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1 Introduction

Let p always stand for a prime throughout this paper. In 1997, van Hamme [17, (H.2)]

proved the following interesting supercongruence

p−1
2

∑

k=0

(1
2
)3k

k!3
≡







−Γp

(1

4

)4

(mod p2), if p ≡ 1 (mod 4),

0 (mod p2), if p ≡ 3 (mod 4),

(1.1)

where (a)n = a(a+ 1) · · · (a+ n− 1) denotes the Pochhammer symbol and Γp(x) is the p-adic

Gamma function.

In the past few years, q-analogues of supercongruences have been widely studied by a number

of authors (see [1, 3–5, 7–13, 15, 18–20]). In particular, the author and Zudilin [7] developed a

method, which they called “creative microscoping”, to establish q-analogues of many classical

supercongruences. They (see [8, Theorem 2]) also utilized the method of creative microscoping

to give a q-analogue of (1.1) as follows: Modulo Φn(q)
2,

n−1
2

∑

k=0

(q; q2)2k(q
2; q4)k

(q2; q2)2k(q
4; q4)k

q2k ≡











(q2; q4)2n−1
4

(q4; q4)2n−1
4

q
n−1
2 , if n ≡ 1 (mod 4),

0, if n ≡ 3 (mod 4).

(1.2)

Here (a; q)n = (1 − a)(1 − aq) · · · (1 − aqn−1) is the q-shifted factorial, [n] = 1−qn

1−q
denotes the

q-integer, and Φn(q) is the n-th cyclotomic polynomial in q, which may be given by

Φn(q) =
∏

1≤k≤n

gcd(n,k)=1

(q − ζk),
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where ζ denotes an n-th primitive root of unity.

The author and Schlosser [5] investigated q-congruences and q-supercongruences more sys-

tematically by employing transformation formulas for basic hypergeometric series, together with

all kinds of techniques such as suitably combining terms and the creative microscoping method.

The purpose of this note is to give some q-supercongruences by using Singh’s quadratic

transformation (see [2, Appendix (III.21)]). Our first result is closely related to the aforemen-

tioned q-supercongruence (1.2), and can be stated as follows.

Theorem 1.1 Let d ≥ 2 be an integer and d 6= 3. Let n ≡ 1 (mod 2d) be a positive integer.

Then, modulo Φn(q)
2,

n−1
d

∑

k=0

(q; qd)2k(q
2d−2; q2d)kq

dk

(qd; qd)k(q2d−2; qd)k(qd+2; q2d)k
≡

n−1
2d
∑

k=0

(q; q2d)2k(q
2d−2; q2d)kq

2dk

(q2d; q2d)k(q3d−2; q2d)k(qd+2; q2d)k
. (1.3)

Letting n = p and q → 1 in (1.3), we get the following result: For d ≥ 2, d 6= 3 and p ≡ 1

(mod 2d),

p−1
d

∑

k=0

(

1

d

)2

k

(

d−1

d

)

k

k!
(

2d−2

d

)

k

(

d+2

2d

)

k

≡
p−1
2d
∑

k=0

(

1

2d

)2

k

(

d−1

d

)

k

k!
(

3d−2

2d

)

k

(

d+2

2d

)

k

(mod p2). (1.4)

On the other hand, from (1.2) and the d = 2 case of (1.3), we deduce that, for any positive

integer n ≡ 1 (mod 4),

n−1
4

∑

k=0

(q; q4)2k(q
2; q4)k

(q4; q4)3k
q4k ≡

(q2; q4)2n−1
4

(q4; q4)2n−1
4

q
n−1
2 (mod Φn(q)

2). (1.5)

Our second result is the following q-supercongruence similar to (1.3).

Theorem 1.2 Let d ≥ 4 be an integer. Let n ≡ −1 (mod 2d) be a positive integer and

n 6= 7. Then, modulo Φn(q)
2,

n+1
d

∑

k=0

(q−1; qd)2k(q
2d+2; q2d)kq

dk

(qd; qd)k(q2d+2; qd)k(qd−2; q2d)k
≡

n+1
2d
∑

k=0

(q−1; q2d)2k(q
2d+2; q2d)kq

2dk

(q2d; q2d)k(q3d+2; q2d)k(qd−2; q2d)k
. (1.6)

Our third result is a generalization of (1.3) for d = 2.

Theorem 1.3 Let n ≡ 1 (mod 4) be a positive integer. Then

n−1
2

∑

k=0

(q; q2)2k(q
2; q4)k

(q2; q2)2k(q
4; q4)k

q2k ≡
n−1
2

∑

k=0

(q; q4)2k(q
2; q4)k

(q4; q4)3k
q4k (mod Φn(q)

3). (1.7)

Letting n = p and q → 1 in (1.7), we are led to

p−1
2

∑

k=0

(

1

2

)3

k

k!3
≡

p−1
2

∑

k=0

(

1

4

)2

k

(

1

2

)

k

k!3
(mod p3) for p ≡ 1 (mod 4). (1.8)



q-Supercongruences from Singh’s Transformation 727

Note that Long and Ramakrishna [14, Theorem 3] gave a generalization of (1.1):

p−1
2

∑

k=0

(

1

2

)3

k

k!3
≡















−Γp

(1

4

)4

(mod p3), if p ≡ 1 (mod 4),

−p2

16
Γp

(1

4

)4

(mod p3), if p ≡ 3 (mod 4).

(1.9)

Combining (1.8) and (1.9) and using Sun’s result (see [16, (4.3)])

−Γp

(1

4

)4

≡ 4x2 − 2p− p2

4x2
(mod p3) for p = x2 + 4y2 ≡ 1 (mod 4),

we have the following conclusion.

Corollary 1.1 Let p = x2 + 4y2 ≡ 1 (mod 4), where x and y are integers. Then

p−1
2

∑

k=0

(

1

4

)2

k

(

1

2

)

k

k!3
≡ 4x2 − 2p− p2

4x2
(mod p3).

It is also worth mentioning that Wang [18] and Wei [20] have given two different q-super-

congruences on the left-hand side of (1.7) modulo Φn(q)
3, which are both q-analogues of (1.9)

for p ≡ 1 (mod 4). By the (d, r) = (2, 1) case of [4, Theorem 9], we know that the right-hand

side of (1.7) is congruent to 0 modulo Φn(q)
2, and thus by (1.2) the q-supercongruence (1.7)

also holds modulo Φn(q)
2 for n ≡ 3 (mod 4).

The paper is organized as follows. We shall prove Theorems 1.1–1.3 in Sections 2–4, re-

spectively. Finally, in Section 5, we propose some conjectural q-supercongruences, including a

generalization of (1.7) modulo Φn(q)
4.

2 Proof of Theorem 1.1

Recall that the basic hypergeometric series r+1φr is defined as

r+1φr

[

a1, a2, · · · , ar+1

b1, b2, · · · , br
; q, z

]

=

∞
∑

k=0

(a1, a2, · · · , ar+1; q)kz
k

(q, b1, · · · , br; q)k
.

We need Singh’s quadratic transformation (see [2, Appendix (III.21)])

4φ3

[

a2, b2, c, d

ab
√
q,−ab

√
q,−cd

; q, q

]

= 4φ3

[

a2, b2, c2, d2

a2b2q,−cd,−cdq
; q2, q2

]

(2.1)

provided that both series terminate. For an elementary proof of this transformation, see [6,

Section 5].

We first give the following parametric generalization of Theorem 1.1.

Theorem 2.1 Let d ≥ 2 be an integer and let a be an indeterminate. Let n ≡ 1 (mod 2d)

be a positive integer. Then, modulo (1− aqn)(a− qn),

n−1
d

∑

k=0

(aq; qd)k
(

q
a
; qd

)

k
(q2d−2; q2d)kq

dk

(qd; qd)k(q2d−2; qd)k(qd+2; q2d)k
≡

n−1
2d
∑

k=0

(aq; q2d)k
(

q
a
; q2d

)

k
(q2d−2; q2d)kq

2dk

(q2d; q2d)k(q3d−2; q2d)k(qd+2; q2d)k
. (2.2)
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Proof Putting q 7→ qd, a = q
1−n
2 , b = q

1+n
2 , c = qd−1 and d = −qd−1 in Singh’s transfor-

mation (2.1), for n ≡ 1 (mod 2d), we have

4φ3

[

q1−n, q1+n, qd−1,−qd−1

q
d+2
2 ,−q

d+2
2 , q2d−2

; qd, qd

]

= 4φ3

[

q1−n, q1+n, q2d−2, q2d−2

qd+2, q2d−2, q3d−2
; q2d, q2d

]

.

Namely, both sides of (2.2) are equal for a = q−n and a = qn. Therefore, the q-congruence (2.2)

is true modulo 1− aqn and a− qn. Since 1− aqn and a− qn are relatively prime polynomials

in q, we complete the proof.

Proof of Theorem 1.1 Since n ≡ 1 (mod 2d), we have gcd(2d, n) = 1. Hence, for d ≥ 2

and d 6= 3, the polynomials

(qd; qd)k(q
2d−2; qd)k(q

d+2; q2d)k, 0 ≤ k ≤ n− 1

d

and

(q2d; q2d)k(q
3d−2; q2d)k(q

d+2; q2d)k, 0 ≤ k ≤ n− 1

2d

are relatively prime to Φn(q). Moreover, the polynomial 1− qn has the factor Φn(q). The proof

of (1.3) then follows from the congruence (2.2) by letting a = 1.

3 Proof of Theorem 1.2

Similarly as before, we first establish a parametric generalization of Theorem 1.2.

Theorem 3.1 Let d ≥ 4 be an integer and let a be an indeterminate. Let n ≡ −1 (mod 2d)

be a positive integer. Then, modulo (1− aqn)(a− qn),

n+1
d

∑

k=0

(aq−1; qd)k
(

q−1

a
; qd

)

k
(q2d+2; q2d)kq

dk

(qd; qd)k(q2d+2; qd)k(qd−2; q2d)k

≡
n+1
2d
∑

k=0

(aq−1; q2d)k
(

q−1

a
; q2d

)

k
(q2d+2; q2d)kq

2dk

(q2d; q2d)k(q3d+2; q2d)k(qd−2; q2d)k
. (3.1)

Proof Making the parameter substitutions q 7→ qd, a = q−
n+1
2 , b = q

n−1
2 , c = qd+1 and

d = −qd+1 in (2.1), for n ≡ −1 (mod 2d), we have

4φ3

[

q−n−1, qn−1, qd+1,−qd+1

q
d−2
2 ,−q

d−2
2 , q2d+2

; qd, qd

]

= 4φ3

[

q−n−1, qn−1, q2d+2, q2d+2

qd−2, q2d+2, q3d+2
; q2d, q2d

]

.

That is, the two sides of (3.1) are equal for a = q−n and a = qn. This proves that (2.2) holds

modulo 1− aqn and a− qn.

Proof of Theorem 1.2 Since d ≥ 4, n ≡ −1 (mod 2d) and n > 7, we have gcd(2d, n) = 1

and the polynomials

(qd; qd)k(q
2d+2; qd)k(q

d−2; q2d)k, 0 ≤ k ≤ n+ 1

d
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and

(q2d; q2d)k(q
3d+2; q2d)k(q

d−2; q2d)k, 0 ≤ k ≤ n+ 1

2d

are relatively prime to Φn(q). The proof of (1.6) then follows from the congruence (3.1) by

setting a = 1.

4 Proof of Theorem 1.3

Likewise, we have a parametric generalization of Theorem 1.3.

Theorem 4.1 Let n ≡ 1 (mod 4) be a positive integer and let a be an indeterminate. Then,

modulo Φn(q)(1 − aqn)(a− qn),

n−1
2

∑

k=0

(aq; q2)k
(

q

a
; q2

)

k
(q2; q4)k

(q2; q2)2k(q
4; q4)k

q2k ≡
n−1
2

∑

k=0

(aq; q4)k
(

q

a
; q4

)

k
(q2; q4)k

(q4; q4)3k
q4k. (4.1)

Proof Letting q 7→ q2, a → √
aq, b →

√

q

a
, c = q1−n and d = −q1−n in (2.1), for odd n,

we have

4φ3

[

aq, q

a
, q1−n,−q1−n

q2,−q2, q2−2n
; q2, q2

]

= 4φ3

[

aq, q

a
, q2−2n, q2−2n

q4, q2−2n, q4−2n
; q4, q4

]

,

which can be written as

n−1
2

∑

k=0

(aq; q2)k
(

q
a
; q2

)

k
(q2−2n; q4)k

(q2; q2)k(q2−2n; q2)k(q4; q4)k
q2k =

n−1
2

∑

k=0

(aq; q4)k
(

q
a
; q4

)

k
(q2−2n; q4)k

(q4; q4)2k(q
4−2n; q4)k

q4k. (4.2)

Note that qn ≡ 1 (mod Φn(q)), and for 0 ≤ k ≤ n−1

2
, the polynomials (q2; q2)2k(q

4; q4)k and

(q4; q4)3k are relatively prime to Φn(q). From (4.2) we deduce that (4.1) holds modulo Φn(q).

On the other hand, by the d = 2 case of (2.2), modulo (1− aqn)(a− qn),

n−1
2

∑

k=0

(aq; q2)k
(

q

a
; q2

)

k
(q2; q4)k

(q2; q2)2k(q
4; q4)k

q2k ≡
n−1
4

∑

k=0

(aq; q4)k
(

q

a
; q4

)

k
(q2; q4)k

(q4; q4)3k
q4k,

which is equivalent to (4.1) modulo (1−aqn)(a− qn). This is because (aq; q4)k(
q

a
; q4)k contains

the factor (1− aqn)
(

1− qn

a

)

for n−1

4
< k ≤ n−1

2
. Since Φn(q) is coprime with (1− aqn)(a− qn),

we complete the proof.

Proof of Theorem 1.3 Letting a = 1 in (4.1), we obtain the desired q-supercongruence

(1.7).

5 Concluding Remarks and Open Problems

Numerical evaluation implies that the q-congruence (1.3) does not hold for d = 3 and the

q-congruence (1.6) does not hold for n = 7. Moreover, when we sum both sides of (1.3) over k

up to n − 1, the q-congruence seems still to be true. This is also the case for d = 3 (which is

more or less surprising). Namely, we have the following conjecture.
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Conjecture 5.1 Let d ≥ 2 be an integer. Let n ≡ 1 (mod 2d) be a positive integer. Then,

modulo Φn(q)
2,

n−1
∑

k=0

(q; qd)2k(q
2d−2; q2d)kq

dk

(qd; qd)k(q2d−2; qd)k(qd+2; q2d)k
≡

n−1
∑

k=0

(q; q2d)2k(q
2d−2; q2d)kq

2dk

(q2d; q2d)k(q3d−2; q2d)k(qd+2; q2d)k
.

Similarly, Theorem 1.2 has such a generalization.

Conjecture 5.2 Let d ≥ 3 be an integer. Let n ≡ −1 (mod 2d) be a positive integer. Then,

modulo Φn(q)
2,

n−1
∑

k=0

(q−1; qd)2k(q
2d+2; q2d)kq

dk

(qd; qd)k(q2d+2; qd)k(qd−2; q2d)k
≡

n−1
∑

k=0

(q−1; q2d)2k(q
2d+2; q2d)kq

2dk

(q2d; q2d)k(q3d+2; q2d)k(qd−2; q2d)k
.

Before we propose the third conjecture of this paper, we give the following q-congruence

related to Theorem 1.3.

Theorem 5.1 Let n ≡ 1 (mod 4) be a positive integer. Then

n−1
2

∑

k=0

(q; q2)2k(q
2; q4)k

(q2; q2)2k(q
4; q4)k

q2k ≡
n−1
∑

k=0

(q; q2)2k(q
2; q4)k

(q2; q2)2k(q
4; q4)k

q2k (mod Φn(q)
4). (5.1)

Proof By [2, Appendix (I.11)], we have

(a; q)n−k

(b; q)n−k

=
(a; q)n

(

q1−n

b
; q
)

k

(b; q)n
(

q1−n

a
; q
)

k

( b

a

)k

≡
(a; q)n

(

q
b
; q
)

k

(b; q)n
(

q

a
; q
)

k

( b

a

)k

(mod Φn(q)).

It follows that

n−1
∑

k= n+1
2

(q; q2)2k(q
2; q4)k

(q2; q2)2k(q
4; q4)k

q2k

=

n−1
2

∑

k=1

(q; q2)2n−k(q
2; q4)n−k

(q2; q2)2n−k(q
4; q4)n−k

q2n−2k

≡ (q; q2)2n(q
2; q4)nq

2n

(q2; q2)2n−1(q
4; q4)n−1

n−1
2

∑

k=1

(q2; q2)2k−1
(q4; q4)k−1

(q; q2)2k(q
2; q4)k

q2k (mod Φn(q)
4), (5.2)

where we have used the q-congruence (q; q2)2n(q
2; q4)n ≡ 0 (mod Φn(q)

3). Similarly to [5, Lem-

ma 3.1], we can prove that

(q2; q2)n+1
2 −k−1

(q; q2)n+1
2 −k

≡ (−1)
n+1
2

(q2; q2)k−1

(q; q2)k
q

n2−1
4 +k (mod Φn(q))

for 1 ≤ k ≤ n−1

2
, and so the k-th term plus the

(

n+1

2
− k

)

-th term in the summation of the

right-hand side (5.2) is congruent to 0 modulo Φn(q). Since the fraction before the summation

is congruent to 0 modulo Φn(q)
3, we conclude that the right-hand side of (5.2) is congruent to

0 modulo Φn(q)
4, thus establishing (5.1).
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Conjecture 5.3 Let n ≡ 1 (mod 4) be a positive integer. Then

n−1
2

∑

k=0

(q; q2)2k(q
2; q4)k

(q2; q2)2k(q
4; q4)k

q2k ≡
n−1
∑

k=0

(q; q4)2k(q
2; q4)k

(q4; q4)3k
q4k (mod Φn(q)

4).

Recently, the author and Zudilin [9] proved a number of Dwork-type q-supercongruences.

We conjecture that (1.5) can be generalized to the following Dwork-type q-supercongruence.

Conjecture 5.4 Let n ≡ 1 (mod 4) be a positive integer and r ≥ 1. Then, modulo
r
∏

j=1

Φnj (q)2,

nr−1
d

∑

k=0

(q; q4)2k(q
2; q4)k

(q4; q4)3k
q4k

≡
(q2; q4)2nr−1

4

(q4n; q4n)2
nr−1−1

4

(q4; q4)2nr−1
4

(q2n; q4n)2
nr−1−1

4

q
n−1
2

nr−1−1
d

∑

k=0

(qn; q4n)2k(q
2n; q4n)k

(q4n; q4n)3k
q4nk,

where d = 1, 2, 4.
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