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Abstract This paper proves the long-time existence and uniqueness of solutions to a
parabolic quaternionic Monge-Ampère type equation on compact hyperKähler manifolds.
Moreover, it is shown that after normalization, the solution converges smoothly to the
unique solution of the Monge-Ampère equation for (n− 1)-quaternionic psh functions.
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1 Introduction

A hypercomplex manifold is a smooth manifold M together with a triple (I, J,K) of complex

structures satisfying the quaternionic relation IJ = −JI = K. A hyperhermitian metric on a

hypercomplex manifold (M, I, J,K) is a Riemannian metric g which is hermitian with respect

to I, J and K.

On a hyperhermitian manifold (M, I, J,K, g), let Ω = ωJ − iωK where ωJ and ωK are

the fundamental forms corresponding to J and K, respectively. Then g is called hyperKähler

(HK for short) if dΩ = 0, and called hyperKähler with torsion (HKT for short) if ∂Ω = 0.

Throughout this paper we use ∂ and ∂ to denote the complex partial differential operator with

respect to the complex structure I.

Analogous to the complex Calabi-Yau equation on Kähler manifolds which was solved by Yau

[26], Alesker and Verbitsky introduced a quaternionic Calabi-Yau equation on hyperhermitian

manifolds in [4],

(Ω + ∂∂Ju)
n = efΩn,

Ω+ ∂∂Ju > 0,
(1.1)

where f is a given smooth function on M and ∂J := J−1 ◦ ∂ ◦ J . They conjectured that

the equation is solvable on HKT manifolds with holomorphically trivial canonical bundle with
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respect to I and further obtained the C0 estimate in this setting (cf. [4]). Alesker [1] solved the

equation on a flat hyperKähler manifold and the parabolic case was solved by Bedulli-Gentili-

Vezzoni [5] and Zhang [27]. In [2], Alesker and Shelukhin proved the C0 estimate without

any extra assumptions and the proof was later simplified by Sroka [22]. Recently Dinew and

Sroka [11] solved the equation on a compact HK manifold. Bedulli, Gentili and Vezzoni [6]

considered the parabolic method. More partial results can be found in [3–5, 16–17, 23, 27] and

the conjecture remains open.

By adopting the techniques of Dinew and Sroka [11], we solved the quaternionic form-type

Calabi-Yau equation in [15] on compact HK manifolds, which is parallel to the complex case

where the form-type Calabi-Yau equation was proposed by Fu, Wang and Wu [13–14] and solved

by Tosatti and Weinkove [25] on Kähler manifolds.

Specifically, let (M, I, J,K, g,Ω) be a hyperhermitian manifold of quaternionic dimension n,

and g0 be another hyperhermitian metric on M with induced (2, 0)-form Ω0. Given a smooth

function f on M , the quaternionic form-type Calabi-Yau equation is

Ωn
u = ef+bΩn (1.2)

in which b is a uniquely determined constant, and Ωu is determined by

Ωn−1
u = Ωn−1

0 + ∂∂J(uΩ
n−2), (1.3)

where Ωn−1
0 +∂∂J(uΩ

n−2) is strictly positive. When Ω is HKT, i.e., ∂Ω = 0, (1.2) is equivalent

to the following Monge-Ampère equation for (n− 1)-quaternionic psh functions

(
Ωh+

1

n− 1

((1
2
∆I,gu

)
Ω− ∂∂Ju

))n

= ef+bΩn,

Ωh +
1

n− 1

((1
2
∆I,gu

)
Ω− ∂∂Ju

)
> 0,

(1.4)

where Ωh is related to Ω0 by (n − 1)! ∗ Ωh = Ωn−1
0 with ∗ being a Hodge star-type operator.

This is explained in [15, Section 2].

On locally flat compact HK manifolds which admits quaternionic coordinates, Gentili and

Zhang solved a class of fully non-linear elliptic equations including (1.4) in [19] and the parabolic

case in [18]. In [15], using the approach by Dinew and Sroka [11], we solved (1.4) on compact

HK manifolds without the flatness assumption in [19].

In this article, we consider the parabolic version of (1.4) on a compact hyperKähler manifold

∂

∂t
u = log

(
Ωh +

1

n− 1

((1
2
∆I,gu

)
Ω− ∂∂Ju

))n

Ωn
− f (1.5)

with u(·, 0) = u0 ∈ C∞(M,R) satisfying

Ωh +
1

n− 1

((1
2
∆I,gu0

)
Ω− ∂∂Ju0

)
> 0. (1.6)

Our main result is as follows.
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Theorem 1.1 Let (M, I, J,K, g,Ω) be a compact hyperKähler manifold of quaternionic

dimension n, and Ωh be a strictly positive (2, 0)-form with respect to I. Let f be a smooth

function on M . Then there exists a unique solution u to (1.5) on M × [0,∞) with u(·, 0) = u0

satisfying (1.6). And if we normalize u by

ũ := u−

∫

M

uΩn ∧Ωn

∫

M

Ωn ∧ Ωn
, (1.7)

then ũ converges smoothly to a function ũ∞ as t → ∞, and ũ∞ is the unique solution to (1.4)

up to a constant b̃ ∈ R.

This gives a parabolic solution to the original equation (1.4). There are plenty of results on

parabolic flows on compact complex manifolds, for example, [8, 10, 12, 20–21, 28].

The article is organized as follows. In Section 2, we introduce some basic notations and

useful lemmas. In Section 3, we prove the ut and the C0 estimate. We derive the C1 estimate

in Section 4 and the complex Hessian estimate in Section 5. The Theorem 1.1 is proved in

Section 6.

2 Preliminaries

On a hyperhermitian manifold (M, I, J,K, g) of quaternionic dimension n, we denote the

(p, q)-forms with respect to I by Λp,q
I (M). A form α ∈ Λ2k,0

I (M) is called J-real if Jα = α, and

denoted by α ∈ Λ2k,0
I,R (M). In particular, we have Ω = ωJ − iωK is a J-real (2, 0)-form.

Definition 2.1 (cf. [15, Definition 2.2]) A J-real (2, 0)-form α is said to be positive (resp.

strictly positive) if α(X,XJ) ≥ 0 (resp. α(X,XJ) > 0) for any non-zero (1, 0)-vector X. We

denote all strictly positive J-real (2, 0)-forms by Λ2,0
I,R(M)>0.

Note that Ω is determined by g and is strictly positive. Conversely any Ω ∈ Λ2k,0
I,R (M)>0

induces a hyperhermitian metric by g = Re(Ω(·, ·J)). Thus there is a bijection between strictly

positive J-real (2, 0)-forms and hyperhermitian metrics.

Definition 2.2 For χ ∈ Λ2,0
I,R(M), define

Sm(χ) =
Cm

n χm ∧ Ωn−m

Ωn
for 0 ≤ m ≤ n. (2.1)

In particular for u ∈ C∞(M,R) we have

S1(∂∂Ju) =
1

2
∆I,gu. (2.2)

For convenience we denote

Ω̃ = Ωh +
1

n− 1
(S1(∂∂Ju)Ω− ∂∂Ju). (2.3)

It is easily checked that Ω̃ is a J-real (2, 0)-form, thus one can define the corresponding hyper-

hermitian metric and the induced fundamental form by

gu = Re(Ω̃(·, ·J)), ωu = gu(·I, ·). (2.4)
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Lemma 2.1

ωu = ωh +
1

n− 1

(
S1(∂∂Ju)ω − 1

2
(i∂∂u− iJ∂∂u)

)
. (2.5)

Proof It is shown in [23, Proposition 3.2] that

Re(∂∂Ju(·I, ·J)) =
1

2
(i∂∂u− iJ∂∂u).

Hence by definition

ωu = gu(·I, ·) = Re(Ω̃(·I, ·J))

= Re(Ωh(·I, ·J)) +
1

n− 1
(S1(∂∂Ju)Re(Ω(·I, ·J))− Re(∂∂Ju(·I, ·J)))

= ωh +
1

n− 1

(
S1(∂∂Ju)ω − 1

2
(i∂∂u− iJ∂∂u)

)
.

We also need the following lemma.

Lemma 2.2 (cf. [15, Lemma 3.2])

S1(∂∂Ju) = S1(Ω̃)− S1(Ωh), (2.6)

∂∂Ju = (n− 1)Ωh − S1(Ωh)Ω + S1(Ω̃)Ω− (n− 1)Ω̃. (2.7)

Remark 2.1 On a hyperhermitian manifold (M, I, J,K, g,Ω) of quaternionic dimension n,

we can find local I-holomorphic geodesic coordinates such that Ω and another J-real (2, 0)-form

Ω̃ are simultaneously diagonalizable at a point x ∈ M , i.e.,

Ω =

n−1∑

i=0

dz2i ∧ dz2i+1, Ω̃ =

n−1∑

i=0

Ω̃2i2i+1dz
2i ∧ dz2i+1,

and the Christoffel symbol of ∇O and first derivatives of J vanish at x, i.e.,

J l

k,i
= J l

k,i = J l

k,i
= J l

k,i
= 0.

Such local coordinates which were introduced in [11] , are called the normal coordinates around

the point x.

The linearized operator P of the flow (1.5) is derived in the following lemma.

Lemma 2.3 The linearized operator P has the form :

P(v) = vt −
A ∧ ∂∂J (v)

Ω̃n
, (2.8)

where A = n
n−1 (Sn−1(Ω̃)Ω

n−1 − Ω̃n−1) and v ∈ C2,1(M × [0, T )).

Proof Let w(s) be the variation of u and v = d
ds

∣∣
s=0

w(s). It is sufficient to compute the

variation of Ω̃n =
(
Ωh + 1

n−1 (S1(∂∂Ju)Ω− ∂∂Ju)
)n
. We have

δ(Ω̃n) =
d

ds

∣∣∣
s=0

(
Ωh +

1

n− 1
(S1(∂∂Jw(s))Ω − ∂∂Jw(s))

)n
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=
n

n− 1
Ω̃n−1 ∧ (S1(∂∂Jv)Ω− ∂∂Jv)

=
n

n− 1
Ω̃n−1 ∧Ω · nΩ

n−1 ∧ ∂∂Jv

Ωn
− n

n− 1
Ω̃n−1 ∧ ∂∂Jv

=
n

n− 1
Sn−1(Ω̃)Ω

n−1 ∧ ∂∂Jv −
n

n− 1
Ω̃n−1 ∧ ∂∂Jv

= A ∧ ∂∂Jv.

Then

P(v) = vt − δ
(
log

Ω̃n

Ωn

)
= vt −

A ∧ ∂∂J (v)

Ω̃n

as claimed.

3 The ut Estimate and C0 Estimate

We first prove the uniform estimate of ut.

Lemma 3.1 Let u be a solution to (1.5) on M × [0, T ). Then there exists a constant C

depending only on the fixed data (I, J,K, g,Ω,Ωh) and f such that

sup
M×[0,T )

∣∣ut

∣∣ ≤ C. (3.1)

Proof One can see that ut satisfies

P(ut) =
∂

∂t
(ut)−

A ∧ ∂∂J(ut)

Ω̃n
= 0. (3.2)

For any T0 ∈ (0, T ), by maximum principle,

max
M×[0,T0]

|ut| ≤ max
M

|ut(x, 0)|

≤ max
M

∣∣∣ log

(
Ωh +

1

n− 1
(S1(∂∂Ju0)Ω− ∂∂Ju0)

)n

Ωn

∣∣∣+max
M

|f |.

Since T0 is arbitrary, we have the desired estimate.

Using the C0 estimate for the elliptic equation, which has been proved by Sroka [23] and

Fu, Xu and Zhang [15], we have the following Lemma.

Lemma 3.2 Let u be a solution to (1.5) on M×[0, T ). Then there exists a uniform constant

C depending only on the fixed data (I, J,K, g,Ω,Ωh) and f such that

sup
M×[0,T )

|ũ| ≤ sup
t∈[0,T )

(
sup
x∈M

u(x, t)− inf
x∈M

u(x, t)
)
≤ C. (3.3)

Proof The flow is equivalent to the following

Ω̃n = eut+fΩn. (3.4)
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Since ut is uniformly bounded, we can apply the C0-estimate for the elliptic equation such that

for any t ∈ (0, T ),

|u(x, t)− sup
M

u(·, t)| ≤ C, ∀x ∈ M. (3.5)

Since
∫
M

ũ(·, t)Ωn ∧ Ω
n
= 0, there exists x0 ∈ M such that ũ(x0, t) = 0. Then we have

|ũ(x, t)| = |ũ(x, t) − ũ(x0, t)| = |u(x, t)− u(x0, t)|
≤ |u(x, t)− sup

M

u(·, t)|+ |u(x0, t)− sup
M

u(·, t)|

≤ 2C, ∀x ∈ M.

Hence the C0 estimate follows.

4 The C1 Estimate

Although the gradient estimate is unnecessary for the proof of the main result, we provide

it as the gradient estimate for fully nonlinear equations has independent interest.

Theorem 4.1 Let u be a solution to (1.5) on M × [0, T ). Then there exists a constant C

depending only on the fixed data (I, J,K, g,Ω,Ωh) and f such that

sup
M×[0,T )

|du|g ≤ C. (4.1)

Proof A simple computation in local coordinates shows that

n∂u ∧ ∂Ju ∧ Ωn−1 =
1

4
|du|2gΩn.

Define

β :=
1

4
|du|2g.

Following [7], we consider

G = log β − ϕ(ũ),

where ϕ is a function to be determined and ũ is the normalization of u. For any T0 ∈ (0, T ),

suppose max
M×[0,T0]

G = G(p0, t0) with (p0, t0) ∈ M×[0, T0]. We want to show β(p0, t0) is uniformly

bounded. If t0 = 0, we have the estimate. In the following, we assume t0 > 0.

We choose the normal coordinates around p0 (see Remark 2.1) and all the calculation is at

(p0, t0),

0 ≤ ∂tG =
βt

β
− ϕ′ũt;

∂G =
∂β

β
− ϕ′∂u = 0;

∂JG =
∂Jβ

β
− ϕ′∂Ju = 0;
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∂∂JG =
∂∂Jβ

β
− ∂β ∧ ∂Jβ

β2
− ϕ′′∂u ∧ ∂Ju− ϕ′∂∂Ju

=
∂∂Jβ

β
− ((ϕ′)2 + ϕ′′)∂u ∧ ∂Ju− ϕ′∂∂Ju.

Then we have

0 ≤ P(G) = Gt −
∂∂JG ∧ A ∧ Ωn

Ω̃n ∧ Ωn

=
βt

β
− ϕ′ũt −

∂∂Jβ ∧ A ∧ Ω
n

βΩ̃
n ∧Ω

n
+ ((ϕ′)2 + ϕ′′)

∂u ∧ ∂Ju ∧ A ∧ Ω
n

Ω̃
n ∧ Ω

n

+ ϕ′ ∂∂Ju ∧ A ∧ Ω
n

Ω̃
n ∧ Ω

n
. (4.2)

We first deal with ∂tβ. By taking ∂t on both sides of βΩn = n∂u ∧ ∂Ju ∧ Ωn−1, we get

βt =

2n−1∑

j=0

(ut,juj + ujut,j). (4.3)

We next compute ∂∂Jβ. Taking ∂J on both sides of βΩ
n
= n∂u∧ ∂Ju∧Ω

n−1
and noticing

∂JΩ = 0 (since Ω is hyperKähler), we have

∂Jβ ∧ Ω
n
= n∂J∂u ∧ ∂Ju ∧ Ω

n−1 − n∂u ∧ ∂J∂Ju ∧ Ω
n−1

.

Then taking ∂ on both sides, we obtain

∂∂Jβ ∧ Ω
n
= n∂∂J∂u ∧ ∂Ju ∧ Ω

n−1
+ n∂J∂u ∧ ∂∂Ju ∧Ω

n−1

− n∂∂u ∧ ∂J∂Ju ∧ Ω
n−1

+ n∂u ∧ ∂∂J∂Ju ∧ Ω
n−1

.

From the equation

Ω̃n = eut+fΩn, (4.4)

by taking ∂ on both sides we get

n(∂S1(∂∂Ju) ∧ Ω− ∂∂∂Ju) ∧ Ω̃n−1 = (n− 1)(∂eut+f ∧ Ωn − n∂Ωh ∧ Ω̃n−1).

The left hand side can be calculated as the following:

n(∂S1(∂∂Ju) ∧ Ω− ∂∂∂Ju) ∧ Ω̃n−1

= n
(
∂S1(∂∂Ju) ∧Ωn · Ω ∧ Ω̃n−1

Ωn
− ∂∂∂Ju ∧ Ω̃n−1

)

= n
(
∂
(∂∂Ju ∧ Ωn−1

Ωn
· Ωn

)
· Sn−1(Ω̃)− ∂∂∂Ju ∧ Ω̃n−1

)

= (Sn−1(Ω̃)Ω
n−1 − Ω̃n−1) ∧ n∂∂∂Ju

= (n− 1)A ∧ ∂∂∂Ju.

Hence we obtain

A ∧ n∂∂∂Ju = −n2Ω̃n−1 ∧ ∂Ωh + n∂eut+f ∧ Ωn.
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By taking ∂J on both sides of (4.4), we obtain

A ∧ n∂J∂∂Ju = −n2Ω̃n−1 ∧ ∂JΩh + n∂Je
ut+f ∧ Ωn.

Thus for the third term of (4.2), we have

∂∂Jβ ∧ A ∧Ω
n
= I1 + I2 + n∂J∂u ∧ ∂∂Ju ∧ Ω

n−1 ∧ A− n∂∂u ∧ ∂J∂Ju ∧ Ω
n−1 ∧A, (4.5)

where

I1 = (−n2Ω̃n−1 ∧ ∂Ωh + n∂eut+f ∧ Ωn) ∧ ∂Ju ∧Ω
n−1

,

I2 = (n2Ω̃n−1 ∧ ∂JΩh − n∂Je
ut+f ∧ Ωn) ∧ ∂u ∧ Ω

n−1
.

By direct computation,

∂J∂u =
∑

ujiJ
−1dzi ∧ dzj,

∂∂Ju =
∑

uijdz
j ∧ J−1dzi,

∂∂u =
∑

uijdz
i ∧ dzj ,

∂J∂Ju =
∑

uijJ
−1dzj ∧ J−1dzi,

the third term of (4.5) becomes

n∂J∂u ∧ ∂∂Ju ∧ Ω
n−1 ∧A

=
1

n− 1

n−1∑

k=0

2n−1∑

j=0

(∑

i6=k

1

Ω̃2i2i+1

)
(|u2kj |2 + |u2k+1j |2)Ω̃n ∧ Ω

n
, (4.6)

and the forth term

− n∂∂u ∧ ∂J∂Ju ∧Ω
n−1 ∧ A

=
1

n− 1

n−1∑

k=0

2n−1∑

j=0

(∑

i6=k

1

Ω̃2i2i+1

)
(|u2kj |2 + |u2k+1j |2)Ω̃n ∧ Ω

n
. (4.7)

For I1 and I2 we have

I1 = −n2Ω̃n−1 ∧ ∂Ωh ∧ ∂Ju ∧Ωn−1 − n∂Ju ∧ ∂eut+f ∧ Ωn ∧ Ωn−1

= −
n−1∑

i=0

2n−1∑

j=0

(Ωh)2i2i+1,juj

Ω̃2i2i+1

Ω̃n ∧ Ω
n
+

2n−1∑

j=0

uj(ut + f)jΩ̃
n ∧ Ω

n
(4.8)

and

I2 = nΩ̃n−1 ∧ ∂JΩh ∧ ∂u ∧ Ω
n−1

+ ∂u ∧ ∂Je
ut+f ∧ Ωn ∧ Ω

n−1

= −
n−1∑

i=0

2n−1∑

j=0

(Ωh)2i2i+1,juj

Ω̃2i2i+1

Ω̃n ∧ Ω
n
+

2n−1∑

j=0

uj(ut + f)jΩ̃
n ∧ Ω

n
. (4.9)

Combining (4.6)–(4.9), we obtain estimate of (4.5),

∂∂Jβ ∧ A ∧ Ω
n

βΩ̃
n ∧ Ω

n
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= − 1

β

n−1∑

i=0

2n−1∑

j=0

(Ωh)2i2i+1,juj + (Ωh)2i2i+1,juj

Ω̃2i2i+1

+
1

β

2n−1∑

j=0

(uj(ut + f)j + uj(ut + f)j)

+
1

(n− 1)β

n−1∑

k=0

2n−1∑

j=0

∑

i6=k

|u2kj |2 + |u2k+1j |2 + |u2kj |2 + |u2k+1j |2

Ω̃2i2i+1

. (4.10)

Again by direct computation, the forth term of (4.2) is

∂u ∧ ∂Ju ∧A ∧ Ω
n
=

1

n− 1

n−1∑

i=0

(∑

k 6=i

1

Ω̃2k2k+1

)
(|u2i|2 + |u2i+1|2)Ω̃n ∧Ω

n
. (4.11)

For the fifth term of (4.2), we compute

∂∂Ju ∧ A =
n

n− 1
∂∂Ju ∧

(nΩ̃n−1 ∧ Ω

Ωn
Ωn−1 − Ω̃n−1

)

=
n

n− 1
(S1(∂∂Ju)Ω− ∂∂Ju) ∧ Ω̃n−1

= n(Ω̃n − Ωh ∧ Ω̃n−1).

By compactness of M , there exists ε > 0 such that Ωh ≥ εΩ. Hence we obtain

ϕ′ ∂∂Ju ∧ A ∧ Ω
n

Ω̃
n ∧ Ω

n
= nϕ′ − nϕ′Ωh ∧ Ω̃n−1 ∧ Ω

n

Ω̃
n ∧ Ω

n

≤ nϕ′ − εϕ′

n−1∑

i=0

1

Ω̃2i2i+1

. (4.12)

We assume β ≫ 1 otherwise we are finished. By (4.3) and (4.10)–(4.12), the inequality (4.2)

becomes

0 ≤ − 1

β

2n−1∑

i=0

(ui(f)i + ui(f)i)

+
(ϕ′)2 + ϕ′′

n− 1

n−1∑

i=0

(∑

k 6=i

1

Ω̃2k2k+1

)
(|u2i|2 + |u2i+1|2)

+ nϕ′ −
(
εϕ′ − C1

Σ|uj |
β

− C2

Σ|uj|
β

) n−1∑

i=0

1

Ω̃2i2i+1

− ϕ′ũt. (4.13)

The first term is bounded from above. Now we take

ϕ(s) =
log(2s+ C0)

2
,

where C0 is determined by C0 estimate. Then (4.13) becomes

C3 ≥ C4

n−1∑

i=0

(∑

k 6=i

1

Ω̃2k2k+1

)
(|u2i|2 + |u2i+1|2) + C5

n−1∑

i=0

1

Ω̃2i2i+1

. (4.14)
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Thus for any fixed i,

Ω̃2i2i+1 ≥ C5

C3
≥ C.

By (4.4) we also have

1

Ω̃2i2i+1

= e−ut−f
∏

j 6=i

Ω̃2j2j+1 ≥ Cn−1

sup
M

eut+f
, 0 ≤ i ≤ n− 1.

Then by (4.14) we obtain β is uniformly bounded.

5 Bound on ∂∂Ju

Theorem 5.1 Let u be a solution to (1.5) on M × [0, T ). Then there exists a constant C

depending only on the fixed data (I, J,K, g,Ω,Ωh) and f such that

sup
M×[0,T )

|∂∂Ju|g ≤ C. (5.1)

Proof For simplicity denote

η = S1(∂∂Ju).

Consider the function

G = log η − ϕ(ũ),

where ϕ is the same as before. For any T0 ∈ (0, T ), suppose max
M×[0,T0]

G = G(p0, t0) with

(p0, t0) ∈ M × [0, T0). We want to show η(p0, t0) is uniformly bounded. We choose the normal

coordinates around p0. All the calculations are carried at (p0, t0). We have

0 ≤ ∂tG =
ηt

η
− ϕ′ũt,

∂G =
∂η

η
− ϕ′∂u = 0,

∂JG =
∂Jη

η
− ϕ′∂Ju = 0,

∂∂JG =
∂∂Jη

η
− ((ϕ′)2 + ϕ′′)∂u ∧ ∂Ju− ϕ′∂∂Ju.

We further have

0 ≤ P(G) = Gt −
∂∂JG ∧ A ∧ Ω

n

Ω̃
n ∧ Ω

n

=
ηt

η
− ϕ′ũt −

∂∂Jη ∧ A ∧ Ωn

ηΩ̃
n ∧ Ω

n
+ ((ϕ′)2 + ϕ′′)

∂u ∧ ∂Ju ∧ A ∧ Ωn

Ω̃
n ∧ Ω

n

+ ϕ′ ∂∂Ju ∧ A ∧ Ω
n

Ω̃
n ∧ Ω

n
. (5.2)

The last two terms were dealt with in the previous section. Since

ηΩn = n∂∂Ju ∧ Ωn−1,
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by taking ∂t on both sides we have for ηt in the first term

ηt = ut,pp. (5.3)

We now focus on ∂∂Jη in the third term of (5.2). By definition η is real, and

ηΩ
n
= n∂ ∂Ju ∧ Ω

n−1
.

Under the hyperKähler condition dΩ = 0, differentiating twice the above equation gives

∂∂Jη ∧ Ωn = n∂∂J∂ ∂Ju ∧ Ωn−1 = n∂ ∂J∂∂Ju ∧ Ωn−1
.

We know that (see (2.7))

∂∂Ju = (n− 1)Ωh − S1(Ωh)Ω + S1(Ω̃)Ω− (n− 1)Ω̃.

Thus

∂ ∂J∂∂Ju = (n− 1)∂ ∂JΩh − ∂ ∂JS1(Ωh) ∧ Ω + ∂ ∂JS1(Ω̃) ∧ Ω− (n− 1)∂ ∂J Ω̃, (5.4)

where we used the hyperKähler condition on Ω. Now we have

∂∂Jη ∧ A ∧Ωn = nA ∧ ∂ ∂J∂∂Ju ∧ Ωn−1

= n(n− 1)A ∧ ∂ ∂JΩh ∧ Ω
n−1 − n∂ ∂JS1(Ωh) ∧ A ∧ Ω ∧Ω

n−1

+ n∂ ∂JS1(Ω̃) ∧A ∧ Ω ∧ Ω
n−1 − n(n− 1)A ∧ ∂ ∂J Ω̃ ∧ Ω

n−1
. (5.5)

Note that

A ∧ Ω =
n

n− 1

(
Sn−1(Ω̃)Ω

n−1 − Ω̃n−1
)
∧ Ω = Sn−1(Ω̃)Ω

n

and

∂ ∂JS1(Ω̃) ∧ Ωn = n∂ ∂J Ω̃ ∧ Ωn−1.

The third term of (5.5) becomes

n∂ ∂JS1(Ω̃) ∧ A ∧ Ω ∧Ω
n−1

= n∂ ∂JS1(Ω̃) ∧ (Ωn · Sn−1(Ω̃)) ∧ Ω
n−1

= n2Sn−1(Ω̃)∂ ∂J Ω̃ ∧ Ωn−1 ∧ Ω
n−1

.

The forth term is

n(n− 1)A ∧ ∂ ∂J Ω̃ ∧ Ω
n−1

= n2Sn−1(Ω̃)∂ ∂J Ω̃ ∧Ωn−1 ∧ Ω
n−1 − n2Ω̃n−1 ∧ ∂ ∂J Ω̃ ∧ Ω

n−1
.

The first two terms of (5.5) are similar and we get

∂∂Jη ∧ A ∧ Ω
n
= n2∂ ∂J Ω̃ ∧ Ω̃n−1 ∧ Ω

n−1 − n2∂ ∂JΩh ∧ Ω̃n−1 ∧ Ω
n−1

and

∂∂Jη ∧ A ∧ Ω
n

ηΩ̃
n ∧ Ω

n
= n2 ∂ ∂J Ω̃ ∧ Ω̃n−1 ∧ Ω

n−1

ηΩ̃
n ∧ Ω

n
− n2 ∂ ∂JΩh ∧ Ω̃n−1 ∧ Ω

n−1

ηΩ̃
n ∧ Ω

n
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=
1

η

n−1∑

i=0

2n−1∑

p=0

Ω̃2i2i+1,pp

Ω̃2i2i+1

− 1

η

n−1∑

i=0

2n−1∑

p=0

(Ωh)2i2i+1,pp

Ω̃2i2i+1

≥ 1

η

n−1∑

i=0

2n−1∑

p=0

Ω̃2i2i+1,pp

Ω̃2i2i+1

− C1

η

n−1∑

i=0

1

Ω̃2i2i+1

. (5.6)

We now rewrite the right hand side of (5.6) using the equation

Pf(Ω̃ij) = eut+fPf(Ωij), (5.7)

where Ωn = n!Pf(Ωij)dz
0 ∧ · · · ∧ dz2n−1. Take logarithm of both sides

log Pf(Ω̃ij) = ut + f + logPf(Ωij). (5.8)

Since ∂Ω = 0, we have ∂Pf(Ω) = 0. By taking ∂ of (5.8) and using Pf(Ω̃ij)
2 = det(Ω̃ij), we get

1

2

∑
Ω̃ijΩ̃ji,p = ut,p + fp. (5.9)

By taking ∂ of both sides we obtain

1

2

∑
Ω̃ijΩ̃ji,pp =

1

2

∑
Ω̃ikΩ̃kl,pΩ̃

ljΩ̃ji,p + fpp + ut,pp. (5.10)

In local coordinates, the left hand side of (5.10) is

1

2

∑
Ω̃2i2i+1Ω̃2i+12i,pp +

1

2

∑
Ω̃2i+12iΩ̃2i2i+1,pp =

∑ Ω̃2i2i+1,pp

Ω̃2i2i+1

. (5.11)

It was proved in [15] that the first term of the right hand side of (5.10) is nonnegative, i.e.,

∑
Ω̃ikΩ̃kl,pΩ̃

ljΩ̃ji,p ≥ 0. (5.12)

Hence we obtain

∂∂Jη ∧ A ∧ Ω
n

ηΩ̃
n ∧Ω

n
≥ 1

2η
∆I,gf − C1

η

n−1∑

i=0

1

Ω̃2i2i+1

+
1

η
ut,pp. (5.13)

Inserting (5.3), (5.13) and (4.11)–(4.12) into (5.2), we have

0 ≤ − 1

2η
∆I,gf +

(ϕ′)2 + ϕ′′

n− 1

n−1∑

i=0

(∑

k 6=i

1

Ω̃2k2k+1

)
(|u2i|2 + |u2i+1|2)

+ nϕ′ −
(
εϕ′ − C1

η

) n−1∑

i=0

1

Ω̃2i2i+1

− ϕ′ũt. (5.14)

Assuming η ≫ 1, we obtain from (5.14),

C2 ≥ C3

n−1∑

i=0

1

Ω̃2i2i+1

. (5.15)

Hence all Ω̃2i2i+1 are uniformly bounded. Since η = S1(∂∂Ju) = S1(Ω̃) − S1(Ωh), we can

therefore obtain a uniform bound on η.
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6 Proof of the Main Theorem

In [24], Tosatti, Wang, Weinkove and Yang derived C2,α estimates for solutions of some

nonlinear elliptic equations based on a bound on the Laplacian of the solution, which was

improved and extended to parabolic equations by Chu [9]. Bedulli, Gentili and Vezzoni [6]

proved the C2,α for the quaternionic complex Monge-Ampère equation. In this section we

apply their techniques to derive the C2,α estimates in our setting. Then the longtime existence

and convergence follows.

We first need to rewrite (1.5) in terms of real (1, 1)-forms, which can be done by using the

following relation

Ωn ∧ Ωn

(n!)2
=

ω2n

(2n)!
.

And the equation is reformulated as

ω2n
u = e2(ut+f)ω2n, (6.1)

where ω and ωu are induced by Ω and Ω̃, respectively.

Lemma 6.1 Let u be a solution to (1.5) on M × [0, T ) and ε ∈ (0, T ), then we have

‖∇2u‖Cα(M×[ε,T )) ≤ Cε,α, (6.2)

where the constant Cε,α > 0 depending only on (I, J,K, g,Ω,Ωh), f , ε and α.

Proof The proof here follows from [9–10, 24]. For any point p ∈ M , choose a local

chart around p that corresponds to the unit ball B1 in C2n with I-holomorphic coordinates

(z0, · · · , z2n−1). We have ω =
√
−1gijdz

i ∧ dzj where (gij(x)) is a positive definite 2n × 2n

hermitian matrix given by the metric at any point x ∈ B1. We introduce the real coordinates

by zi = xi +
√
−1x2n+i for i = 0, · · · , 2n− 1.

The complex structure I corresponds to an endomorphism of the real tangent space which

we still denote by I, written in matrix form

I =

(
0 −I2n
I2n 0

)
,

where I2n denotes the identity matrix.

For any 2n× 2n hermitian matrix H = A+
√
−1B, the standard way to identify H with a

real symmetric matrix ι(H) ∈ Sym(4n) is defined as

ι(H) =

(
A B

−B A

)
.

Let Q(x,t)(r) denote the domain Bx(r)×(t − r2, t]. We want to check (6.1) is of the following

form as in [9, p. 14],

ut(x, t)− F (S(x, t) + T (D2
Ru, x, t), x, t) = h(x, t), (6.3)
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where u is defined in Q(0,0)(1) up to scaling and translation, D2
R
u is the real Hessian and the

functions F , S and T are defined as the following:

F : Sym(4n)×Q(0,0)(1) → R, F (N, x, t) :=
1

2
log det(N),

S : Q(0,0)(1) → Sym(4n), S(x, t) := ι(gij(x))

and

T : Sym(4n)×Q(0,0)(1) → Sym(4n),

T (N, x, t) :=
1

n− 1

(1
8
tr(ι(gij(x))

−1p(N))ι(gij(x))−G(N, x)
)
,

where

p(N) :=
1

2
(N + tINI),

G(N, x) :=
1

4
(p(N) + ι(tJ(x))p(N)ι(J(x))).

Here we are using J(x) as the matrix representation of the complex structure J . Observe that

p(D2
R
u) = 2ι(D2

C
u), we have

G(D2
Ru, x) =

1

2
(ι(uij) + ι(J)ki ι(D

2
Cu)lkι(J)

l

j
)(x) =

1

2
ι(Re(∂∂Ju(·I, ·J))ij)(x).

Moreover, one can verify that

tr(ι(gij(x))
−1p(D2

Ru)) = 4 tr(g−1
ij

(x)D2
Cu) = 4∆I,gu.

Notice that for a hermitian matrix H , det(ι(H)) = det(H)2, hence we get

ut(x, t)− F (S(x, t) + T (D2
Ru, x, t), x, t)

=
1

2
log det

(
ι(gij(x)) +

1

n− 1

((1
2
∆I,gu

)
ι(gij(x)) −

1

2
ι(Re(∂∂Ju(·I, ·J))ij)(x)

))

= log det
(
gij(x) +

1

n− 1

(
S1(∂∂Ju)gij(x) −

1

2
ι(Re(∂∂Ju(·I, ·J))ij)(x)

))

= −2f(x)− log det(gij(x)).

Thus (6.1) is indeed of form (6.3).

It remains to verify that the functions F , S and T defined above satisfies all the assumptions

in [9, H1–H3, p. 14]. From Theorem 5.1 we have trggu ≤ C, thus we get

C−1
0 I4n ≤ S(x, t) + T (D2

Ru, x, t) ≤ C0I4n.

Take the convex set E to be the set of matrices N ∈ Sym(4n) with

C−1
0 I4n ≤ N ≤ C0I4n.

It is straightforward that H1, H3 and H2(1), H2(2) hold (cf. [9]). For H2(3), we choose local

coordinates such that g(x) = Id and J is block diagonal with only J2i
2i+1

and J2i+1

2i
non-

zero, while p(P ) is diagonal with eigenvalues λ1, λ1, · · · , λ2n, λ2n ≥ 0. Then one computes
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the eigenvalues of T (P, x, t) are 1
2

∑
i6=j

λi ≥ 0. Thus for P ≥ 0 we have T (P, x, t) ≥ 0 and let

K = 2(n− 1), then

K−1‖P‖ ≤ ‖T (P, x, t)‖ ≤ K‖P‖.

Finally, to apply [9, Theorem 5.1], we need overcome the lack of C0 bound of u using the

same argument as in [10, Lemma 6.1]. Specifically, we split into two cases T < 1 and T ≥ 1. If

T < 1 then we have a C0 bound on u since by Lemma 3.1 sup
M×[0,T )

|ut| ≤ C. Hence, [9, Theorem

5.1] applies directly in this case.

If T ≥ 1, for any b ∈ (0, T − 1), we consider

ub(x, t) = u(x, t+ b)− inf
M×[b,b+1)

u(x, t)

for all t ∈ [0, 1). By Lemma 3.2, we have sup
M×[0,1)

|ub(x, t)| ≤ C. Moreover, it is obvious that ub

also satisfies the equation, thus we have a Laplacian bound on ub. By applying Theorem 5.1 in

[9] to ub, for any ε ∈
(
0, 12

)
, we have

‖∇2u‖Cα(M×[b+ε,b+1)) = ‖∇2ub‖Cα(M×[ε,1)) ≤ Cε,α,

where Cε,α is a uniform constant depending only on the fixed data (I, J,K, g,Ω,Ωh), f , ε and

α. Since b ∈ (0, T − 1) is arbitrary, we obtain the estimate.

Proof of Theorem 1.1 Once we have the C2,α estimates, we obtain the longtime exis-

tence and the exponential convergence of ũ similar as the argument in [20]. Let ũ∞ = lim
t→∞

ũ(·, t),
then ũ∞ satisfies

(
Ωh+

1

n− 1

((1
2
∆I,gũ∞

)
Ω− ∂∂J ũ∞

))n

= ef+b̃Ωn

Ωh +
1

n− 1

((1
2
∆I,gũ∞

)
Ω− ∂∂J ũ∞

)
> 0,

where

b̃ =
(∫

M

Ωn ∧Ωn
)−1

∫

M

(
log

(
Ωh + 1

n−1

((1
2
∆I,gũ∞

)
Ω− ∂∂J ũ∞

))n

Ωn
− f

)
Ωn ∧ Ωn

.
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