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Abstract In this paper, the authors study the elliptic system arising from the study of
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1 Introduction

Since the pioneering work by Ginzburg and Landau, there have been many studies on the

classical Abelian-Higgs (AH for short) model (see [5, 7, 29, 33, 41, 52, 55]). However, in the

situation with both electronic and magnetic charge, one should consider both the Maxwell term

and Chern-Simons (CS for short) term in the model. But a naive inclusion of both AH term

and CS term in the Lagrangian will lose the self-dual structure, which is a reduced first-order

equation from the original complicated second order equation of motion (see [6, 38]). The pure

CS model was proposed by Hong-Kim-Pac in [27] and Jackiw-Weinberg in [28] independently,

and there have been extensive literatures for the various types of solutions for CS model (see

[8–9, 12–16, 18–19, 21–25, 30–32, 35–37, 39–40, 44–46, 48–49, 54, 56]). As a unified self-dual

system of AH and CS, Lee-Lee-Min in [34] proposed the Maxwell-Chern-Simons (MCS for short)

model by introducing a neutral scalar field, and showed formally that the limiting problems for

MCS model could be AH model and CS model depending on the behavior of Chern-Simons

mass scale and electric charge (see [20]). The mathematically rigorous proofs for the formal

statements in [20, 34] have been obtained in [2–3, 10–11, 42–43] according to the classes of

solutions and domains.

If one is restricted to the energy minimizers of the Euler-Lagrangian equation for MCS

model, and apply Jaffe-Taubes argument in [29, 52], then the following reduced elliptic system
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can be obtained (see [10, 20, 26, 43, 49–51, 56] for the detail):





∆u = λµeu − µN + 4π
N∑

i=1

δpi
in Ω,

∆N = µ(µ+ λeu)N − λµ(µ+ λ)eu in Ω.

(1.1)

Here, Ω is flat torus in R2, δpi
stands for the Dirac measure concentrated at pi, and each pi is

called a vortex point (repeated according to their multiplicity).

The periodic patterns of vortex configurations have been observed in the experiment for the

superconductivity (see [1, 4, 47]). Due to the theory suggested by ’t Hooft in [53], we consider

the above equation in a flat 2-dimensional torus Ω.

On a flat 2-dimensional torus Ω, (1.1) has two different kinds of periodic solutions (see [2,

Remark 3]):

(i) topological solution:
(
uλ,µ,

Nλ,µ

λ

)
→ (0, 1) a.e. on Ω as µ ≫ λ ≫ 1;

(ii) nontopological solution:
(
uλ,µ,

Nλ,µ

λ

)
→ (−∞, 0) a.e. on Ω as µ ≫ λ ≫ 1.

We recall the following asymptotic behavior of solutions in [2–3, 10–11, 42–43].

Theorem A (see [2, Theorem 1.1]) We assume that {(uλ,µ,Nλ,µ)} is a sequence of solutions

of (1.1). Then

lim
λ,µ→∞, λ

µ
→0

∥∥∥euλ, µ −
Nλ,µ

λ

∥∥∥
L∞(Ω)

= 0. (1.2)

Note that this system is equivalent to






∆
(
u+

N

µ

)
= −λ2eu

(
1−

N

λ

)
+ 4π

N∑

i=1

δpi
in Ω,

∆N = µ2
(
1 +

λ

µ
eu
)
N − λµ2

(
1 +

λ

µ

)
eu in Ω.

(1.3)

Due to the estimation (1.2), (1.3) will be regarded as a perturbation of the following Chern-

Simons equation:

∆u = −λ2eu(1− eu) + 4π
N∑

i=1

δpi
in Ω. (1.4)

In view of this observation, we have proved the existence of non-topological solutions with

the concentrating property at a single point (at some vortex point or away from all the vortex

points) in [2]. We note that the maximum of the first component for solutions in [2] has a finite

lower bound since the profile of approximate solutions comes from the entire solution of CS

model.

In [3] we also constructed non-topological solutions of (1.1) whose first component concen-

trates at points far away from the vortex points and which tends to −∞ uniformly. In this

case, the profile of approximate solutions comes from the entire solution of regular Liouville

equation, so one need that N be an even number.

In this paper, we continue with this construction, our aim is to prove the existence of non-

topological solution concentrated at some vortex points of (1.1) such that the first component for
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solutions tends to −∞ uniformly. Our construction is inspired by [17], where the authors proved

the existence of non-topological solutions to (1.4) with magnetic field concentrated at some of

the vortex points. It is natural to use the “singular” Liouville profiles as the approximating

solutions. As we will see, the concentration mass at pl will be 8π(nl + 1) where nl is the

multiplicity of pl in the set {p1, · · · , pN}, then there must hold the relation 2πN = 4π
m∑
l=1

(nl+1).

In order to describe our main result, let G(x, y) be the Green’s function satisfying

−∆xG(x, y) = δy −
1

|Ω|
,

∫

Ω

G(x, y)dy = 0, (1.5)

where |Ω| is the measure of Ω. And we denote the regular part of G(x, y) by

γ(x, y) = G(x, y) +
1

2π
ln |x− y|.

Let

u0(x) = −4π

N∑

i=1

G(x, pi).

We replace u by u+ u0, and assume |Ω| = 1. Then (1.3) is equivalent to





∆
(
u+

N

µ

)
= −λ2eu+u0

(
1−

N

λ

)
+ 4πN in Ω,

∆N = µ(µ+ λeu+u0 )N − λµ(λ+ µ)eu+u0 in Ω.

(1.6)

For {p1, · · · , pm} ⊂ {p1, · · · , pN}, we define

D0 =
1

π

[ ∫

Ω\σ−1
0 (Bρ(0))

e
u0(z)+8π

m∑
l=1

(nl+1)G(z,pl)
dz −

m∑

l=1

(nl + 1)

∫

R2\Bρ(0)

dy

|y|4

]
(1.7)

for small ρ > 0.

For simplicity, we write
∫
Ω
f(y)dy as

∫
Ω
f in the following text. Our main result can be

stated as follows.

Theorem 1.1 Let {p1, · · · , pm} be a subset of the vortex set {p1, · · · , pN} /∈ ∂Ω, {pj}j be

remaining points and nl, nj be the corresponding multiplicities so that

2πN = 4π

m∑

l=1

(nl + 1). (1.8)

Letting H0 be a meromorphic function in Ω so that |H0|2 = e
u0+8π

m∑
l=1

(nl+1)G(z,pl)
(which exists

and is unique up to rotations), assume that H0 has a zero residue at each p1, · · · , pm. Letting

σ0 := −
( ∫ z

H0(w)dw
)−1

(a well-defined meromorphic function, the notation
∫ z

g(ω)dω denotes

the anti-derivative of g(z)), assume that D0 < 0 in (1.7) and the “non-degeneracy condition”

detA 6= 0, where A is given by (6.34). Assume that λ and µ are large enough and λ
µ
is small

enough. Then (1.6) has a solution (uλ,µ,Nλ,µ) satisfying

• λ2euλ,µ+u0
(
1 −

Nλ,µ

λ

)
⇀ 8π

m∑
l=1

(nl + 1)δpl
and euλ,µ+u0

∫
Ω
euλ,µ+u0

⇀
2

m∑
l=1

(nl+1)δpl

N
weakly in the

sense of measure as λ, µ → ∞, λ
µ
→ 0;

• lim
λ,µ→∞, λ

µ
→0

(max
Ω

uλ,µ) = −∞ and lim
λ,µ→∞,λ

µ
→0

‖Nλ,µ‖L∞(Ω)

λ
= 0.
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Remark 1.1 In [17], the authors gave some explicit examples which show that the assump-

tion D0 < 0 and “non-degeneracy condition” in Theorem 1.1 can be valid (see [17, Sections

5–6]).

The paper is organized as follows. In Section 2, we introduce the main problem and review

some properties of the approximate solutions. In Section 3, we solve the projected problem. In

Section 4, we prove Theorem 1.1 for the case of one point condensate, i.e., m = 1. In Section

5, we prove Theorem 1.1 when m ≥ 2. The approximate solutions which were given by [17] are

introduced in Section 6 (Appendix).

2 Preliminaries

In this section, we will recall some results in [17]. First let us introduce the following

transform for any solution
(
u, N

λ

)
of (1.6)

ũ = u+
N

µ
and ṽ =

N

λ
, (2.1)

then (1.6) is equivalent to




∆ũ = −λ2eu0+ũ−λ
µ
ṽ(1 − ṽ) + 4πN in Ω,

∆ṽ = µ2(ṽ − eu0+ũ− λ
µ
ṽ)− µλeu0+ũ−λ

µ
ṽ(1− ṽ) in Ω.

(2.2)

Furthermore, (2.2) can be written as follows:

{
∆ũ = −λ2eu0+ũ(1 − eu0+ũ) + 4πN + h1(ũ, ṽ) in Ω,

∆ṽ = µ2(ṽ − eu0+ũ−λ
µ
ṽ)− µλeu0+ũ−λ

µ
ṽ(1− ṽ) in Ω,

(2.3)

where h1(ũ, ṽ) = λ2eu0+ũ(1 − eu0+ũ)− λ2eu0+ũ−λ
µ
ṽ(1− ṽ).

We will find a solution (ũ, ṽ) of (2.3) such that

λ2

∫

Ω

eu0+ũ(1− eu0+ũ) = 4πN and

∫

Ω

h1(ũ, ṽ) = 0. (2.4)

Let us decompose ũ as ũ = w̃ + c, where c = 1
|Ω|

∫
Ω
ũ. Using (2.4), we have

e2c
∫

Ω

e2u0+2w̃ − ec
∫

Ω

eu0+w̃ +
4Nπ

λ2
= 0.

Hence, we obtain that

ec±(w̃) =
8Nπ

λ2

∫

Ω

eu0+w̃ ∓ λ

√(
λ

∫

Ω

eu0+w̃
)2

− 16Nπ

∫

Ω

e2u0+2w̃

. (2.5)

Since we are interested in non-topological solutions, it is natural to restrict our attention to

the case c = c−. Thus, using (2.5), we obtain that

c(w̃) = c−(w̃) = log
( 8Nπ

λ2

∫

Ω

eu0+w̃ + λ

√(
λ

∫

Ω

eu0+w̃
)2

− 16Nπ

∫

Ω

e2u0+2w̃

)
. (2.6)
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(2.3) can be reduced to the following equation in Ω:






−∆w̃ = 4Nπ
(

eu0+w̃∫

Ω

eu0+w̃
− 1

)
− h1(w̃ + c(w̃), ṽ)

+
64π2N2

(
eu0+w̃

∫

Ω

e2u0+2w̃
( ∫

Ω

eu0+w̃
)−1

− e2u0+2w̃
)

λ2

[ ∫

Ω

eu0+w̃ +

√(∫

Ω

eu0+w̃
)2

−
16Nπ

λ2

∫

Ω

e2u0+2w̃
]2

in Ω,

∆ṽ = µ2(ṽ − ew̃+u0+c(w̃)−λ
µ
ṽ)− µλew̃+u0+c(w̃)−λ

µ
ṽ(1− ṽ) in Ω,

∫

Ω

w̃ = 0.

(2.7)

In the next sections, we will first prove Theorem 1.1 for one point condensate case. We

denote this point by p. Assume that p is present n-times in {p1, · · · , pN}, and denote by

p′js the remaining points in the set {p1, · · · , pN} with corresponding multiplicities n′
js. For

simplicity in the notations let us assume p = 0.

Since the first equation of (2.7):

−∆w̃ = 4Nπ
( eu0+w̃

∫

Ω

eu0+w̃

− 1
)
− h1(w̃ + c(w̃), ṽ)

+

64π2N2
(
eu0+w̃

∫

Ω

e2u0+2w̃
(∫

Ω

eu0+w̃
)−1

− e2u0+2w̃
)

λ2
[ ∫

Ω

eu0+w̃ +

√(∫

Ω

eu0+w̃
)2

−
16Nπ

λ2

∫

Ω

e2u0+2w̃
]2

(2.8)

can be seen as a perturbed mean-field equation with potential eu0 and unperturbed part

−∆w̃ = 4Nπ
( eu0+w̃

∫

Ω

eu0+w̃

− 1
)
, (2.9)

and eu0 vanishes like |z|2n near 0, the local profile of w̃ near 0 will be given in terms of the

“singular” Liouville equation:

−∆U = |z|2neU . (2.10)

Following the idea in [17], we will choose the approximate solution as PUδ,a,σ which is given in

Section 2 of [17], we postpone the definition and estimates of PUδ,a,σ to Section 6.

In the following, we will list some estimates of the approximate solution W = PUδ,a,σ

defined in (6.3). In order to simplify the notations, we set Uδ,a = Uδ,a,σ and ca = ca,σa
which

are defined in (6.2) and (6.15), and omit the subscript a in σa is a function defined in (6.13).

Lemma 2.1 (see [17, (2.27)]) There holds

W + u0 = Uδ,a − log(8δ2) + log |σ′(z)|2 + 2π
n∑

k=0

|ak|
2

+ 2Re[caz
n+1] + θδ,a,σ + 2δ2fa,σ +O(δ4) (2.11)
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in C1(Ω), as δ → 0, uniformly for |a| < ρ and σ ∈ Br defined by (6.12), where

θδ,a,σ = −
1

|Ω|

∫

Ω

log
|σ(z)− a|4

(δ2 + |σ(z)− a|2)2
(2.12)

and

fa,σ(z) =

∫

∂Ω

[
∂ν

1

|σ(w) − a|2
G(w, z)−

1

|σ(w) − a|2
∂νG(w, z)

]
ds(w), (2.13)

ν is the unit outward normal of ∂Ω and G is given by (1.5).

Lemma 2.2 The following expansions hold :

eu0+W

∫

Ω

eu0+W

=
|σ′(z)|2eUδ,a

4Nπ
[1 +O(|ca||z|

n+1 + |ca||a|+ δ2| log δ|)], (2.14)

64(n+ 1)3

δ
2

n+1

|αa|
− 2

n+1
e2u0+2W

∫

Ω

e2u0+2W
Ea,δ = |σ′(z)|4e2Uδ,a [1 +O(|ca||z|

n+1) + o(1)] (2.15)

and

δ2

π(n+ 1)e
2π
|Ω|

n∑
k=0

|ak|2+θδ,a,σ+2δ2fa,σ(0)

∫

Ω

eu0+W

= 1 + 2Re[caFa(a)] + |ca|
2ReGa(a) +

1

2
|ca|

2∆ReGa(a)δ
2 log

1

δ
+

δ2

n+ 1
Da

+O(δ2|a|
1

n+1 + δ2|ca|+ δ
2n+3
n+1 ), (2.16)

where

αa = lim
z→0

zn+1

σ(z)
6= 0 (since σ ∈ Br), (2.17)

Ea,σ : =





∫

R2

|y + a
δ
|

(1 + |y|2)4
dy, if |a| = O(δ),

π

3

( |a|
δ

) 2n
n+1

, if |a| ≫ δ,

and

Fa(y) =

+∞∑

k=0

αk(n+1)
a yk+1,

Ga(y) = |y|2
[
2

+∞∑

k=0

+∞∑

m=1

αk
aα

k+m(n+1)
a |y|

2k
k+1 ym +

+∞∑

k=0

|αk
a|

2|y|
2k

n+1

]
,

where {αk
a}

+∞
k=0 are the coefficients of the Taylor expansion: eca(q

−1(y)) = 1 + cay
n+1

+∞∑
k=0

αk
ay

k,

q(z) = zQ
1

n+1 (z), Q(z) = σ(z)
zn+1 (see [17, Appendix A] for details). Here Da is defined by

πDa =

∫

Ω\σ−1
0 (Bρ(0))

e
u0(z)+8π

n∑
k=0

G(z,ak)−
2π
|Ω|

n∑
k=0

|ak|
2

dz −

∫

R2\Bρ(0)

n+ 1

|y|4
dy. (2.18)
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Proof Please refer to [17, (2.42), (2.51)–(2.52)].

Lemma 2.3 (see [17, Theorem 2.3]) Let |a| < ρ
2 and set

η = λ−2δ−
2

n+1 max
{
1,

|a|

δ

}
. (2.19)

The following expansions hold :

∆W + 4πN
( eu0+W

∫

Ω

eu0+W

− 1
)

= |σ′(z)|2eUδ,a

[ e2Re[caz
n+1]

1 + 2Re[caFa(a)] + |ca|2ReGa(a) +
1
2 |ca|

2∆ReGa(a)δ2 log
1
δ
+ δ2

n+1Da

− 1
]

+ |σ′(z)|2eUδ,aO(δ2|z|+ δ2|a|
1

n+1 + δ2|ca|+ δ
2n+3
n+1 ) +O(δ2) (2.20)

and

64π2N2
(
eu0+W

∫

Ω

e2u0+2W
(∫

Ω

eu0+W
)−1

− e2u0+2W
)

λ2
[ ∫

Ω

eu0+W +

√(∫

Ω

eu0+W
)2

−
16Nπ

λ2

∫

Ω

e2u0+2W
]2

= |σ′(z)|2eUδ,a

[ 8(n+ 1)2

λ2π|αa|
2

n+1 δ
2

n+1

Ea,δ −
1

λ2
|σ′(z)|2eUδ,a

]
[1 +O(|ca||z|

n+1 + η) + o(1)], (2.21)

where αa, Fa, Ga, Da, Ea,δ are given in Lemma 2.2.

The following lemma shows some properties of the approximate solution W := PUδ,a,σ,

which will be used in the next sections.

Lemma 2.4 Assume |a| = O(δ), then the following estimates hold :

•
∫
Ω
e2(u0+W )

( ∫
Ω
eu0+W

)2 = O(δ−
2

n+1 );

• ‖eW+u0‖∞ = O(δ−2− 2
n+1 );

• ec(W ) = O( δ
2

λ2 );

• ‖∆W‖∞ = O(δ−
2

n+1 ), ‖W‖∞ = O(| log δ|).

Proof Since |a| = O(δ), using Lemma 2.2, we have that

∫

Ω

e2(u0+W )

(∫

Ω

eu0+W
)2 =

n+ 1

π2δ
2

n+1 |αa|
2

n+1

(1 + o(1))

∫

R2

|1 + a
δ
|

2n
n+1

(1 + |y|2)4
dy,

where αa = lim
z→0

zn+1

σ(z) 6= 0. Since lim
a→0

αa = α0 := H(0)
n+1 6= 0, and H is defined in (6.4), we derive

that
∫
Ω
e2(u0+W )

( ∫
Ω
eu0+W

)2 = O(δ−
2

n+1 ).

According to Lemma 2.1, following the argument as for [17, (2.42), (2.45)], for any p > 1,
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we have

8pδ2p+
2(p−1)
n+1

e
2pπ

n∑
k=0

|ak|2+pθδ,a

∫

Ω

ep(W+u0)

= δ
2(p−1)
n+1

∫

σ−1(Bρ(0))

|σ′(z)|2pepUδ,a+O(p|ca||z|
n+1+pδ2)dz +O(δ2p+

2p
n+1 ) (by y = σ(z))

=
8pδ2p+

2(p−1)
n+1 (n+ 1)2p−1

|αa|
2

n+1 (p−1)

∫

Bρ(0)

|y|
2n(p−1)

n+1 (1 +O(|y|
1

n+1 ))p−1

(δ2 + |y − a|2)2p

× [1 +O(|cay|+ |y|
1

n+1 + δ2)]pdy +O(δ2p+
2p

n+1 ) (by δy = y − a)

=
8p(n+ 1)2p−1

|αa|
2

n+1 (p−1)

∫

B ρ
δ
(−a)

|y + a
δ
|
2n(p−1)

n+1

(1 + |y|2)2p

× [1 +O(|a|
1

n+1 + δ
1

n+1 |y|
1

n+1 + δ2)2p−1]dy +O(δ2p+
2p

n+1 ), (2.22)

in view of

|σ′(z)|2 = (n+ 1)2|αa|
−2|z|2n(1 +O(|z|))

= (n+ 1)2|αa|
− 2

n+1 |σ(z)|
2n

n+1 (1 +O(|σ(z)|
1

n+1 )),

where αa = lim
z→0

zn+1

σ(z) 6= 0. Since |a| = O(δ) and lim
a→0

αa = α0 = H(0)
n+1 6= 0, and H is defined in

(6.4), we have

‖eW+u0‖∞ = lim
p→∞

(∫

Ω

ep(u0+W )
) 1

p

= O(δ−2− 2
n+1 ).

Using the definition of c in (2.6), we have

ec(W ) =
8Nπ

λ2

1
∫

Ω

eu0+W +

√(∫

Ω

eu0+W
)2

− 16Nπλ−2

∫

Ω

e2u0+2W

=
8Nπ

λ2

∫

Ω

eu0+W

1

1 +

√√√√√√1−
16Nπ

λ2

∫

Ω

e2(u0+W )

(∫

Ω

eu0+W
)2

(using Lemma 2.2)

= O
( δ2

λ2

)
.

Since eu0 is a smooth function in Ω and ‖eW+u0‖∞ = O(δ−2− 2
n+1 ), we have ‖eW ‖∞ =

O(δ−2− 2
n+1 ). Moreover, ‖W‖∞ = O(| log δ|).

Using the expansion of ∆W in Lemma 2.3, we obtain that

‖∆W‖∞ = O(‖|σ′(z)|2eUδ,a‖∞). (2.23)

So we need to calculate ‖|σ′(z)|2eUδ,a‖∞. For any p > 1, by a similar argument as in (2.22), we
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obtain that

δ
2p

n+1

∫

Ω

|σ′(z)|2pepUδ,a =
8p(n+ 1)2p−1

|αa|
2

n+1 (p−1)

∫

B ρ
δ
(−a)

|y + a
δ
|
2n(p−1)

n+1

(1 + |y|2)2p

× [1 +O(|a|
1

n+1 + δ
1

n+1 |y|
1

n+1 + δ2)2p−1]dy. (2.24)

Since |a| = O(δ) and lim
a→0

αa = α0 = H(0)
n+1 6= 0, and H is defined in (6.4), we know that

‖|σ′(z)|2eUδ,a‖∞ = δ−
2

n+1 . Thus, using (2.23), we get that ‖∆W‖∞ = O(δ−
2

n+1 ).

3 Resolution of Projected Problem

In the previous section, we have introduced an approximate solution of the form W :=

PUδ,a,σ given by (6.3). We are now looking for solutions (w̃, ṽ) of (2.7) of the form

(w̃, ṽ) = (W + φ, eu0+W+c(W+φ)(1 + φ) + S),

where (φ, S) is a small correcting term, and using (2.6), we have

c(W + φ) = log
( 8Nπ

λ2

∫

Ω

eu0+W+φ + λ

√(
λ

∫

Ω

eu0+W+φ
)2

− 16Nπ

∫

Ω

e2u0+2W+2φ

)
. (3.1)

For convenience, we denote

f(φ, S) := eu0+W+c(W+φ)(1 + φ) + S. (3.2)

Let L2(S) := ∆S − µ2S and the linear operator

L1(φ) := ∆φ+K[φ+ γ(φ)], (3.3)

where

K = 4πN
eu0+W

∫

Ω

eu0+W

+
4πNB(W )

λ2
(
1 +

√
1−

B(W )

λ2

)2

( eu0+W

∫

Ω

eu0+W

− 2
e2(u0+W )

∫

Ω

e2(u0+W )

)
(3.4)

and

γ(φ)

= −

∫

Ω

eu0+Wφ
∫

Ω

eu0+W

+
B(W )

λ2
(
1 +

√
1−

B(W )

λ2

)√
1−

B(W )

λ2

(
∫

Ω

e2(u0+W )φ
∫

Ω

e2(u0+W )
−

∫

Ω

eu0+Wφ
∫

Ω

eu0+W

)
. (3.5)

Then problem (2.7) is equivalent to find a solution (φ, S) of





L1(φ) = −[R+N(φ)]− h1(W + φ+ c(W + φ), f(φ, S)) in Ω,

L2(S) = h2(φ, S) in Ω,

φ is a doubly periodic function with

∫

Ω

φ = 0,

(3.6)



672 W. W. Ao and C. Liu

where h1 is given by (2.3) and

h2(φ, S) =−∆[eu0+W+c(W+φ)(1 + φ)]

+ µ2[eu0+W+c(W+φ)(1 + φ)− eu0+W+φ+c(W+φ)−λ
µ
f(φ,S)]

− λµeu0+W+φ+c(W+φ)−λ
µ
f(φ,S)(1 − S − eu0+W+c(W+φ)). (3.7)

The error term R is defined by

R : = ∆W + 4Nπ
( eu0+W

∫

Ω

eu0+W

− 1
)

+

64π2N2
(
eu0+W

∫

Ω

e2u0+2W
(∫

Ω

eu0+W
)−1

− e2u0+2W
)

λ2
[ ∫

Ω

eu0+W +

√(∫

Ω

eu0+W
)2

−
16Nπ

λ2

∫

Ω

e2u0+2W
]2

. (3.8)

We define B(W ) := 16πN
( ∫

Ω
e2u0+2W

)( ∫
Ω
eu0+W

)−2
, the nonlinear term N(φ), which is

quadratic in φ, is given by

N(φ) = 4πN
[ eu0+W+φ

∫

Ω

eu0+W+φ

−
eu0+W

∫

Ω

eu0+W

−
eu0+W

∫

Ω

eu0+W

(
φ−

∫

Ω

eu0+Wφ
∫

Ω

eu0+W

)]

+
[ 4πNB(W + φ)

λ2
(
1 +

√
1−

B(W + φ)

λ2

)2
−

4πNB(W )

λ2
(
1 +

√
1−

B(W )

λ2

)2

−
4NπDB(W )[φ]

λ2
(
1 +

√
1−

B(W )

λ2

)2
√
1−

B(W )

λ2

]( eu0+W+φ

∫

Ω

eu0+W+φ

−
e2(u0+W+φ)

∫

Ω

e2(u0+W+φ)

)

+
4NπB(W )

λ2
(
1 +

√
1−

B(W )

λ2

)2

[ eu0+W+φ

∫

Ω

eu0+W+φ

−
eu0+W

∫

Ω

eu0+W

−
eu0+W

∫

Ω

eu0+W

(
φ−

∫

Ω

eu0+Wφ
∫

Ω

eu0+W

)]

−
4NπB(W )

λ2
(
1 +

√
1−

B(W )

λ2

)2

[ e2(u0+W+φ)

∫

Ω

e2(u0+W+φ)
−

e2(u0+W )

∫

Ω

e2(u0+W )

− 2
e2(u0+W )

∫

Ω

e2(u0+W )

(
φ−

∫

Ω

e2(u0+W )φ
∫

Ω

e2(u0+W )

)]

+
4NπDB(W )[φ]

λ2
(
1 +

√
1−

B(W )

λ2

)2
√
1−

B(W )

λ2

( eu0+W+φ

∫

Ω

eu0+W+φ

−
eu0+W

∫

Ω

eu0+W

−
e2(u0+W+φ)

∫

Ω

e2(u0+W+φ)
+

e2(u0+W )

∫

Ω

e2(u0+W )

)
(3.9)
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with

DB(W )[φ] = 2B(W )
(
∫

Ω

e2(u0+W )φ
∫

Ω

e2(u0+W )
−

∫

Ω

eu0+Wφ
∫

Ω

eu0+W

)
.

We notice that
∫

Ω

R =

∫

Ω

L1(φ) =

∫

Ω

N(φ) = 0.

According to [17], we know that L1 is not invertible and has a kernel which is almost generated

by PZ0, PZ and PZ, where PZ0 and PZ are the unique solutions with zero average of ∆PZ0 =

∆Z0−
1
|Ω|

∫
Ω∆Z0 and ∆PZ = ∆Z − 1

|Ω|

∫
Ω ∆Z in Ω. Here, the functions Z0 and Z are defined

as follows:

Z0(z) =
δ2 − |σ(z)− a|2

δ2 + |σ(z)− a|2
and Z(z) =

δ(σ(z)− a)

δ2 + |σ(z)− a|2
,

which are (not doubly-periodic) solutions of −∆φ = |σ′(z)|2eUδ,a,σφ in Ω.

We list the expansions of
∫
Ω
RPZ0 and

∫
Ω
RPZ from [17], which is crucial to solve problem

(3.6).

Proposition 3.1 Assume |a| ≤ C0δ for some C0 > 0. The following expansions hold as

δ, τ → 0:
∫

Ω

RPZ0 = −16(n+ 1)|αa|
2|ca|

2δ2 log
1

δ
− 8πδ2Da

+ 64(n+ 1)3|αa|
− 2

n+1 τ

∫

R2

(|y|2 − 1)|y + a
δ
|

2n
n+1

(1 + |y|2)5
dy

+ o(δ2 + τ) +O(δ2|ca|+ |a|
1

n+1 δ2| log δ|+ τ2) (3.10)

and

∫

Ω

RPZ = 4πδ(n+ 1)αaca − 64(n+ 1)3|αa|
− 2

n+1 τ

∫

R2

y|y + a
δ
|

2n
n+1

(1 + |y|2)5
dy

+ o(δ|ca|+ δ|a|+ τ + δ2) +O(τ2), (3.11)

where τ = λ−2δ−
2

n+1 and αa, Da, ca = ca,σa
, are given by (2.17)–(2.18) and (6.15), respectively.

Remark 3.1 According to [17, Remarks 3.2–3.3], the range |a| ≫ δ is not compatible while

solving simultaneously
∫
ΩRPZ = 0 and

∫
ΩRPZ0 = 0.

Thus, L1(φ) = −[R+N(φ)] − h1 is not generally solvable. To solve (3.6), we first consider

the following projected problem:






L1(φ) = −[R+N(φ)]− h1(W + φ+ c(W + φ), f(φ, S))

+d0∆PZ0 +Re[d∆PZ] in Ω,

L2(S) := ∆S − µ2S = h2(φ, S) in Ω,

∫

Ω

φ =

∫

Ω

φ∆PZ0 =

∫

Ω

φ∆PZ = 0.

(3.12)
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Remark 3.2 Let us recall that ca = 1
(n+1)!

dn+1

dzn+1

[ g2
a,σ(z)

g2
a,σ

g2
0,σ(0)

g2
0,σ(z)

Ha,σ(z)
Ha,σ(0)

]
(0), then lim

a→0
ca =

c0 = 1
H(0)(n+1)!

dn+1H
dzn+1 (0). We will solve problem (3.12) under the assumption that c0 = 0 and

λ−2δ−
2

n+1 ∼ δ2, which is reasonable according to Remark 4.1.

The resolution of problem (3.12) is based on the following linear theory. We introduce the

weighted norm:

‖h̃‖∗ = sup
z∈Ω

(δ2 + |σ(z)− a|2)1+
γ
2

δγ(|σ′(z)|2 + δ
2n

n+1 )
|h̃(z)| (3.13)

for any h̃ ∈ L∞(Ω), where 0 < γ < 1 is small fixed constant.

Proposition 3.2 Let M0 > 0. There exists λ0 large such that for all 0 < δ ≤ 1
λ0
,

δ−
2

n+1λ−2 ∼ δ2, |a| ≤ M0δ and g1, g2 ∈ L∞(Ω) with
∫
Ω g1 = 0 there is a unique solution

φ := T1(g1), S := T2(g2), d0 ∈ R and d ∈ C of the following problem






L1(φ) = g1 + d0∆PZ0 +Re[d∆PZ] in Ω,
∫

Ω

φ =

∫

Ω

φ∆PZ0 =

∫

Ω

φ∆PZ = 0,

L2(S) := ∆S − µ2S = g2 in Ω.

(3.14)

Moreover, there is a constant C > 0 such that

δ
2

n+1 ‖∆φ‖∞ + ‖φ‖∞ ≤ C
(
log

1

δ

)
‖g1‖∗, |d0|+ |d| ≤ C‖g1‖∗,

µ2‖S‖L∞(Ω) ≤ C‖g2‖L∞(Ω).

Proof According [2, Theorem 4.2] and [17, Proposition 4.1], problem (3.14) has a unique

solution (φ, S). Moreover, there exists C > 0 such that

‖φ‖∞ ≤ C
(
log

1

δ

)
‖g1‖∗, |d0|+ |d| ≤ C‖g1‖∗, µ2‖S‖L∞(Ω) ≤ C‖g2‖L∞(Ω). (3.15)

By the definition of L1 in (3.3), we get that

‖∆φ‖∞ = ‖K[φ+ γ(φ)] + g1 + d0∆PZ0 +Re[d∆PZ]‖∞

≤ ‖K‖∞[‖φ‖∞ + ‖γ(φ)‖∞] + ‖g1‖∞ + C2(|d0|+ |d|). (3.16)

Since ∆PZ = O(1) and ∆PZ0 = O(1), where K and γ(φ) are given by (3.4)–(3.5), respec-

tively. Using (2.14)–(2.16), λ−2δ−
2

n+1 ∼ δ2 and Lemma 2.4, it is straightforward but tedious

computation to show that

‖K‖∞ = O(δ−
2

n+1 ) and ‖γ(φ)‖∞ = ‖φ‖∞O(δ−
2

n+1 ). (3.17)

For ‖g1‖∞, using the definition of ‖ · ‖∗ in (3.13), we have

|g1(z)| ≤
δγ(|σ′(z)|2 + δ

2n
n+1 )

(δ2 + |σ(z)− a|2)1+
γ
2

‖g1‖∗

≤ δ−
2

n+1 ‖g1‖∗ +
δγ |σ′(z)|2

(δ2 + |σ(z)− a|2)1+
γ
2

‖g1‖∗.
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By the same argument as in (2.22), we obtain that

∥∥∥
δγ |σ′(z)|2

(δ2 + |σ(z)− a|2)1+
γ
2

∥∥∥
∞

= lim
p→∞

(∫

Ω

∣∣∣
δγ |σ′(z)|2

(δ2 + |σ(z)− a|2)1+
γ
2

|p
) 1

p

= O(δ−
2

n+1 ).

Furthermore, combining (3.15)–(3.17), we have that δ
2

n+1 ‖∆φ‖∞ ≤ C‖g1‖∗ for some C > 0.

The proof is completed.

Hereafter, we denote ‖ · ‖L∞(Ω) by ‖ · ‖∞. Define the space

M∞ : = {(φ, S) | S ∈ W 2,2(Ω) ∩ L∞(Ω); φ ∈ L∞(Ω),

∆φ ∈ L∞(Ω) and φ is doubly-periodic in Ω} (3.18)

and a subset of M∞,

F = {(φ, S) ∈ M∞ | δ
2

n+1 ‖∆φ‖∞ + ‖φ‖∞ +
| log δ|2

δγ
‖S‖∞ ≤ δ2−γ | log δ|2}, (3.19)

where γ is a small constant given by (3.13). Denote the operator

A(φ, S) := (T1[−R−N(φ)− h1(W + φ+ c(W + φ), f(φ, S))], T2[h2(φ, S)]), (3.20)

where R,N(φ), h1, h2 and f have been given by (3.8), (3.9), (2.3), (3.7) and (3.2), respectively.

Here T1 and T2 have been defined in Proposition 3.2.

Next we will show that the operator A is a contraction operator, which then has a fixed

point (φ, S) in F . According to Proposition 3.2, we have that the fixed point (φ, S) is a solution

of (3.12). First, we give some estimates, which will be used to show that A is a contraction

mapping.

According to [17, Corollary 2.4, (C.3), (2.51)–(2.52)], we easily obtain the following results.

Lemma 3.1 Recall c0 = 1
H(0)(n+1)!

dn+1H
dzn+1 (0). Assume that c0 = 0, λ−2δ−

2
n+1 ∼ δ2 and

|a| ≤ M0δ for some constant M0 > 0, then we have the following estimates hold

• ‖R‖∗ = O(δ2−γ), where R is given by (3.8);

• There exists a constant C1 such that ‖N(φ1)−N(φ2)‖∗ ≤ C1(‖φ1‖∞+‖φ2‖∞)‖φ1−φ2‖∞
for any ‖φi‖∞ ≤ δ2−γ , i = 1, 2, where N(φ) is given by (3.9);

•
∥∥ e2u0+2W
∫
Ω
e2u0+2W

∥∥
∗
=

∥∥ eu0+W
∫
Ω
eu0+W

∥∥
∗
= O(1).

The next lemma shows that A is contraction mapping from F to itself.

Lemma 3.2 There exists ε0 small and λ0, µ0 > 0 large such that for all λ > λ0, µ > µ0,
λ
µ
< ε0, and δ satisfying λ−2δ−

2
n+1 ∼ δ2, for |a| ≤ 1

λ0
δ, then operator A admits a unique fixed

point (φ, S) ∈ F .

Proof Step 1 We first estimate the L∞ norm of h2(ϕ, S). Recall that

h2(φ, S) = −∆[eu0+W+c(W+φ)(1 + φ)]

+ µ2[eu0+W+c(W+φ)(1 + φ)− eu0+W+φ+c(W+φ)−λ
µ
f(φ,S)]

− λµeW+φ+c(W+φ)+u0−
λ
µ
f(φ,S)(1− S − eu0+W+c(W+φ))

:= I1 + I2 + I3.
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Next we will estimate ‖I1‖∞, ‖ I2‖∞ and ‖I3‖∞, respectively.

Since eu0 is C2(Ω), for any p > 1, we have

‖I1‖p = ‖∆[eW+u0+c(W+φ)(1 + φ)]‖p

≤ ‖ec(W+φ)‖∞‖∆[eW+u0(1 + φ)]‖p

≤
δ2

λ2
O{‖(1 + φ)∆eW+u0‖p + 2‖∇φ∇eW+u0‖p + ‖eW+u0∆φ‖p}

≤
δ2

λ2
O{(1 + ‖φ‖∞)[‖eW+u0(∆W + |∇W |2)‖p + ‖eW ‖p + ‖eW |∇W |‖p]

+ ‖eW+u0∇φ∇W‖p + ‖eW∇φ‖p + ‖eW+u0∆φ‖p}

≤
δ2

λ2
O
{
(1 + ‖φ‖∞)

1

δ2+
6

n+1

+
1

δ2+
2

n+1

( 1

δ
2

n+1

+ | log δ|
)
(‖∆φ‖∞

+ ‖φ‖∞) +
‖∆φ‖∞ + ‖φ‖∞

δ2
+

‖∆φ‖∞

δ2+
2

n+1

}

≤
1

λ2δ
6

n+1

O{1 + ‖∆φ‖∞ + ‖φ‖∞} = δ2−
4

n+1O{1 + ‖∆φ‖∞ + ‖φ‖∞}, (3.21)

where we have used W 2,p estimate and Lemma 2.4. Thus, we derive that ‖I1‖∞ = lim
p→∞

‖I1‖p ≤

O(δ2−
4

n+1 ).

Recall that f(φ, S) = eW+u0+c(W+φ)(1 + φ) + S, using Lemma 2.4, we have
∥∥∥
λ

µ
f(φ, S)

∥∥∥
∞

=
1

µλδ
2

n+1

O(1 + ‖φ‖∞) +
λ

µ
‖S‖∞ = o(δ2). (3.22)

Together with the above estimate and the mean value theorem, we obtain that

‖I2‖∞ = µ2‖eW+u0+c(W+φ)[1 + φ− eφ−
λ
µ
f(φ,S)]‖∞

≤
µ2

λ2δ
2

n+1

O
(∥∥∥

λ

µ
f(φ, S)

∥∥∥
∞

+ ‖φ‖2∞

)

≤ O
( µ

λ3δ
4

n+1

+
µ‖S‖∞

λδ
2

n+1

+
µ2‖φ‖2∞

λ2δ
2

n+1

)
(3.23)

and

‖I3‖∞ ≤
µ

λδ
2

n+1

(
1 + ‖S‖∞ +

‖φ‖∞

λ2δ
2

n+1

)
. (3.24)

Since λ−2δ−
2

n+1 ∼ δ2, combining the above estimates, we get that

1

µ2
‖h2(φ, S)‖∞ = o(δ2). (3.25)

Next we calculate ‖h1(W + φ+ c(W + φ), f(φ, S))‖∗, where ‖ · ‖∗ is given by (3.13). Using

the mean value theorem, (3.22), Lemmas 2.4 and 3.1, we have

‖h1(W + φ+ c(W + φ), f(φ, S))‖∗

≤ λ2O
{
‖eW+u0+φ+c(W+φ)‖∗

∥∥∥
λ

µ
f(φ, S)

∥∥∥
∞

+ ‖e2W+2u0+2φ+2c(W+φ)‖∗

×
[∥∥∥

λ

µ
f(φ, S)

∥∥∥
∞

+ ‖S‖∞ + ‖φ‖2∞

]}

≤
(λ
µ
+

1

λ2δ
2

n+1

)
‖S‖∞ +

1

µλδ
2

n+1

(1 + ‖φ‖∞). (3.26)
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Combining the above result and Lemma 3.1, we have

‖R+N(φ) + h1(W + φ+ c(W + φ), f(φ, S))‖∗ ≤ O(δ2−γ). (3.27)

Combining Proposition 3.2, (3.25) and (3.27), we derive that A(F) ⊂ F .

Step 2 Next for any (φ1, S1) and (φ2, S2) ∈ F , by the same arguments as in (3.21), (3.23)–

(3.24) and (3.26), using λ−2δ−
2

n+1 ∼ δ2 and lim
λ,µ→∞

λ
µ
= 0, we get that

1

µ2
‖h2(φ1, S1)− h2(φ2, S2)‖∞

≤
(
δ2 +

λ

µ
δ2−

2
n+1 +

λ2

µ2
δ4−

4
n+1

)
‖φ1 − φ2‖∞ +

λ2

µ2
δ4−

4
n+1 ‖∆φ1 −∆φ2‖∞

+ δ2‖S1 − S2‖∞

≤ o
(
‖φ1 − φ2‖∞ + δ

2
n+1 ‖ ∆φ1 −∆φ2‖∞ +

| log δ|2

δγ
‖S1 − S2‖∞

)

and

‖h1(W + φ1 + c(W + φ1), f(φ1, S1))− h1(W + φ2 + c(W + φ2), f(φ2, S2))‖∗

≤ O
(λ
µ
‖S1 − S2‖∞ + δ2‖φ1 − φ2‖∞

)

≤ o
(
‖φ1 − φ2‖∞ +

| log δ|2

δγ
‖S1 − S2‖∞

)
.

According to Proposition 3.2 and the above estimates, since ‖N(φ1)−N(φ2)‖∗ ≤ C1(‖φ1‖∞ +

‖φ2‖∞)‖φ1 − φ2‖∞ in Lemma 3.1 for some C1 > 0 independent of φ1, φ2, we have A is a

contraction mapping of F into itself when λ0 and µ0 are sufficiently large. Furthermore, the

operator has a fixed point (φ, S) in F .

According to the above Lemma 3.2, we can obtain the following result.

Proposition 3.3 There exists ε0 small and λ0, µ0 > 0 large such that for all λ > λ0,

µ > µ0,
λ
µ

< ε0, and δ satisfying λ−2δ−
2

n+1 ∼ δ2, for |a| ≤ 1
λ0
δ, then problem (3.12) has a

unique solution φ = φ(δ, a), S = S(δ, a), d0 = d0(δ, a) ∈ R, d = d(δ, a) ∈ C. Moreover, the map

(δ, a) 7→ (φ(δ, a), S(δ, a)) is C1 with

‖φ‖∞ +
| log δ|2

δγ
‖S‖∞ ≤ δ2−γ | log δ|2.

4 Proof of the Main Result

By Proposition 3.3, the function (W + φ, eu0+W+c(W+φ)(1 + φ) + S) will be a true solution

of (2.7) once we adjust δ and a to have d0(δ, a) = d(δ, a) = 0. The crucial point is given by the

following Lemma. Its proof is the same as in [17, Lemma 4.3].

Lemma 4.1 Let φ = φ(δ, a), S = S(δ, a), d0 = d0(δ, a) ∈ R, d = d(δ, a) ∈ C be the solution

of (3.12) given by Proposition 3.3. There exists η0 > 0 such that if 0 < δ ≤ η0, |a| ≤ η0,




∫

Ω

[L1(φ) +N(φ) +R+ h1(W + φ+ c(W + φ), f(φ, S))]PZ0 = 0,

∫

Ω

[L1(φ) +N(φ) +R+ h1(W + φ+ c(W + φ), f(φ, S))]PZ = 0

(4.1)
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hold, then (W +φ, eu0+W+c(W+φ)(1+φ)+S) is a solution of (2.7), i.e., d0(δ, a) = d(δ, a) = 0.

Remark 4.1 According to the previous estimates, we know that h1(W + φ + c(W +

φ), f(φ, S)) is small since φ is sufficiently small. Thus, system (4.1) could be viewed as a

perturbation of the reduced equations
∫
Ω RPZ0 = 0 and

∫
ΩRPZ = 0. The integral coefficient

in (3.10) is negative for all a
δ
, which is given in [17, Appendix D]. Since αa → α0 = H(0)

n+1 6= 0

and ca → c0 as a → 0, we can always exclude the case c0 6= 0. Indeed, in such a case the

equation
∫
Ω
RPZ0 = 0 will yield to λ−2δ−

2
n+1 ∼ δ2| log δ| as δ → 0 by mean of (3.10) (we

are implicity assuming λ−2δ−
2

n+1 → 0, which is a natural range for solving the reducing equa-

tion through (3.10)–(3.11)). This is not compatible with
∫
Ω
RPZ = 0, which allows at most

δ2 = O(λ−2δ−
2

n+1 ) by (3.11).

Proposition 4.1 Assume c0 = 0 and |a| ≤ M0δ for some M0 > 0. We have the following

results hold as δ → 0, λ, µ → ∞ and λ
µ
→ 0 :

∫

Ω

[L1(φ) +N(φ) +R + h1(W + φ+ c(W + φ), f(φ, S))]PZ0

= −8πδ2D0 + 64(n+ 1)
3n+5
n+1 |H(0)|−

2
n+1λ−2δ−

2
n+1

∫

R2

(|y|2 − 1)|y + a
δ
|

(1 + |y|2)5
dy

+ o(δ2 + λ−2δ−
2

n+1 ) +O(λ−4δ−
2

n+1 | log δ|2 + λ−8δ−
4

n+1 | log δ|2) (4.2)

and
∫

Ω

[L1(φ) +N(φ) +R+ h1(W + φ+ c(W + φ), f(φ, S))]PZ

= 4πδ(Υa+ Γa)− 64(n+ 1)
3n+5
n+1 |H(0)|−

2
n+1λ−2δ−

2
n+1

∫

R2

y|y + a
δ
|

2n
n+1

(1 + |y|2)5
dy

+ o(δ2 + λ−2δ−
2

n+1 ) +O(λ−4δ−
2

n+1 | log δ|2 + λ−8δ−
4

n+1 | log δ|2), (4.3)

where D0 and Γ, Υ are defined by (1.7) and (6.17) respectively.

Proof According to [17, Proposition 4.5], we have that the above results do hold when

h1(W + φ + c(W + φ), f(φ, S)) = 0. Therefore, we just consider the term of h1 in the above

expansions. Using (3.26), we have

∫

Ω

h1(W + φ+ c(W + φ), f(φ, S))PZ0

= O(‖h1(W + φ+ c(W + φ), f(φ, S))‖∗‖PZ0‖∞)

= O
(λ
µ
δ2
)
= o(δ2),

since PZ0 = O(1) and ‖φ‖∞ + | log δ|2

δγ
‖S‖∞ ≤ δ2−γ | log δ|2. By the same argument, we also

have
∫

Ω

h1(W + φ+ c(W + φ), f(φ, S))PZ = O
(λ
µ
δ2
)
= o(δ2).

Thus combining the above estimates, we have that the proposition does hold.
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Owing to (4.2) and (4.3), our aim is to find (δ(λ, µ), a(λ, µ)) so that (4.1) does hold. To

simplify the notations, we denote

ϕ0(δ, a, λ, µ) =

∫

Ω

[L1(φ) +N(φ) +R+ h1(W + φ+ c(W + φ), f(φ, S))]PZ0

and

ϕ(δ, a, λ, µ) =

∫

Ω

[L1(φ) +N(φ) +R+ h1(W + φ+ c(W + φ), f(φ, S))]PZ.

Thus, (4.1) reduces to find a solution of

ϕ0(δ(λ, µ), a(λ, µ), λ, µ) = ϕ(δ(λ, µ), a(λ, µ), λ, µ) = 0 (4.4)

for λ large. Next we prove our main result, which clearly implies the validity of Theorem 1.1

with m = 1.

Theorem 4.1 Let H0 = H
zn+2 , where H is given by (6.4), be meromorphic function in Ω

with |H|2 = eu0+8π(n+1)G(z,0)(which exists in view of (6.1) and is unique up to rotations), and

σ0 = −
( ∫ z

H0(w)dw
)−1

. Assume that

dn+1H

dzn+1
(0) = 0 (4.5)

and for some small ρ > 0

D0 :=
1

π

[ ∫

Ω\σ−1
0 (Bρ(0))

eu0+8π(n+1)G(z,0) −

∫

R2\Bρ(0)

n+ 1

|y|4
dy

]
< 0. (4.6)

If the “non-degeneracy condition”

|Γ| 6=
∣∣∣Υ+

n(2n+ 3)

n+ 1
D0

∣∣∣ (4.7)

does hold where Γ and Υ are given in (6.17), for λ, µ are large enough with λ ≪ µ, then there

exist δ(λ, µ) and a(λ, µ) small so that (w̃, ṽ) = (Wλ,µ+φλ, µ, e
u0+Wλ,µ+c(Wλ,µ+φλ,µ)(1+φλ,µ)+

Sλ,µ) is a solution of (2.7), where Wλ,µ = PUδ(λ,µ), a(λ,µ), σa(λ,µ)
. Furthermore, (uλ,µ, Nλ,µ) =(

w̃ + c(w̃)− λ
µ
ṽ, λṽ

)
does solve (1.6) and satisfies

• λ2euλ,µ+u0
(
1 −

Nλ,µ

λ

)
⇀ 8π(n + 1)δ0 and euλ,µ+u0

∫
Ω
euλ,µ+u0

⇀ δ0 in the sense of measure as

λ, µ → ∞, λ
µ
→ 0;

• lim
λ,µ→∞, λ

µ
→0

(max
Ω

uλ,µ) = −∞ and lim
λ,µ→∞,λ

µ
→0

‖Nλ,µ‖L∞(Ω)

λ
= 0.

Proof First of all, we need to solve (4.4). Since ϕ0(δ(λ, µ), a(λ, µ), λ, µ) = 0 natu-

rally requires λ−2δ−
2

n+1 ∼ δ2 in view of (4.2), we make the following change of variables:

δ =
[ (n+1)λ−(n+1)

|H(0)|

] 1
n+2 η and ζ = a

δ
. Then system (4.4) is equivalent to find zeros of

Γλ,µ(η, ζ) : =
[ (n+ 1)λ−(n+1)

|H(0)|

]− 2
n+2

×
(
−

1

8
ϕ0,

1

4πη2
ϕ
)([ (n+ 1)λ−(n+1)

|H(0)|

] 1
n+2

η,
[ (n+ 1)λ−(n+1)

|H(0)|

] 1
n+2

ηζ, λ, µ
)
,
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which has the expansion Γλ,µ = Γ0(η, ζ) + o(1) as λ, µ → ∞ and λ
µ
→ 0+, uniformly for η in

compact subset of (0,+∞), in view of (4.2)–(4.3), where the map Γ0 : R×C → R×C is defined

as

Γ0(η, ζ) =
(
πD0η

2 −
8(n+ 1)3

η
2

n+1

∫

R2

(|y|2 − 1)|y + ζ|
2n

n+1

(1 + |y|2)5
dy,Γζ +Υζ

−
16(n+ 1)3

πη
2(n+2)
n+1

∫

R2

y|y + ζ|
2n

n+1

(1 + |y|2)5
dy

)
.

We need to exhibit “stable” zeros of Γ0 in (0,+∞) × C, which will persist under L∞-small

perturbations yielding to zeros of Γλ,µ as required. The easiest case is given by the point

(η0, 0), that solves Γ0 = 0 for η0 =
( 8(n+1)3I0

D0π

) n+1
2(n+2) > 0 in view of D0 < 0 and

I0 :=

∫

R2

(|y|2 − 1)|y|
2n

n+1

(1 + |y|2)5
dy =

π

2

∫ +∞

1

(1− r)(r
n+2
n+1 − r

n
n+1 )

(1 + r)5
dr < 0.

Regarding Γ0 as a map from R3 to R3 and setting Γ = Γ1 + iΓ2, Υ = Υ1 + iΥ2, we have that

DΓ0(η0, 0) =




2(n+ 2)

n+ 1
πD0η0 0 0

0 Γ1 +Υ1 +
2(n+2)
n+1 D0 Υ2 − Γ2

0 Γ2 +Υ2 Γ1 −Υ1 −
2(n+ 2)

n+ 1
D0




in view of [17, (D.7)] and

∫

R2

|y|
2n

n+1

(1 + |y|2)5
dy = π

∫ ∞

0

ρ
n

n+1

(1 + ρ)5
dρ = πI

n
n+1

5 ,

where Iqp :=
∫∞

0
ρp

(1+ρ)q dρ.

Using the assumption (4.7), we have

detDΓ0(η0, 0) =
2(n+ 2)

n+ 1
πD0η0

(
|Γ|2 −

∣∣∣Υ +
n(2n+ 3)

n+ 1
D0

∣∣∣
2)

6= 0.

Hence the point (η0, 0) is an isolated zero of Γ0 with nontrivial local index. By a Taylor

expansion of Γ0, using Γ0(η0, 0) = 0, we can find r0 > 0 small so that

|Γλ,µ(η, ζ)| = |Γ0(η, ζ)|+ o(1)

= |DΓ0(η0, 0))[η − η0, ζ] + O(|η − η0|
2 + |ζ|2)|+ o(1)

≥
ν

2
|η − η0, ζ|

for all (η, ζ) ∈ ∂Br(µ0, 0) and all r ≤ r0, for
λ
µ
→ 0, λ and µ sufficiently large depending on

r. Then, the map Γλ,µ has in Br0(µ0, 0) well-defined degree for all λ, µ large with λ
µ
→ 0, and

it then coincides with the local index of Γ0 at (µ0, 0). In this way, the map Γλ,µ has a zero of

the form (ηλ,µ, ζλ,µ) with (ηλ,µ, ζλ,µ) → (µ0, 0) as λ, µ → ∞ and λ
µ
→ 0. Therefore, we have

solved (4.4) for δ(λ, µ) =
[ (n+1)λ−(n+1)

H(0)

] 1
n+2 ηλ,µ and a(λ, µ) = δ(λ, µ)ζλ,µ, and the corresponding



Condensates for Maxwell-Chern-Simons Model 681

(w̃, ṽ) = (W+φλ, µ, e
u0+W (1+φλ,µ)+Sλ,µ) does solve (2.7), whereW = PUδ(λ,µ), a(λ,µ), σa(λ,µ)

.

Furthermore, (uλ,µ, Nλ,µ) =
(
w̃ + c(w̃)− λ

µ
ṽ, λṽ

)
is a solution of (1.6).

We next show that (uλ,µ, Nλ,µ) satisfies the concentration properties stated in Theorem 4.1.

By the construction of (w̃, ṽ), (2.21) and (3.26), we have

4Nπ
eu0+w̃

∫

Ω

eu0+w̃

+

64π2N2
(
eu0+w̃

∫

Ω

e2u0+2w̃
( ∫

Ω

eu0+w̃
)−1

− e2u0+2w̃
)

λ2
[ ∫

Ω

eu0+w̃ +

√(∫

Ω

eu0+w̃

)2

−
16Nπ

λ2

∫

Ω

e2u0+2w̃
]2

− h1(w̃ + c−(w̃), ṽ) ⇀ 8π(n+ 1)δ0,

in sense of measures as λ, µ → ∞ and λ
µ
→ 0. Notice that the second term and the last

term in the above equality are all go to zero. Using the balance condition (6.1), we get that

λ2euλ,µ+u0
(
1− Nλ,µ

λ

)
⇀ 8π(n+ 1)δ0 and euλ,µ+u0

∫
Ω
euλ,µ+u0

⇀ δ0 in the sense of measure as λ, µ → ∞,

λ
µ
→ 0. Moreover, using the Lemma 2.4,

lim
λ,µ→∞, λ

µ
→0

(max
Ω

uλ,µ) = −∞ and lim
λ,µ→∞, λ

µ
→0

‖Nλ,µ‖L∞(Ω)

λ
= 0.

Remark 4.2 By the same argument as [17, Remark 4.8], we can show that (4.2)–(4.3) do

hold in a C1 sense.

Remark 4.3 The assumptions (4.5)–(4.7) are valid supported by some examples (see [17,

Section 5].

5 A More General Result

In this section, we study the general case m ≥ 2 in Theorem 1.1. For more clearness, let

us denote the concentration point as ξl, l = 1, · · · ,m, the remaining points in the vortex set

as pj and by nl, nj the corresponding multiplicities. Inspired by [17], we will choose W as an

approximate solution of (2.8), where W is defined by (6.24), to find a solution of (2.7) in the

form (W + φ, eu0+W+c(W+φ)(1 + φ) + S). The approximating solution W will be introduced

in detail in the next section.

By the same argument as in Lemma 2.4, using (6.35)–(6.37), we can obtain the following

results.

Lemma 5.1 Assume |a| = O(δ), then the following estimates hold:

•
∫
Ω
e2(u0+W )

( ∫
Ω
eu0+W

)2 = O(δ−
2

n+1 );

• ‖eW+u0‖∞ = O(δ−2− 2
n+1 );

• ec(W ) = O
(
δ2

λ2

)
;

• ‖∆W‖∞ = O(δ−
2

n+1 ), ‖W‖∞ = O(| log δ|).

We restrict our attention to the case cl0 = 0 given by (6.21) for all l = 1, · · · ,m, which is

necessary in our context and is simply a re-formulation of the assumption that H0 defined by

(6.19) has zero residues at p1, · · · , pm. As in Theorem 4.1, we will work in the parameter’s

range:

al = o(δ), δ ∼ λ−n+1
n+2
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as λ → ∞, where al given by Lemma 6.2. Since then

K−1 ≤
δ2 + |z − ξl|2nl+2

δ2 + |σl(z)− al|2
≤ K, K−1|z − ξl|

2nl ≤ |σ′(z)|2 ≤ K|z − ξl|
2nl

in B2η(ξl) for all σl ∈ Bl
r given by (6.25) and l = 1, · · · ,m, where K > 1, the norm (3.9) can

be now simply defined as

‖h(z)‖∗ = sup
z∈Ω

[ m∑

l=1

δγ(|z − ξl|2nl + δ
2nl

nl+1 )

(δ2 + |z − ξl|2nl+2)1+
γ
2

]−1

|h(z)|

for any h ∈ L∞(Ω), where 0 < γ < 1 is small fixed constant. Recall that the error term R given

by (3.8), one has the following result from [17, Lemma 6.2].

Lemma 5.2 There exists a constant C > 0 independent of δ such that

‖R‖∗ ≤ Cδ2−γ . (5.1)

As mentioned in Section 3, we can look for a solution of (2.7) in the form (W+φ, eu0+W+c(1+

φ) + S) by solving (3.6). In order to state the invertibility of the linear operator L1 given by

(3.3) in a suitable functional setting, for l = 1, · · · ,m, let us introduce the functions:

Z0l(z) =
δ2 − |σl(z)− al|2

δ2 + |σl(z)− al|2
, Zl(z) =

δ(σl(z)− al)

δ2 + |σl(z)− al|2
, z ∈ B2η(ξl).

Also, let PZ0l and PZl be the unique solutions with zero average of

∆PZ0l = χl∆Z0l −
1

|Ω|

∫

Ω

χl∆Z0l, ∆PZl = χl∆Zl −
1

|Ω|

∫

Ω

χl∆Zl,

where χl(z) := χ(|z − ξl|) defined in (6.23), and set PZ0 =
m∑
l=1

PZ0l. According to Lemmas

5.1–5.2, as in Propositions 3.2–3.3, it is possible to prove the following result.

Proposition 5.1 Let M0 > 0. There exist λ0, µ0 > 0 large such that for all λ > λ0,

µ > µ0,
λ
µ
→ 0, and δ satisfying λ−2δ−

2
n+1 ∼ δ2, for |a| ≤ M0δ, there exists a unique solution

φ = φ(δ, a), S = S(δ, a), d0 = d0(δ, a) ∈ R, dl = dl(δ, a) ∈ C, l = 1, · · · ,m, to





L1(φ) = −[R+N(φ)]− h1(W + φ+ c(W + φ), f(φ, S))

+d0∆PZ0 +
m∑
l=1

Re[dl∆PZl], in Ω;

L2(S) := ∆S − µ2S = h2(φ, S), in Ω;
∫

Ω

φ =

∫

Ω

φ∆PZl = 0, l = 0, · · · ,m.

Moreover, the map (δ, a) 7→ (φ(δ, a), S(δ, a)) is C1 with

‖φ‖∞ +
| log δ|2

δγ
‖S‖∞ ≤ δ2−γ | log δ|2.

The function (W + φ, eu0+W+c(1 + φ) + S) will be a true solution of (2.7) once we adjust

δ and a to have dl(δ, a) = 0 for all l = 0, · · · ,m. Similar to Lemma 4.1, we have the following

result.
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Lemma 5.3 Let φ = φ(δ, a), S = S(δ, a), d0 = d0(δ, a) ∈ R, dl = dl(δ, a) ∈ C (1 ≤ l ≤ m)

be the solution of (3.12) given by Proposition 5.1. There is η0 > 0 such that if 0 < δ ≤ η0,

|a| ≤ η0,

∫

Ω

[L1(φ) +N(φ) +R+ h1(W + φ+ c(W + φ), f(φ, S))]PZl = 0 (5.2)

holds for l = 0, · · · ,m, then (W + φ, eu0+W+c(W+φ)(1 + φ) + S) is a solution of (2.7), i.e.,

di(δ, a) = 0 for all l = 0, · · · ,m.

According to [17, Lemma 6.5] and the same argument as in Proposition 4.1, we can deduce

the following expansion for (5.2).

Lemma 5.4
∫

Ω

[L1(φ) +N(φ) +R+ h1(W + φ+ c(W + φ), f(φ, S))]PZ0

= −8πD0δ
2 + 64(n+ 1)

3n+5
n+1 λ−2δ−

2
n+1

m′∑

l=1

|Hl(ξl)|
− 2

n+1

∫

R2

(|y|2 − 1)|y + al

δ
|

2n
n+1

(1 + |y|2)5
dy

+ o(δ2 + λ−2δ−
1

n+1 ) +O(λ−4δ−
2

n+1 | log δ|2 + λ−8δ−
4

n+1 | log δ|2)

and
∫

Ω

[L1(φ) +N(φ) +R+ h1(W + φ+ c(W + φ), f(φ, S))]PZl

= 4πδ

m∑

l′=1

(Υll′al′ + Γll′al′)− 64(n+ 1)
3n+5
n+1 λ−2δ−

2
n+1 |Hl(ξl)|

− 2
n+1χM ′(l)

×

∫

R2

|y + al

δ
|

2n
n+1

(1 + |y|2)5
dy + o(δ2 + λ−2δ−

2
n+1 ) +O(λ−4δ−

2
n+1 | log δ|2

+ λ−8δ−
4

n+1 | log δ|2),

where D0 is defined in (1.7) and χM ′ is the characteristic function of the set M ′ = {1, · · · ,m′}.

Finally, arguing as in the proof of Theorem 4.1, we can establish Theorem 1.1 thanks to

D0 < 0 and the invertibility of the matrix A.

6 Appendix

In this section, we will introduce the approximate solutions for m = 1 and m ≥ 2 respec-

tively, which have been considered in [17]. Since the choice of the approximate solution is quite

complicated, and not so direct, we write it here in detail for completeness.

First we introduce an approximate solution PUδ,a,σ for m = 1. Follows from Section 2,

assume that p = 0 is present n-times in {p1, · · · , pN}, and denote by p′js the remaining points

in the set {p1, · · · , pN} with corresponding multiplicities n′
js. Recall that by Liouville formula

the function

log
8|F ′|2

(1 + |F |2)2
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does solve −∆U = eU in the set {F ′ 6= 0}, for any holomorphic map F . It is well known that

all the entire finite-solutions of (2.10) are classified as

Uδ,a(z) = log
8(n+ 1)2δ2

(δ2 + |zn+1 − a|2)2
, δ > 0, a ∈ C.

That is taking F = zn+1−a
δ

. Moreover, we have that
∫
R2 |z|

2neUδ,adz = 8π(n + 1). Since by

construction the corresponding ũ = w̃ + c−(w̃) will satisfy

λ2eu0+ũ(1− eu0+ũ) ⇀ 8π(n+ 1)δ0

in the sense of measures, the balance condition

2πN = 4π(n+ 1) (6.1)

is necessary in view of (2.4).

To correct Uδ,a into a doubly-periodic function, we consider the projection PUδ,a of Uδ,a as

the solution of





−∆PUδ,a = −∆Uδ,a +
1

|Ω|

∫

Ω

∆Uδ,a in Ω,
∫

Ω

PUδ,a = 0.

Thus, we obtain the constant term

∫

Ω

∆Uδ,a = −

∫

Ω

|z|2neUδ,a → −
4πN

|Ω|
as δ → 0

in view of (6.1), and we need to check that the difference between −∆Uδ,a = |z|2neUδ,a and

4πN |z|2nePUδ,a

∫
Ω
|z|2nePUδ,a

is asymptotically small, which unfortunately is in general still not enough, we

refer to [17] for detials. In [17], they took advantage of the Liouville formula to use the inner

parameter σ, present in the Liouville formula, to get improved file.

Next we will introduce the approximate solution PUδ,a,σ in [17]. Hereafter, let us fix an

open simply-connected domain Ω̃ so that Ω ⊂ Ω̃ and Ω̃ ∩ (a1Z + a2Z) = {0} and set M(Ω) =

{σ
∣∣
Ω

: σ meromorphic in Ω̃}. Let δ ∈ (0,+∞), a ∈ C and σ ∈ M(Ω) be a function which

vanishes only at 0 with multiplicity n+1. Since log |σ′(z)|2 is harmonic in {σ′ 6= 0}, the choice

F (z) = σ(z)−a

δ
yields to solutions

Uδ,a,σ(z) = log
8δ2

(δ2 + |σ(z)− a|2)2
(6.2)

of −∆U = |σ′(z)|2eU in Ω \ {poles of σ}, for Uδ,a,σ is a smooth function up to {σ′ = 0}.

The guess is so to find a better local approximating function PUδ,a,σ for a suitable choice

of σ, where PUδ,a,σ does solve





−∆PUδ,a,σ = |σ′(z)|2eUδ,a,σ −
1

|Ω|

∫

Ω

|σ′(z)|2eUδ,a,σ in Ω,

∫

Ω

PUδ,a,σ = 0.

(6.3)
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Notice that PUδ,a,σ is well-defined and smooth as long as σ ∈ M(Ω), no matter σ has poles or

not.

Recall that G(z, 0) can be thought as a doubly-periodic function in C with singularities on

the lattice a1Z + a2Z, and H(z) = G(z, 0) + 1
2π log |z| is then a smooth function in 2Ω with

∆H = 1. Since 2Ω is simply-connected, we can find a holomorphic function H∗ in 2Ω having

the harmonic function H− |z|2

4|Ω| as real part. Since pj ∈ Ω, take Ω̃ close to Ω so that Ω̃−pj ⊂ 2Ω

for all j = 1, · · · , N . The function

H(z) =
∏

j

(z − pj)
nj exp

(
4π(n+ 1)H∗(z)− 2π

N∑

j=1

H∗(z − pj)

−
π

2|Ω|

N∑

j=1

|pj |
2 +

π

|Ω|
z

N∑

j=1

pj

)
(6.4)

is the holomorphic in Ω̃ with

|H(z)|2 =
1

|z|2n
eu0+8π(n+1)H(z) = e

4π(n+2)H(z)−4π
∑
j

njG(z,pj)

in Ω̃ (6.5)

in view of (6.1).The meromorphic functionH0(z)=
H(z)
zn+2 does satisfy |H0(z)|2=eu0+8π(n+1)G(z,0)

in Ω̃.

Hereafter, for a meromorphic function g in Ω̃ the notation
∫ z

g(w)dw stands for the anti-

derivative of g(z) which is a well-defined meromorphic function in the simply-connected domain

Ω as soon as g has zero residues at each of its poles. Since H(0) 6= 0 by (6.5), we define

σ0(z) = −
(∫ z

H0(w)e
−c0w

n+1

dw
)−1

= −
(∫ z H(w)e−c0w

n+1

wn+2
dw

)−1

, (6.6)

where

c0 =
1

H(0)(n+ 1)!

dn+1H

dzn+1
(0) (6.7)

guarantees that the residue ofH0(z)e
−c0z

n+1

at 0 vanishes. By construction σ0 ∈ M(Ω) vanishes

only at 0 with multiplicity n+ 1, as needed, with

lim
z→0

zn+1

σ0(z)
=

H(0)

n+ 1
, (6.8)

and does solve

|σ′
0|

2 = |σ0(z)|
4eu0+8π(n+1)G(z,0)e−2Re[c0z

n+1] (6.9)

in view of (6.5). Let σ ∈ M(Ω) be a function which only at zero with multiplicity n + 1. For

a ∈ C small there exist a0, · · · , an so that {z ∈ Ω̃ : σ(z) = a} = {a0, · · · , an} (distinct points

when a 6= 0). For a small the function

Ha,σ(z) =
∏

j=1

(z − pj)
nj exp

(
4π

n∑

k=0

H∗(z − ak)−
2π

|Ω|
z

n∑

k=0

ak

)

− 2π

N∑

j=1

H∗(z − pj)−
π

2|Ω|

N∑

j=1

|pj |
2 +

π

|Ω|
z

N∑

j=1

pj

)
(6.10)
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is holomorphic in Ω̃ with

|Ha,σ(z)|
2 =

1

|z|2n
e
u0+8π

n∑
k=0

H(z−ak)−
2π
|Ω|

n∑
k=0

|ak|
2

(6.11)

in view of (6.1).

Endowed with the norm ‖σ‖ :=
∥∥ σ
σ0

∥∥
∞,Ω̃

, the set M′(Ω) = {σ ∈ M(Ω) : ‖σ‖ < ∞} is a

Banach space, and let Br be the closed ball centered at σ0 and radius r > 0, i.e.,

Br =
{
σ ∈ M(Ω) :

∥∥∥
σ

σ0
− 1

∥∥∥
∞,Ω̃

≤ r
}
. (6.12)

For a 6= 0 and r small, the aim is to find a solution σa ∈ Br of

σ(z) = −
[ ∫ z ( σ(w) − a

n∏

k=0

(w − ak)

wn+1

σ(w)

)2Ha,σ(w)

wn+2
e−ca,σw

n+1

dw
]−1

(6.13)

for a suitable coefficient ca,σ. To be more precise, letting

ga,σ(z) =
σ(z)− a
n∏

k=0

(z − ak)

for |a| < ρ and σ ∈ Br, by [17, Lemma A.1], we have that ga,σ ∈ M(Ω) never vanishes, and the

problem above gets re-written as

σ(z) = −
[ ∫ z g2a,σ(w)

g20,σ(w)

Ha,σ(w)

wn+2
e−ca,σw

n+1

dw
]−1

. (6.14)

The choice

ca,σ =
1

(n+ 1)!

dn+1

dzn+1

[g2a,σ(z)
g2a,σ

g20,σ(0)

g20,σ(z)

Ha,σ(z)

Ha,σ(0)

]
(0) (6.15)

lets vanish the residue of the integrand function in (6.14) making the R.H.S. well-defined. Since

σa ∈ Br, the function σa vanishes only at zero with multiplicity n+ 1, and satisfies

|σ′
a(z)|

2 = |σa(z)− a|4 exp
[
u0 + 8π

n∑

k=0

G(z, ak)

− 2π
n∑

k=0

|ak|
2 − 2Re[ca,σa

zn+1]
]

(6.16)

in view of (6.1). The resolution of problem (6.15)–(6.16) has been given in [17, Appendix A].

Next we list their main result of the resolution of problem (6.15)–(6.16).

Lemma 6.1 (see [17, Lemma A.2]) Up to take ρ smaller, there exists a C1-map a ∈

Bρ(0) → σa ∈ Br so that σa solves problem (6.15)–(6.16). Moreover, the map a ∈ Bρ(0) →

ca = ca,σa
is C1 with

Γ := H(0)∂aca |a=0=
1

n!

dn+1

dzn+1
[H(z)fn+1(z)](0),

Υ := H(0)∂aca |a=0=
2π(n+ 1)

|Ω|n!
bn+1

dnH

dzn
(0),

(6.17)
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where

fn+1(z) =
1

(n+ 1)!

dn+1

dwn+1

[
2 log

w − q0(z)

q−1
0 (w) − z

+ 4πH∗(z − q−1
0 (z))

]
(0),

bn+1 =
1

(n+ 1)!

dn+1q−1
0

dwn+1
(0).

And q0 = zQ
1

n+1

0 (z), Q0(z) =
σ0(z)
zn+1 (see [17, Appendix A] for details), σ0 given by (6.6).

Next we introduce the approximate solution PUδl,al,σa,l
, for m ≥ 2 given in [17, Section 6].

Follow the notations in Section 4, we denote the concentration point as ξl, l = 1, · · · ,m, the

remaining points in the vortex set as pj and by nl, nj the corresponding multiplicities. From

the previous argument recall that H(z, 0) = G(z, 0)+ 1
2π log |z| is a smooth function in 2Ω with

∆H = 1
|Ω| and H∗ is a holomorphic function in 2Ω with ReH∗ = H − |z|2

|Ω| . Up to a translation,

we are assuming that pj ∈ Ω for all j = 1, · · · , N , and taking Ω̃ close to Ω so that Ω̃− pj ⊂ 2Ω

for all j = 1, · · · , N . Arguing as for (6.4), the function

H(z) =
∏

j

(z − pj)
nj exp

(
4π

m∑

l=1

(nl + 1)H∗(z − ξl)− 2π

N∑

j=1

H∗(z − pj)

+
π

|Ω|

m∑

l=1

(nl + 1)(ξl − 2z)ξl −
π

2|Ω|

N∑

j=1

|pj |
2 +

π

|Ω|
z

N∑

j=1

pj

)

is holomorphic in Ω̃ and satisfies

|H(z)|2 =
( m∏

l=1

|z − ξl|
−2nl

)
exp

(
u0 + 8π

m∑

l=1

(nl + 1)H(z − ξl)
)

in view of (1.8). For l = 1, · · · ,m, the function

Hl(z) = H(z)
∏

l′ 6=l

(z − ξl′)
−(nl+2)

is holomorphic near ξl and satisfies

|Hl(z)|2 = exp
(
4π(nl + 2)H(z − ξl) + 4π

∑

l′ 6=l

(nl′ + 2)G(z, ξl′)

− 4π
∑

j

njG(z, pj)
)
. (6.18)

Setting

H0 =
H

(z − ξ1)n1+2 . . . (z − ξm)nm+2
, (6.19)

we now define σ0 as

σ0(z) = −
(∫ z

H0(w) exp
[
−

m∑

l=1

cl0(w − ξl)
nl+1

∏

l′ 6=l

(w − ξl)
nl′+2

]
dw

)−1

, (6.20)
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where

cl0 =
1

H0(ξl)(nl + 1)!

dnl+1Hl

dznl+1
(ξl), l = 1, · · · ,m (6.21)

guarantees that all the residues of the integrand function in the definition of σ0 vanish. The

presence of the term
∏
l′ 6=l

(w − ξl)
nl′+2 is crucial to compute explicitly the cl0’s for

cl0(w − ξl)
nl+1

∏

l′ 6=l

(w − ξl)
nl′+2 = O((w − ξl′)

nl′+2)

has a high-order effect near any other ξl′ , l
′ 6= l. By construction σ0 ∈ M(Ω) vanishes only at

the ξl’s with multiplicity nl + 1 and

lim
z→ξl

(z − ξl)
nl+1

σ0(z)
=

Hl(ξl)

nl + 1
,

and satisfies

|σ′
0(z)|

2 = |σ0(z)|
4 exp

(
u0 + 8π

m∑

l=1

(nl + 1)G(z, ξl)

− 2

m∑

l=1

Re
[
cl0(z − ξl)

nl+1
∏

l′ 6=l

(z − ξl′)
nl′+2

])
.

Under the assumptions of Theorem 1.1, notice that cl0 = 0 for all l = 1, · · · ,m and

∣∣∣
( 1

σ0

)′

(z)
∣∣∣
2

= |H0(z)|
2 = e

u0+8π
m∑
l=1

(nl+1)G(z,ξl)
.

Since each ξl gives a contribution to the dimension of the kernel for the linearized operator

(3.3), the parameters δ and a are no longer enough to recover all the degeneracies induced by

the ansatz PUδ,a,σ for σ ∈ M(Ω) a function which vanishes only at the points ξl, l = 1, · · · ,m,

with multiplicity nl+1. In our construction, the correct number of parameters to use is 2m+1,

given by m small complex numbers a1, · · · , am and δ > 0 small, where the latter gives rise to

the concentration parameter δl at ξl, l = 1, · · · ,m, by means of (6.38). The request that all the

δl’s tend to zero with the same rate is necessary as we will discuss later.

We need to construct an ansatz that looks as PUδl,al,σa,l
near each ξl, for a suitable σa,l which

makes the approximation near ξl good enough. In order to localize our previous construction,

let us define PUδl,al,σ as the solution of






−∆PUδl,al,σ = χ(|z − ξl|)|σ′(z)|2eUδl,al,σ −
1

|Ω|

∫

Ω

χ(|z − ξl|)|σ
′(z)|2eUδl,al,σ in Ω,

∫

Ω

PUδl,al,σ = 0,
(6.22)

where χ is a smooth radial cut-off function so that

χ =

{
1 in [−η, η],

0 in (−∞,−2η] ∪ [2η,+∞),
(6.23)
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and 0 < η < 1
2 min{|ξl − ξ′l|, dist(ξl, ∂Ω) : l, l

′ = 1, · · · ,m, l 6= l′}. The approximating function

is then built as

W =
m∑

l=1

PUl, (6.24)

where Uδl,al,σa,l
and PUδl,al,σa,l

will be simply denoted by Ul and PUl.

Let us now explain how to find the solution σa,l, l = 1, · · · ,m. Setting

Bl
r =

{
σ holomorphic in B2η(ξl) :

∥∥∥
σ

σ0
− 1

∥∥∥
∞,B2η(ξl)

≤ r
}

(6.25)

for l = 1, · · · ,m, [17, Lemma A.1] still holds in this context for all σ ∈ Bl
r, by simply replacing

0, n with ξl, nl and Ω̃ with B2η(ξl). Then, for all σ = (σ1, · · · , σm) ∈ Br := B1
r × · · · × Bm

r and

a = (a1, · · · , am) ∈ Cm with ‖a‖∞ < ρ, there exist points ali, l = 1, · · · ,m and i = 0, · · · , nl,

so that {z ∈ B2η(ξl) : σl(z) = al} = {ξl + al0, · · · , ξl + alnl
} for all l = 1, · · · ,m. Arguing as for

(6.10) and l = 1, · · · ,m, the function

H l
a,σ(z) =

∏

j

(z − pj)
nj

∏

l′ 6=l

(z − ξl′)
nl′

∏

l′ 6=l

nl′∏

i=0

(z − ξl′ − al
′

i )
−2

× exp
(
4π

m∑

l′=1

nl′∑

i=0

H∗(z − ξl′ − al
′

i )− 2π

N∑

j=1

H∗(z − pj) +
π

|Ω|

m∑

l′=1

(ξl′ − 2z)ξl′

−
π

2|Ω|

N∑

j=1

|pj |
2 −

2π

|Ω|

m∑

l′=1

(z − ξl′)

nl′∑

i=0

al
′

i +
π

|Ω|
z

N∑

j=1

pj

)

is holomorphic near ξl and satisfies

|Hl
a,σ(z)|

2 = |z − ξl|
−2nl exp

[
u0 + 8π

nl∑

i=0

H(z − ξl − ali)
]

+
∑

l′ 6=l

nl′∑

i=0

G(z, ξl′ + al
′

i )−
2π

|Ω|

m∑

l′=1

nl′∑

i=0

|al
′

i |
2 (6.26)

in view of (1.8). Setting

glal,σl(z)
(z) =

σl(z)− al
nl∏

i=0

(z − ξl − ali)

, z ∈ B2η(ξl)

and

cla,σ =

∏

l′ 6=l

(ξl − ξl′)
−(nl′+2)

(nl + 1)!

dnl+1

dznl+1

[(glal,σl
(z)gl0,σl

(ξl)

glal,σl
(ξl)gl0,σl

(z)

)2 Hl
a,σ(z)

Hl
a,σ(ξl)

]
(ξl), (6.27)

the aim is to find a solution σa = (σa,1, · · · , σa,m) ∈ Br of the system (l = 1, · · · ,m):

σl(z) = −
(∫ z (glal,σl

(w)

gl0,σl
(w)

)2 Hl
a,σ(w)

(w − ξl)nl+2

× exp
[
−

m∑

l′=1

cl
′

a,σ(w − ξl′)
nl′+1

∏

l′′ 6=l′

(w − ξl′′ )
nl′′+2

]
dw

)−1

, (6.28)
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where the definition of cla,σ makes null the residue at ξl of the integrand function in (6.27). The

function σa,l will vanish only at ξl with multiplicity nl + 1 and satisfy

|σ′
a,l(z)|

2 = |σa,l(z)− al|
4 exp

(
u0 + 8π

m∑

l′=1

nl′∑

i=0

G(z, ξl′′ + al
′

i )

−
2π

|Ω|

m∑

l′=1

n′
l∑

i=0

|al
′

i |
2 − 2

m∑

l′=1

Re
[
cl

′

a,σa
(z − ξl′)

nl′+1
∏

l′′ 6=l′

(z − ξl′′)
nl′′+2

])
(6.29)

in view of (6.26).

Since Hl
0,σ = Hl and cl0,σ = cl0 for all l = 1, · · · ,m, when a = 0 the system (6.27) is reduced

to m-copies of (6.20) in each B2η(ξl) (l = 1, · · · ,m) and it is natural to find σa branching

off (σ0, · · · , σ0) for a small by IFT. Let us emphasize that each σa,l(l = 1, · · · ,m) is close to

σ0|B2η(ξl), a crucial property to have D0 defined in terms of a unique σ0 (see (1.7)). Letting

q0,l be the function so that σ0 = qnl+1
0,l near ξl, we have the following result.

Lemma 6.2 (see [17, Lemma 6.1]) Up to take ρ smaller, there exists a C1-map a ∈ Bρ(0)

→ σa ∈ Br so that σa solves the system (6.27)–(6.28). Moreover, the map a ∈ Bρ(0) → cla :=

cla,σa
is C1 with

Γll : = H(ξl)∂al
cla |a=0 =

1

nl!

dnl+1

dznl+1
[Hl(z)f l

nl+1(z)](ξl), (6.30)

Υll : = H(ξl)∂al
cla |a=0 =

2π(nl + 1)

|Ω|nl!
blnl+1

dnlHl

dznl
(ξl), (6.31)

and for j 6= l,

Γlj : = H(ξl)∂aj
cla |a=0 =

1

nl!

dnj+1

dznl+1
[Hl(z)f̃ j

nj+1(z)](ξl), (6.32)

Υlj : = H(ξl)∂aj
cla |a=0=

2π(nj + 1)

|Ω|nl!
bjnj+1

dnlHl

dznl
(ξl), (6.33)

where

f l
n+1(z) =

1

(n+ 1)!

dn+1

dwn+1

[
2 log

w − q0,l(z)

q−1
0,l (w) − z

+ 4πH∗(z − q−1
0,l (w))

]
(0),

bln+1 =
1

(n+ 1)!

dn+1q−1
0,l

dwn+1
(0),

and for j 6= l

f̃ j
n+1 =

1

(n+ 1)!

dn+1

dwn+1
[−2 log(z − q−1

0,j (w) + 4πH∗(z − q−1
0,j (w)))](0).

Letting n = min{nl : l = 1, · · · ,m}, up to re-ordering, assume that n = n1 = · · · = nm′ < nl

for all l = m′ + 1, · · · ,m, where 1 ≤ m′ ≤ m. The matrix A in Theorem 1.1 is the 2m× 2m-

matrix in the form

A :=




A1,2
1,2 · · · A2m−1,2m

1,2

...
...

...

A1,2
2m−1,2m · · · A2m−1,2m

2m−1,2m


 , (6.34)
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where the 2× 2-blocks A2l′−1,2l′

2l−1,2l are given by




Re
[
Γll′ +Υll′ + n(2n+3)D0δll′ |H

l(ξl)|
− 2

n+1

(n+1)
m′∑
j=1

|Hj(ξj)|
− 2

n+1

]
Im[Υll′ − Γll′ ]

Im[Υll′ + Γll′ ] Re
[
Γll′ −Υll′ − n(2n+3)D0δll′ |H

l(ξl)|
− 2

n+1

(n+1)
m′∑
j=1

|Hj(ξj)|
− 2

n+1

]




,

when l = m′+1, · · · ,m, with Γll′ and Υll′ given by (6.30), (6.32) and (6.31), (6.33), respectively,

and δll′ the Kronecker’s symbol.

Next we list some expansions of the approximate solution W =
m∑
l=1

PUδl,al,σl
from [17,

Section 6].

Lemma 6.3 For l = 1, · · · ,m, the following expansions hold :

PUδl,al,σl
= χ(|z − ξl|)[Uδl,al,σl

− log(8δ2) + 4 log |glal,σl
|]

+ 8π

nl∑

i=0

[ 1

2π
(χ(|z − ξl|)− 1) log |z − ξl − ali|+H(z − ξl − ali)

]

+ θδl,al,σl
+ 2δ2l fal,σl

+O(δ4l )

and

PUδl,al,σl
= 8π

nl∑

i=0

G(z, ξl + ali) + θδl,al,σl

+ 2δ2l

(
fal,σl

−
χ(|z − ξl|)

|σl(z)− al|2

)
+O(δ4l )

in C(Ω) and Cloc(Ω \ {ξl}), respectively, uniformly for |a| < ρ and σl ∈ Bl
r, where

θδl,al,σl
= −

1

|Ω|

∫

Ω

χ(|z − ξl|) log
|σl(z)− al|4

(δ2l + |σl(z)− al|2)2

and fal,σl
is a smooth function in z (with a uniform control in al and σl of it and its derivatives

in z).

Choosing σl = σa,l and summing up over l = 1, · · · ,m, by (6.29) for our approximate

function there hold

W = Uδl,al,σl
− log(8δ2l ) + log |σ′

l|
2 − u0 +

2π

|Ω|

nl′∑

i=0

|al
′

i |
2 + θl(a, δ)

+ 2Re
[
cla,σl

(z − ξl)
nl+1

∏

l′ 6=l

(z − ξl′ )
nl′+2

]

+O(|z − ξl|
nl+2

∑

l′ 6=l

|cl
′

a,σl′
|) +

m∑

l′=1

O(δ2l′ |z − ξl|+ δ4l′) (6.35)

and

W = 8π

m∑

l=1

nl∑

i=0

G(z, ξl + ali) +O
( m∑

l′=1

δ2l′ log |δl′ |
)
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uniformly in Bη(ξl) and in Ω \ ∪m
l=1Bη(ξl), respectively, where

Θl(a, δ) :=

m∑

l′=1

[Θδl′ ,al′ ,σl′
+ δ2l′fal′ ,σl′

(ξl)].

As a consequence, we have that

∫

Ω

eu0+W =
m∑

l′=1

[ ∫

Bρ(0)

nl′ + 1

(δ2l′ + |y − al′ |2)2
+ o

( 1

δ2l′

)]

= π

m∑

l′=1

nl′ + 1

δ2
[1 + o(1)] (6.36)

and then near ξl there holds

4πN
eu0+W

∫

Ω

eu0+W

= 4πN
|σ′

l|
2eUδl,al,σl

+O(|z−ξl|
nl+1)+o(1)

8π
m∑

l′=1

(nl′ + 1)δ2l δ
−2
l′ (1 + o(1))

. (6.37)

In order to construct an N -condensate (uλ,µ,Nλ,µ) which satisfies (1.6) as λ, µ → +∞ and
λ
µ
→ 0, we look for a solution of (2.7) in the form (w̃, ṽ) = (W +φ, eu0+W+c(W+φ)(1+φ) +S),

where φ, S are the small remained terms, W =
m∑
l=1

PUδl,al,σl
and δl(λ, µ), al = al(λ, µ) are

suitable small parameters, so that

4Nπ
eu0+w̃

∫

Ω

eu0+w̃

+

64π2N2
(
eu0+w̃

∫

Ω

e2u0+2w̃
( ∫

Ω

eu0+w̃
)−1

− e2u0+2w̃
)

λ2
[ ∫

Ω

eu0+w̃ +

√(∫

Ω

eu0+w̃

)2

−
16Nπ

λ2

∫

Ω

e2u0+2w̃
]2

⇀ 8π
m∑

l=1

(nl + 1)δξl

in the sense of measures as λ, µ → ∞ and λ
µ
→ 0. Since |σ′(z)|2eUδl,al,σl ⇀ 8π(nl + 1)δξl as

δl, al → 0, to have the correct concentration property we need that

8π

m∑

l′=1

(nl′ + 1)δ2l δ
−2
l′ → 4πN

for all l = 1, · · · ,m, and then δl
δl′

→ 1 for all l, l′ = 1, · · · ,m in view of (1.8). It is natural to

introduce just one parameter δ and to choose the δl’s as

δl = δ, l = 1, · · · ,m. (6.38)
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