \partial_J \overline{\partial} u &= \sum u_{\overline{j}\overline{i}} J^{-1} \mathrm{d} \overline{z^i} \wedge \mathrm{d} \overline{z^j}, \\ \partial \overline{\partial_J} u &= \sum u_{i\overline{j}} \mathrm{d} z^j \wedge J^{-1} \mathrm{d} z^i, \\ \partial \overline{\partial} u &= \sum u_{i\overline{j}} \mathrm{d} z^i \wedge \mathrm{d} \overline{z^j}, \\ \partial_J \overline{\partial_J} u &= \sum u_{i\overline{i}} J^{-1} \mathrm{d} \overline{z^j} \wedge J^{-1} \mathrm{d} z^i, \end{split}$$

the third term of (4.5) becomes

$$n\partial_{J}\overline{\partial}u \wedge \partial\overline{\partial_{J}}u \wedge \overline{\Omega}^{n-1} \wedge A$$

$$= \frac{1}{n-1} \sum_{k=0}^{n-1} \sum_{j=0}^{2n-1} \left(\sum_{i \neq k} \frac{1}{\widetilde{\Omega}_{2i2i+1}} \right) (|u_{2kj}|^{2} + |u_{2k+1j}|^{2}) \widetilde{\Omega}^{n} \wedge \overline{\Omega}^{n}, \tag{4.6}$$

and the forth term

$$-n\partial\overline{\partial}u\wedge\partial_{J}\overline{\partial_{J}}u\wedge\overline{\Omega}^{n-1}\wedge A$$

$$=\frac{1}{n-1}\sum_{k=0}^{n-1}\sum_{j=0}^{2n-1}\left(\sum_{i\neq k}\frac{1}{\widetilde{\Omega}_{2i2i+1}}\right)(|u_{2k\overline{j}}|^{2}+|u_{2k+1\overline{j}}|^{2})\widetilde{\Omega}^{n}\wedge\overline{\Omega}^{n}.$$
(4.7)

For I_1 and I_2 we have

$$I_{1} = -n^{2}\widetilde{\Omega}^{n-1} \wedge \overline{\partial}\Omega_{h} \wedge \overline{\partial_{J}}u \wedge \overline{\Omega}^{n-1} - n\overline{\partial_{J}}u \wedge \overline{\partial}e^{u_{t}+f} \wedge \Omega^{n} \wedge \overline{\Omega}^{n-1}$$

$$= -\sum_{i=0}^{n-1} \sum_{j=0}^{2n-1} \frac{(\Omega_{h})_{2i2i+1,\overline{j}}u_{j}}{\widetilde{\Omega}_{2i2i+1}} \widetilde{\Omega}^{n} \wedge \overline{\Omega}^{n} + \sum_{j=0}^{2n-1} u_{j}(u_{t}+f)_{\overline{j}}\widetilde{\Omega}^{n} \wedge \overline{\Omega}^{n}$$

$$(4.8)$$

and

$$I_{2} = n\widetilde{\Omega}^{n-1} \wedge \overline{\partial_{J}}\Omega_{h} \wedge \overline{\partial}u \wedge \overline{\Omega}^{n-1} + \overline{\partial}u \wedge \overline{\partial_{J}}e^{u_{t}+f} \wedge \Omega^{n} \wedge \overline{\Omega}^{n-1}$$

$$= -\sum_{i=0}^{n-1} \sum_{j=0}^{2n-1} \frac{(\overline{\Omega}_{h})_{2i2i+1,j}u_{\overline{j}}}{\widetilde{\Omega}_{2i2i+1}} \widetilde{\Omega}^{n} \wedge \overline{\Omega}^{n} + \sum_{i=0}^{2n-1} u_{\overline{j}}(u_{t}+f)_{j}\widetilde{\Omega}^{n} \wedge \overline{\Omega}^{n}.$$

$$(4.9)$$

Combining (4.6)–(4.9), we obtain estimate of (4.5),

$$\frac{\partial \partial_J \beta \wedge A \wedge \overline{\Omega}^n}{\beta \widetilde{\Omega}^n \wedge \overline{\Omega}^n}$$

$$= -\frac{1}{\beta} \sum_{i=0}^{n-1} \sum_{j=0}^{2n-1} \frac{(\Omega_h)_{2i2i+1,\overline{j}} u_j + (\overline{\Omega}_h)_{2i2i+1,j} u_{\overline{j}}}{\widetilde{\Omega}_{2i2i+1}}$$

$$+ \frac{1}{\beta} \sum_{j=0}^{2n-1} (u_j (u_t + f)_{\overline{j}} + u_{\overline{j}} (u_t + f)_j)$$

$$+ \frac{1}{(n-1)\beta} \sum_{k=0}^{n-1} \sum_{j=0}^{2n-1} \sum_{i\neq k} \frac{|u_{2kj}|^2 + |u_{2k+1j}|^2 + |u_{2k\overline{j}}|^2 + |u_{2k+1\overline{j}}|^2}{\widetilde{\Omega}_{2i2i+1}}.$$

$$(4.10)$$

Again by direct computation, the forth term of (4.2) is

$$\partial u \wedge \partial_J u \wedge A \wedge \overline{\Omega}^n = \frac{1}{n-1} \sum_{i=0}^{n-1} \left(\sum_{k \neq i} \frac{1}{\widetilde{\Omega}_{2k2k+1}} \right) (|u_{2i}|^2 + |u_{2i+1}|^2) \widetilde{\Omega}^n \wedge \overline{\Omega}^n. \tag{4.11}$$

For the fifth term of (4.2), we compute

$$\partial \partial_J u \wedge A = \frac{n}{n-1} \partial \partial_J u \wedge \left(\frac{n\widetilde{\Omega}^{n-1} \wedge \Omega}{\Omega^n} \Omega^{n-1} - \widetilde{\Omega}^{n-1} \right)$$
$$= \frac{n}{n-1} (S_1(\partial \partial_J u) \Omega - \partial \partial_J u) \wedge \widetilde{\Omega}^{n-1}$$
$$= n(\widetilde{\Omega}^n - \Omega_h \wedge \widetilde{\Omega}^{n-1}).$$

By compactness of M, there exists $\varepsilon > 0$ such that $\Omega_h \geq \varepsilon \Omega$. Hence we obtain

$$\varphi' \frac{\partial \partial_J u \wedge A \wedge \overline{\Omega}^n}{\widetilde{\Omega}^n \wedge \overline{\Omega}^n} = n\varphi' - n\varphi' \frac{\Omega_h \wedge \widetilde{\Omega}^{n-1} \wedge \overline{\Omega}^n}{\widetilde{\Omega}^n \wedge \overline{\Omega}^n}$$

$$\leq n\varphi' - \varepsilon\varphi' \sum_{i=0}^{n-1} \frac{1}{\widetilde{\Omega}_{2i2i+1}}.$$
(4.12)

We assume $\beta \gg 1$ otherwise we are finished. By (4.3) and (4.10)–(4.12), the inequality (4.2) becomes

$$0 \leq -\frac{1}{\beta} \sum_{i=0}^{2n-1} (u_{i}(f)_{i} + u_{i}(f)_{i})$$

$$+ \frac{(\varphi')^{2} + \varphi''}{n-1} \sum_{i=0}^{n-1} \left(\sum_{k \neq i} \frac{1}{\widetilde{\Omega}_{2k2k+1}} \right) (|u_{2i}|^{2} + |u_{2i+1}|^{2})$$

$$+ n\varphi' - \left(\varepsilon \varphi' - C_{1} \frac{\Sigma |u_{j}|}{\beta} - C_{2} \frac{\Sigma |u_{\overline{j}}|}{\beta} \right) \sum_{i=0}^{n-1} \frac{1}{\widetilde{\Omega}_{2i2i+1}} - \varphi' \widetilde{u}_{t}.$$

$$(4.13)$$

The first term is bounded from above. Now we take

$$\varphi(s) = \frac{\log(2s + C_0)}{2},$$

where C_0 is determined by C^0 estimate. Then (4.13) becomes

$$C_3 \ge C_4 \sum_{i=0}^{n-1} \left(\sum_{k \ne i} \frac{1}{\widetilde{\Omega}_{2k2k+1}} \right) (|u_{2i}|^2 + |u_{2i+1}|^2) + C_5 \sum_{i=0}^{n-1} \frac{1}{\widetilde{\Omega}_{2i2i+1}}. \tag{4.14}$$

Thus for any fixed i,

$$\widetilde{\Omega}_{2i2i+1} \ge \frac{C_5}{C_3} \ge C.$$

By (4.4) we also have

$$\frac{1}{\widetilde{\Omega}_{2i2i+1}} = e^{-u_t - f} \prod_{j \neq i} \widetilde{\Omega}_{2j2j+1} \ge \frac{C^{n-1}}{\sup_{M} e^{u_t + f}}, \quad 0 \le i \le n - 1.$$

Then by (4.14) we obtain β is uniformly bounded.

5 Bound on $\partial \partial_J u$

Theorem 5.1 Let u be a solution to (1.5) on $M \times [0,T)$. Then there exists a constant C depending only on the fixed data $(I, J, K, g, \Omega, \Omega_h)$ and f such that

$$\sup_{M \times [0,T)} |\partial \partial_J u|_g \le C. \tag{5.1}$$

Proof For simplicity denote

$$\eta = S_1(\partial \partial_J u).$$

Consider the function

$$G = \log \eta - \varphi(\widetilde{u}),$$

where φ is the same as before. For any $T_0 \in (0,T)$, suppose $\max_{M \times [0,T_0]} G = G(p_0,t_0)$ with $(p_0,t_0) \in M \times [0,T_0)$. We want to show $\eta(p_0,t_0)$ is uniformly bounded. We choose the normal coordinates around p_0 . All the calculations are carried at (p_0,t_0) . We have

$$0 \le \partial_t G = \frac{\eta_t}{\eta} - \varphi' \widetilde{u}_t,$$

$$\partial G = \frac{\partial \eta}{\eta} - \varphi' \partial u = 0,$$

$$\partial_J G = \frac{\partial_J \eta}{\eta} - \varphi' \partial_J u = 0,$$

$$\partial \partial_J G = \frac{\partial \partial_J \eta}{\eta} - ((\varphi')^2 + \varphi'') \partial u \wedge \partial_J u - \varphi' \partial \partial_J u.$$

We further have

$$0 \leq \mathcal{P}(G) = G_t - \frac{\partial \partial_J G \wedge A \wedge \overline{\Omega}^n}{\widetilde{\Omega}^n \wedge \overline{\Omega}^n}$$

$$= \frac{\eta_t}{\eta} - \varphi' \widetilde{u}_t - \frac{\partial \partial_J \eta \wedge A \wedge \overline{\Omega}^n}{\eta \widetilde{\Omega}^n \wedge \overline{\Omega}^n} + ((\varphi')^2 + \varphi'') \frac{\partial u \wedge \partial_J u \wedge A \wedge \overline{\Omega}^n}{\widetilde{\Omega}^n \wedge \overline{\Omega}^n}$$

$$+ \varphi' \frac{\partial \partial_J u \wedge A \wedge \overline{\Omega}^n}{\widetilde{\Omega}^n \wedge \overline{\Omega}^n}.$$
(5.2)

The last two terms were dealt with in the previous section. Since

$$\eta \Omega^n = n \partial \partial_I u \wedge \Omega^{n-1}$$
.

by taking ∂_t on both sides we have for η_t in the first term

$$\eta_t = u_{t,p\overline{p}}.\tag{5.3}$$

We now focus on $\partial \partial_J \eta$ in the third term of (5.2). By definition η is real, and

$$\eta \overline{\Omega}^n = n \overline{\partial} \, \overline{\partial}_J u \wedge \overline{\Omega}^{n-1}.$$

Under the hyperKähler condition $d\Omega = 0$, differentiating twice the above equation gives

$$\partial \partial_I \eta \wedge \overline{\Omega}^n = n \partial \partial_I \overline{\partial} \, \overline{\partial}_I u \wedge \overline{\Omega}^{n-1} = n \overline{\partial} \, \overline{\partial}_I \partial \partial_I u \wedge \overline{\Omega}^{n-1}.$$

We know that (see (2.7))

$$\partial \partial_J u = (n-1)\Omega_h - S_1(\Omega_h)\Omega + S_1(\widetilde{\Omega})\Omega - (n-1)\widetilde{\Omega}.$$

Thus

$$\overline{\partial}\,\overline{\partial}_J\partial\partial_J u = (n-1)\overline{\partial}\,\overline{\partial}_J\Omega_h - \overline{\partial}\,\overline{\partial}_J S_1(\Omega_h) \wedge \Omega + \overline{\partial}\,\overline{\partial}_J S_1(\widetilde{\Omega}) \wedge \Omega - (n-1)\overline{\partial}\,\overline{\partial}_J\widetilde{\Omega},\tag{5.4}$$

where we used the hyperKähler condition on Ω . Now we have

$$\partial \partial_{J} \eta \wedge A \wedge \overline{\Omega}^{n} = nA \wedge \overline{\partial} \, \overline{\partial}_{J} \partial \partial_{J} u \wedge \overline{\Omega}^{n-1}$$

$$= n(n-1)A \wedge \overline{\partial} \, \overline{\partial}_{J} \Omega_{h} \wedge \overline{\Omega}^{n-1} - n\overline{\partial} \, \overline{\partial}_{J} S_{1}(\Omega_{h}) \wedge A \wedge \Omega \wedge \overline{\Omega}^{n-1}$$

$$+ n\overline{\partial} \, \overline{\partial}_{J} S_{1}(\widetilde{\Omega}) \wedge A \wedge \Omega \wedge \overline{\Omega}^{n-1} - n(n-1)A \wedge \overline{\partial} \, \overline{\partial}_{J} \widetilde{\Omega} \wedge \overline{\Omega}^{n-1}. \tag{5.5}$$

Note that

$$A \wedge \Omega = \frac{n}{n-1} \left(S_{n-1}(\widetilde{\Omega}) \Omega^{n-1} - \widetilde{\Omega}^{n-1} \right) \wedge \Omega = S_{n-1}(\widetilde{\Omega}) \Omega^n$$

and

$$\overline{\partial}\,\overline{\partial}_J S_1(\widetilde{\Omega}) \wedge \Omega^n = n \overline{\partial}\,\overline{\partial}_J \widetilde{\Omega} \wedge \Omega^{n-1}.$$

The third term of (5.5) becomes

$$n\overline{\partial}\,\overline{\partial}_{J}S_{1}(\widetilde{\Omega})\wedge A\wedge\Omega\wedge\overline{\Omega}^{n-1} = n\overline{\partial}\,\overline{\partial}_{J}S_{1}(\widetilde{\Omega})\wedge(\Omega^{n}\cdot S_{n-1}(\widetilde{\Omega}))\wedge\overline{\Omega}^{n-1}$$
$$= n^{2}S_{n-1}(\widetilde{\Omega})\overline{\partial}\,\overline{\partial}_{J}\widetilde{\Omega}\wedge\Omega^{n-1}\wedge\overline{\Omega}^{n-1}.$$

The forth term is

$$n(n-1)A \wedge \overline{\partial} \, \overline{\partial}_J \widetilde{\Omega} \wedge \overline{\Omega}^{n-1} = n^2 S_{n-1}(\widetilde{\Omega}) \overline{\partial} \, \overline{\partial}_J \widetilde{\Omega} \wedge \Omega^{n-1} \wedge \overline{\Omega}^{n-1} - n^2 \widetilde{\Omega}^{n-1} \wedge \overline{\partial} \, \overline{\partial}_J \widetilde{\Omega} \wedge \overline{\Omega}^{n-1}.$$

The first two terms of (5.5) are similar and we get

$$\partial \partial_J \eta \wedge A \wedge \overline{\Omega}^n = n^2 \overline{\partial} \, \overline{\partial}_J \widetilde{\Omega} \wedge \widetilde{\Omega}^{n-1} \wedge \overline{\Omega}^{n-1} - n^2 \overline{\partial} \, \overline{\partial}_J \Omega_h \wedge \widetilde{\Omega}^{n-1} \wedge \overline{\Omega}^{n-1}$$

and

$$\frac{\partial \partial_J \eta \wedge A \wedge \overline{\Omega}^n}{\eta \widetilde{\Omega}^n \wedge \overline{\Omega}^n} = n^2 \frac{\overline{\partial} \, \overline{\partial}_J \widetilde{\Omega} \wedge \widetilde{\Omega}^{n-1} \wedge \overline{\Omega}^{n-1}}{\eta \widetilde{\Omega}^n \wedge \overline{\Omega}^n} - n^2 \frac{\overline{\partial} \, \overline{\partial}_J \Omega_h \wedge \widetilde{\Omega}^{n-1} \wedge \overline{\Omega}^{n-1}}{\eta \widetilde{\Omega}^n \wedge \overline{\Omega}^n}$$

$$= \frac{1}{\eta} \sum_{i=0}^{n-1} \sum_{p=0}^{2n-1} \frac{\widetilde{\Omega}_{2i2i+1,p\overline{p}}}{\widetilde{\Omega}_{2i2i+1}} - \frac{1}{\eta} \sum_{i=0}^{n-1} \sum_{p=0}^{2n-1} \frac{(\Omega_h)_{2i2i+1,p\overline{p}}}{\widetilde{\Omega}_{2i2i+1}}$$

$$\geq \frac{1}{\eta} \sum_{i=0}^{n-1} \sum_{p=0}^{2n-1} \frac{\widetilde{\Omega}_{2i2i+1,p\overline{p}}}{\widetilde{\Omega}_{2i2i+1}} - \frac{C_1}{\eta} \sum_{i=0}^{n-1} \frac{1}{\widetilde{\Omega}_{2i2i+1}}.$$
(5.6)

We now rewrite the right hand side of (5.6) using the equation

$$Pf(\widetilde{\Omega}_{ij}) = e^{u_t + f} Pf(\Omega_{ij}), \tag{5.7}$$

where $\Omega^n = n! \operatorname{Pf}(\Omega_{ij}) dz^0 \wedge \cdots \wedge dz^{2n-1}$. Take logarithm of both sides

$$\log \operatorname{Pf}(\widetilde{\Omega}_{ij}) = u_t + f + \log \operatorname{Pf}(\Omega_{ij}). \tag{5.8}$$

Since $\overline{\partial}\Omega = 0$, we have $\overline{\partial}\mathrm{Pf}(\Omega) = 0$. By taking $\overline{\partial}$ of (5.8) and using $\mathrm{Pf}(\widetilde{\Omega}_{ij})^2 = \det(\widetilde{\Omega}_{ij})$, we get

$$\frac{1}{2} \sum \widetilde{\Omega}^{ij} \widetilde{\Omega}_{ji,\overline{p}} = u_{t,\overline{p}} + f_{\overline{p}}. \tag{5.9}$$

By taking ∂ of both sides we obtain

$$\frac{1}{2} \sum \widetilde{\Omega}^{ij} \widetilde{\Omega}_{ji,\overline{p}p} = \frac{1}{2} \sum \widetilde{\Omega}^{ik} \widetilde{\Omega}_{kl,p} \widetilde{\Omega}^{lj} \widetilde{\Omega}_{ji,\overline{p}} + f_{p\overline{p}} + u_{t,p\overline{p}}.$$
 (5.10)

In local coordinates, the left hand side of (5.10) is

$$\frac{1}{2} \sum \widetilde{\Omega}^{2i2i+1} \widetilde{\Omega}_{2i+12i,p\overline{p}} + \frac{1}{2} \sum \widetilde{\Omega}^{2i+12i} \widetilde{\Omega}_{2i2i+1,p\overline{p}} = \sum \frac{\widetilde{\Omega}_{2i2i+1,p\overline{p}}}{\widetilde{\Omega}_{2i2i+1}}.$$
 (5.11)

It was proved in [15] that the first term of the right hand side of (5.10) is nonnegative, i.e.,

$$\sum \widetilde{\Omega}^{ik} \widetilde{\Omega}_{kl,p} \widetilde{\Omega}^{lj} \widetilde{\Omega}_{ji,\overline{p}} \ge 0. \tag{5.12}$$

Hence we obtain

$$\frac{\partial \partial_J \eta \wedge A \wedge \overline{\Omega}^n}{\eta \widetilde{\Omega}^n \wedge \overline{\Omega}^n} \ge \frac{1}{2\eta} \Delta_{I,g} f - \frac{C_1}{\eta} \sum_{i=0}^{n-1} \frac{1}{\widetilde{\Omega}_{2i2i+1}} + \frac{1}{\eta} u_{t,p\overline{p}}.$$
 (5.13)

Inserting (5.3), (5.13) and (4.11)–(4.12) into (5.2), we have

$$0 \leq -\frac{1}{2\eta} \Delta_{I,g} f + \frac{(\varphi')^2 + \varphi''}{n-1} \sum_{i=0}^{n-1} \left(\sum_{k \neq i} \frac{1}{\widetilde{\Omega}_{2k2k+1}} \right) (|u_{2i}|^2 + |u_{2i+1}|^2)$$

$$+ n\varphi' - \left(\varepsilon \varphi' - \frac{C_1}{\eta} \right) \sum_{i=0}^{n-1} \frac{1}{\widetilde{\Omega}_{2i2i+1}} - \varphi' \widetilde{u}_t.$$
(5.14)

Assuming $\eta \gg 1$, we obtain from (5.14),

$$C_2 \ge C_3 \sum_{i=0}^{n-1} \frac{1}{\widetilde{\Omega}_{2i2i+1}}.$$
 (5.15)

Hence all $\widetilde{\Omega}_{2i2i+1}$ are uniformly bounded. Since $\eta = S_1(\partial \partial_J u) = S_1(\widetilde{\Omega}) - S_1(\Omega_h)$, we can therefore obtain a uniform bound on η .

6 Proof of the Main Theorem

In [24], Tosatti, Wang, Weinkove and Yang derived $C^{2,\alpha}$ estimates for solutions of some nonlinear elliptic equations based on a bound on the Laplacian of the solution, which was improved and extended to parabolic equations by Chu [9]. Bedulli, Gentili and Vezzoni [6] proved the $C^{2,\alpha}$ for the quaternionic complex Monge-Ampère equation. In this section we apply their techniques to derive the $C^{2,\alpha}$ estimates in our setting. Then the longtime existence and convergence follows.

We first need to rewrite (1.5) in terms of real (1,1)-forms, which can be done by using the following relation

$$\frac{\Omega^n \wedge \overline{\Omega}^n}{(n!)^2} = \frac{\omega^{2n}}{(2n)!}.$$

And the equation is reformulated as

$$\omega_u^{2n} = e^{2(u_t + f)} \omega^{2n}, \tag{6.1}$$

where ω and ω_u are induced by Ω and $\widetilde{\Omega}$, respectively.

Lemma 6.1 Let u be a solution to (1.5) on $M \times [0,T)$ and $\varepsilon \in (0,T)$, then we have

$$\|\nabla^2 u\|_{C^{\alpha}(M\times[\varepsilon,T))} \le C_{\varepsilon,\alpha},\tag{6.2}$$

where the constant $C_{\varepsilon,\alpha} > 0$ depending only on $(I, J, K, g, \Omega, \Omega_h)$, f, ε and α .

Proof The proof here follows from [9–10, 24]. For any point $p \in M$, choose a local chart around p that corresponds to the unit ball B_1 in \mathbb{C}^{2n} with I-holomorphic coordinates (z^0, \dots, z^{2n-1}) . We have $\omega = \sqrt{-1}g_{i\bar{j}}\mathrm{d}z^i \wedge \mathrm{d}\bar{z}^j$ where $(g_{i\bar{j}}(x))$ is a positive definite $2n \times 2n$ hermitian matrix given by the metric at any point $x \in B_1$. We introduce the real coordinates by $z^i = x^i + \sqrt{-1}x^{2n+i}$ for $i = 0, \dots, 2n-1$.

The complex structure I corresponds to an endomorphism of the real tangent space which we still denote by I, written in matrix form

$$I = \begin{pmatrix} 0 & -I_{2n} \\ I_{2n} & 0 \end{pmatrix},$$

where I_{2n} denotes the identity matrix.

For any $2n \times 2n$ hermitian matrix $H = A + \sqrt{-1}B$, the standard way to identify H with a real symmetric matrix $\iota(H) \in \operatorname{Sym}(4n)$ is defined as

$$\iota(H) = \begin{pmatrix} A & B \\ -B & A \end{pmatrix}.$$

Let $Q_{(x,t)}(r)$ denote the domain $B_x(r) \times (t - r^2, t]$. We want to check (6.1) is of the following form as in [9, p. 14],

$$u_t(x,t) - F(S(x,t) + T(D_{\mathbb{R}}^2 u, x, t), x, t) = h(x,t),$$
(6.3)

where u is defined in $Q_{(0,0)}(1)$ up to scaling and translation, $D_{\mathbb{R}}^2 u$ is the real Hessian and the functions F, S and T are defined as the following:

$$F: \text{Sym}(4n) \times Q_{(0,0)}(1) \to \mathbb{R}, \quad F(N, x, t) := \frac{1}{2} \log \det(N),$$

 $S: Q_{(0,0)}(1) \to \text{Sym}(4n), \quad S(x, t) := \iota(g_{i\bar{i}}(x))$

and

$$T: \operatorname{Sym}(4n) \times Q_{(0,0)}(1) \to \operatorname{Sym}(4n),$$

$$T(N, x, t) := \frac{1}{n-1} \left(\frac{1}{8} \operatorname{tr}(\iota(g_{i\overline{j}}(x))^{-1} p(N)) \iota(g_{i\overline{j}}(x)) - G(N, x) \right),$$

where

$$p(N) := \frac{1}{2}(N + {}^{t}INI),$$

$$G(N, x) := \frac{1}{4}(p(N) + \iota({}^{t}J(x))p(N)\iota(J(x))).$$

Here we are using J(x) as the matrix representation of the complex structure J. Observe that $p(D_{\mathbb{R}}^2u)=2\iota(D_{\mathbb{C}}^2u)$, we have

$$G(D^2_{\mathbb{R}}u,x) = \frac{1}{2}(\iota(u_{i\overline{j}}) + \iota(J)^{\overline{k}}_{i}\iota(D^2_{\mathbb{C}}u)_{l\overline{k}}\iota(J)^{\underline{l}}_{\overline{j}})(x) = \frac{1}{2}\iota(\operatorname{Re}(\partial\partial_{J}u(\cdot I,\cdot J))_{i\overline{j}})(x).$$

Moreover, one can verify that

$$\operatorname{tr}(\iota(g_{i\overline{j}}(x))^{-1}p(D_{\mathbb{R}}^{2}u)) = 4\operatorname{tr}(g_{i\overline{j}}^{-1}(x)D_{\mathbb{C}}^{2}u) = 4\Delta_{I,g}u.$$

Notice that for a hermitian matrix H, $det(\iota(H)) = det(H)^2$, hence we get

$$u_{t}(x,t) - F(S(x,t) + T(D_{\mathbb{R}}^{2}u,x,t),x,t)$$

$$= \frac{1}{2} \log \det \left(\iota(g_{i\overline{j}}(x)) + \frac{1}{n-1} \left(\left(\frac{1}{2} \Delta_{I,g} u \right) \iota(g_{i\overline{j}}(x)) - \frac{1}{2} \iota(\operatorname{Re}(\partial \partial_{J} u(\cdot I, \cdot J))_{i\overline{j}})(x) \right) \right)$$

$$= \log \det \left(g_{i\overline{j}}(x) + \frac{1}{n-1} \left(S_{1}(\partial \partial_{J} u) g_{i\overline{j}}(x) - \frac{1}{2} \iota(\operatorname{Re}(\partial \partial_{J} u(\cdot I, \cdot J))_{i\overline{j}})(x) \right) \right)$$

$$= -2f(x) - \log \det(g_{i\overline{j}}(x)).$$

Thus (6.1) is indeed of form (6.3).

It remains to verify that the functions F, S and T defined above satisfies all the assumptions in [9, H1–H3, p. 14]. From Theorem 5.1 we have $\operatorname{tr}_g g_u \leq C$, thus we get

$$C_0^{-1}I_{4n} \le S(x,t) + T(D_{\mathbb{R}}^2u, x, t) \le C_0I_{4n}.$$

Take the convex set \mathcal{E} to be the set of matrices $N \in \text{Sym}(4n)$ with

$$C_0^{-1}I_{4n} \le N \le C_0I_{4n}.$$

It is straightforward that H1, H3 and H2(1), H2(2) hold (cf. [9]). For H2(3), we choose local coordinates such that g(x) = Id and J is block diagonal with only J_{2i+1}^{2i} and J_{2i}^{2i+1} non-zero, while p(P) is diagonal with eigenvalues $\lambda_1, \lambda_1, \dots, \lambda_{2n}, \lambda_{2n} \geq 0$. Then one computes

the eigenvalues of T(P, x, t) are $\frac{1}{2} \sum_{i \neq j} \lambda_i \geq 0$. Thus for $P \geq 0$ we have $T(P, x, t) \geq 0$ and let K = 2(n-1), then

$$K^{-1}||P|| \le ||T(P, x, t)|| \le K||P||.$$

Finally, to apply [9, Theorem 5.1], we need overcome the lack of C^0 bound of u using the same argument as in [10, Lemma 6.1]. Specifically, we split into two cases T < 1 and $T \ge 1$. If T < 1 then we have a C^0 bound on u since by Lemma 3.1 $\sup_{M \times [0,T)} |u_t| \le C$. Hence, [9, Theorem 5.1] applies directly in this case.

If T > 1, for any $b \in (0, T - 1)$, we consider

$$u_b(x,t) = u(x,t+b) - \inf_{M \times [b,b+1)} u(x,t)$$

for all $t \in [0,1)$. By Lemma 3.2, we have $\sup_{M \times [0,1)} |u_b(x,t)| \leq C$. Moreover, it is obvious that u_b also satisfies the equation, thus we have a Laplacian bound on u_b . By applying Theorem 5.1 in [9] to u_b , for any $\varepsilon \in (0, \frac{1}{2})$, we have

$$\|\nabla^2 u\|_{C^{\alpha}(M\times[b+\varepsilon,b+1))} = \|\nabla^2 u_b\|_{C^{\alpha}(M\times[\varepsilon,1))} \le C_{\varepsilon,\alpha},$$

where $C_{\varepsilon,\alpha}$ is a uniform constant depending only on the fixed data $(I, J, K, g, \Omega, \Omega_h)$, f, ε and α . Since $b \in (0, T-1)$ is arbitrary, we obtain the estimate.

Proof of Theorem 1.1 Once we have the $C^{2,\alpha}$ estimates, we obtain the longtime existence and the exponential convergence of \widetilde{u} similar as the argument in [20]. Let $\widetilde{u}_{\infty} = \lim_{t \to \infty} \widetilde{u}(\cdot, t)$, then \widetilde{u}_{∞} satisfies

$$\left(\Omega_h + \frac{1}{n-1} \left(\left(\frac{1}{2} \Delta_{I,g} \widetilde{u}_{\infty} \right) \Omega - \partial \partial_J \widetilde{u}_{\infty} \right) \right)^n = e^{f + \widetilde{b}} \Omega^n$$

$$\Omega_h + \frac{1}{n-1} \left(\left(\frac{1}{2} \Delta_{I,g} \widetilde{u}_{\infty} \right) \Omega - \partial \partial_J \widetilde{u}_{\infty} \right) > 0,$$

where

$$\widetilde{b} = \left(\int_{M} \Omega^{n} \wedge \overline{\Omega}^{n}\right)^{-1} \int_{M} \left(\log \frac{\left(\Omega_{h} + \frac{1}{n-1} \left(\left(\frac{1}{2}\Delta_{I,g}\widetilde{u}_{\infty}\right)\Omega - \partial \partial_{J}\widetilde{u}_{\infty}\right)\right)^{n}}{\Omega^{n}} - f\right) \Omega^{n} \wedge \overline{\Omega}^{n}.$$

Declarations

Conflicts of interest The authors declare no conflicts of interest.

References

- [1] Alesker, S., Solvability of the quaternionic Monge-Ampère equation on compact manifolds with a flat hyperKähler metric, Adv. Math., 241, 2013, 192–219.
- [2] Alesker, S. and Shelukhin, E., A uniform estimate for general quaternionic Calabi problem (with appendix by Daniel Barlet), Adv. Math., 316, 2017, 1–52.
- [3] Alesker, S. and Verbitsky, M., Plurisubharmonic functions on hypercomplex manifolds and HKT-geometry, J. Geom. Anal., 16(3), 2006, 375–399.

- [4] Alesker, S. and Verbitsky, M., Quaternionic Monge-Ampère equation and Calabi problem for HKT-manifolds, Israel J. Math., 176, 2010, 109–138.
- [5] Bedulli, L., Gentili, G. and Vezzoni, L., A parabolic approach to the Calabi-Yau problem in HKT geometry, Math. Z., 302(2), 2022, 917–933.
- [6] Bedulli, L., Gentili, G. and Vezzoni, L., The parabolic quaternionic Calabi-Yau equation on hyperKähler manifolds, 2023, arXiv: 2303.02689.
- [7] Błocki, Z., A gradient estimate in the Calabi-Yau theorem, Math. Ann., 344(2), 2009, 317–327.
- [8] Cao, H., Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds, Invent. Math., 81(2), 1985, 359–372.
- [9] Chu, J., C^{2,α} regularities and estimates for nonlinear elliptic and parabolic equations in geometry, Calc. Var. Partial Differ. Equ., 55(1), 2016, Art. 8, 20 pp.
- [10] Chu, J., The parabolic Monge-Ampère equation on compact almost Hermitian manifolds, J. Reine Angew. Math., 761, 2020, 1–24.
- [11] Dinew, S. and Sroka, M., On the Alesker-Verbitsky conjecture on hyperKähler manifolds, Geom. Funct. Anal., 33(4), 2023, 875–911.
- [12] Fang, H., Lai, M. and Ma, X., On a class of fully nonlinear flows in Kähler geometry, J. Reine Angew. Math., 653, 2011, 189–220.
- [13] Fu, J., Wang, Z. and Wu, D., Form-type Calabi-Yau equations, Math. Res. Lett., 17(5), 2010, 887–903.
- [14] Fu, J., Wang, Z. and Wu, D., Form-type equations on Kähler manifolds of nonnegative orthogonal bisectional curvature, Calc. Var. Partial Differ. Equ., 52(1-2), 2015, 327-344.
- [15] Fu, J., Xu, X. and Zhang, D., The Monge-Ampère equation for (n-1)-quaternionic psh functions on a hyperKähler manifold, Math. Z., 307(2), 2024, Paper No. 29, 25 pp.
- [16] Gentili, G. and Vezzoni, L., The quaternionic Calabi conjecture on abelian hypercomplex nilmanifolds viewed as tori fibrations, Int. Math. Res. Not. IMRN, 12, 2022, 9499–9528.
- [17] Gentili, G. and Vezzoni, L., A remark on the quaternionic Monge-Ampère equation on foliated manifolds, Proc. Amer. Math. Soc., 151(3), 2023, 1263–1275.
- [18] Gentili, G. and Zhang, J., Fully non-linear parabolic equations on compact manifolds with a flat hyper-Kähler metric, 2022, arXiv: 2204.12232.
- [19] Gentili, G. and Zhang, J., Fully non-linear elliptic equations on compact manifolds with a flat hyperKähler metric, J. Geom. Anal., 32(9), 2022, Paper No. 229, 38 pp.
- [20] Gill, M., Convergence of the parabolic complex Monge-Ampère equation on compact Hermitian manifolds, Comm. Anal. Geom., 19(2), 2011, 277–303.
- [21] Song, J. and Weinkove, B., On the convergence and singularities of the J-flow with applications to the Mabuchi energy, Comm. Pure Appl. Math., 61(2), 2008, 210–229.
- [22] Sroka, M., The C^0 estimate for the quaternionic Calabi conjecture, $Adv.\ Math.,\ 370,\ 2020,\ 107237.$
- [23] Sroka, M., Sharp uniform bound for the quaternionic Monge-Ampère equation on hyperhermitian manifolds, 2022, arXiv: 2211.00959.
- [24] Tosatti, V., Wang, Y., Weinkove, B. and Yang, X., C^{2,α} estimates for nonlinear elliptic equations in complex and almost complex geometry, Calc. Var. Partial Differ. Equ., 54(1), 2015, 431–453.
- [25] Tosatti, V. and Weinkove, B., The Monge-Ampère equation for (n-1)-plurisubharmonic functions on a compact Kähler manifold, J. Amer. Math. Soc., $\bf 30(2)$, 2017, 311–346.
- [26] Yau, S. T., On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math., 31(3), 1978, 339–411.
- [27] Zhang, J., Parabolic quaternionic Monge-Ampère equation on compact manifolds with a flat hyperkähler metric, J. Korean Math. Soc., 59(1), 2022, 13–33.
- [28] Zheng, T., A parabolic Monge-Ampère type equation of Gauduchon metrics, Int. Math. Res. Not. IMRN, 17, 2019, 5497–5538.