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1 Introduction

A Siegel disk is the biggest simply connected rotation domain of a holomorphic function.

In general, the boundary of a simply connected domain may have very complicated structure.

However, how complicated may the structure of a Siegel disk boundary be? For Siegel disks of

rational functions, it is conjectured that the topological structure is simple. See the following

well-known open question by Douady and Sullivan (see [5, 11]): “Is a Siegel disk boundary

of a rational function always a Jordan curve?” In the past few decades, there have been

some breakthroughs on this question (see [3, 6, 12, 14–16]). From the perspective of measure or

dimension, there is an open question that people are also concerned about (see [10] for quadratic

polynomials): “Can a Siegel disk boundary of a rational function have Hausdorff dimension 2?”

In this paper, instead of studying Siegel disks of rational functions directly, we adapt these two

questions for a general class of holomorphic functions as follows.

Question Can a simple topological structure and a large Hausdorff dimension (equal to 2)

coexist for a relatively compact Siegel disk boundary of a holomorphic function?
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Our following main result gives this question an affirmative answer.

Main Theorem There exists a univalent function fixing 0 having a relatively compact

Siegel disk centered at 0 whose boundary is a Jordan curve of positive area.

Our proof is to adopt a general scheme for constructing a relatively compact Siegel disk.

Precisely, in the same spirit as Handel’s or Herman’s producing a diffeomorphism with a pseudo

disk (see [7–8]), Pérez-Marco used tube-log Riemann surfaces to construct examples of injective

holomorphic maps having a relatively compact Siegel disk whose boundary is a smooth Jordan

curve. Later, Biswas used Pérez-Marco’s construction to produce a set of interesting examples

(see [1–2]). In [4], Chéritat added Runge’s theorem to this construction and got a univalent

function having a relatively compact Siegel disk with non-locally connected boundary.1 In [13],

Sun and Qu produced a univalent function having a relatively compact Siegel disk with positive

area boundary based on the construction having Runge’s theorem by Chéritat. In this paper,

together with Osgood’s method constructing a Jordan curve of positive area (see [9]), we also

use the general scheme having Runge’s theorem to prove our main theorem.

2 A General Scheme to Construct Siegel Disks

In this section, a general scheme for constructing univalent holomorphic maps with relatively

compact Siegel disks is briefly presented. This content is not new, refer [4] for more details.

Different from Chéritat’s convention, we immediately work in the complex plane C. The

following notations are needed:

• For any real number θ, define Rθ : C → C, z 7→ e2πiθz.

• For all t > 0, define Dt := {z ∈ C : |z| < t}, here we call a standard disk, in particular,

we also write D = D1.

• For all t > 0 and z ∈ C, define

Bt(z) := {w ∈ C : |w − z| < t}.

• For all 0 < r < r′ and θ < θ′, we set

Hr,r′ := {z : r < |z| < r′},

lθ,r := {ρeiθ : r < ρ < 1}

and

Ωr,r
′

θ,θ′ := {z = ρe2πiα : r < ρ < r′, θ < α < θ′},

in particular, we write also Ωr,1θ,θ′ as Ω
r
θ,θ′ and write also Hr,1 as Hr.

• We denote by Dom(f) the domain of a map f .

1In [4], Chéritat, based on the new flexibility allowed by Runge’s theorem, proposed the following two claims.
Proposal 1 Prove that there exists an injective holomorphic map f defined in a simply connected open

subset U of C containing the origin, fixing 0 and having at 0 a hedgehog of positive Lebesgue measure compactly
contained in U .

Proposal 2 Prove that there exists an injective holomorphic map f defined in a doubly connected open
subset U of C and a Jordan curve J with positive Lebesgue measure contained in U that is invariant by f , and
carries an invariant line field.



Siegel Disks Whose Boundaries are Jordan Curves with Positive Area 809

• We denote by H the set of entire functions satisfying that for all β ∈ H, β(z) = 0 ⇔ z = 0,

β′(0) > 0, β′(z) ̸= 0 for all z ∈ C and there exists a Jordan domain D(β) (⊆ D) containing 0

such that β|D(β) is a conformal map from D(β) to D. We write Dr(β) := (β|D(β))
−1(Hr) for

all 0 < r < 1.

Given a sequence {qn}+∞
n=1 of positive integers and a sequence {βn}+∞

n=1 of elements in H,

for all n ≥ 1, we let Rn be the single-valued analytic branch of q1q2···qn−1

√
βn(zq1q2···qn−1) (set

q0 = 1) such that (Rn)
′(0) > 0 and Gn be the holomorphic lift of Rθn with θn := 1

q1q2···qn ,

defined in a neighborhood of 0, under φn := Rn ◦ Rn−1 ◦ · · · ◦ R1, that is, φn ◦ Gn = Rθn ◦ φn.

In general, the domain of Gn is indefinite, but if qn is large enough, then Dom(Gn) contains any

given standard disk and Dom(Gn) is arbitrarily close to the identity map on the given standard

disk. Fix ε > 0 and let fn := Gn ◦ Gn−1 ◦ · · · ◦ G1.

Assume 2.1 qn, n ≥ 1 are large enough so that Dom(Gn) ⊇ D1+ε, Dom(fn) ⊇ D1+ε and

both Gn and fn are univalent on D1+ε for some fixed ε > 0.

The following facts are easily checked:

(a) For all n ≥ 1, (fn)
′(0) = e

2πi
n∑

j=1
θj
.

(b) For all n ≥ 1, Rn ◦ Rθn−1 = Rθn−1
◦ Rn and G◦qn

n = Gn−1 with G0 = Identity.

(c) The map φn is semi-conjugate from fn to R n∑
j=1

θn
on D1+ε, that is,

φn ◦ fn(z) = R n∑
j=1

θn
◦ φn(z)

for all z ∈ D1+ε.

It is easy to see that φn ∈ H. Then D(φn) (⊆ D) is well-defined.

Assume 2.2 As n→ +∞, D(φn) converges to a simply connected region D ⊆ D containing

0 in the sense of Carathéodory.

Let φ be the Riemann mapping with φ(0) = 0 and φ′(0) > 0 from D to D. By Assume 2.2

and a theorem of Carathéodory, φn|D(φn) converges locally uniformly to φ on D. Furthermore,

the following lemma can be proved.

Lemma 2.1 (see [4]) As long as qn(n≥1) are large enough, fn converges locally uniformly

on D1+ε to f defined on D1+ε and satisfies

• f is univalent,

• there is an irrational number θ =
+∞∑
j=1

1
q1q2···qj such that φ ◦ f ◦ φ−1(z) = Rθ(z) on D.

As seen, f̃ is exactly what we want with a Siegel disk D if its boundary is not an analytic

curve. Thus to complete the proof, we only need to construct {βn} such that Assume 2.2 holds

and the boundary of D is a Jordan curve of positive area. At last, we need the following lemma

by Chéritat whose proof is based on Runge’s theorem (see [4, Lemma 5]), which will be used

to construct βn.
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Lemma 2.2 (see [4]) Assume W ⊆ C is a simply connected region containing 0 and ϕ is

a conformal bijection from W to D fixing 0. Then there exists a sequence of holomorphic maps

ψn : C → C such that

• ψn(z) = 0 ⇔ z = 0,

• ψ′
n does not vanish,

• as n tends to +∞, ψn tends uniformly to ϕ on every compact subset of W .

3 Technique Preparation for the Construction of {βn}

For all δ > 0, a Jordan curve γ : R/Z → C is called δ-analytic if

• there exist 0 = a1 < a2 < · · · < an < an+1 = 1 such that diam(γ([aj , aj+1])) < δ for all

j = 1, 2, · · · , n,
• for all 1 ≤ j ≤ n, there exists an εj-neighborhood (aj − ε, aj + ε) of aj such that

γ|(aj−εj ,aj+εj) is an analytic arc.

Moreover, we say that a Jordan curve γ is 0-analytic if γ is δ-analytic for any δ > 0. Let

H be a 2-connected region in C bounded by two Jordan curves γ1 and γ2. Then there exist

r > 0 and a conformal map ϕ from Hr to H. We say that ϕ is δ-admissible if there exist

θ1 < θ2 < · · · < θn < θn+1 = θ1 + 1 such that for all 1 ≤ j ≤ n and all z, z′ ∈ Ωrθj ,θj+1
,

|ϕ(z)− ϕ(z′)| ≤ δ.

Lemma 3.1 Let γ be a δ-analytic Jordan curve in Hr′ such that γ surrounds 0. Then there

exist β ∈ H and 0 < r′′ < 1 such that

• γ ⊆ Dr′′(β) and Dr′′(β) ⊆ Hr′ ,

• (β|Dr′′ (β)
)−1 is 14δ-admissible.

Proof Let D1 be the component of Ĉ \ γ containing 0 and D2 be the component of Ĉ \ γ
containing ∞. Let ϕ1 be the conformal map from D to D1 such that ϕ1(0) = 0 and ϕ′1(0) > 0.

Let ϕ2 be the conformal map from D to D2 such that ϕ2(0) = ∞ and lim
z→0

zϕ2(z) > 0. For

all 0 < r < 1, we denote by Dr
1 the component of C \ ϕ2(∂Dr) containing 0. Let ϕr be the

conformal map from D to Dr
1 such that ϕr(0) = 0 and (ϕr)

′(0) > 0. Since Dr
1 converges to

D1 in the sense of Carathéodory, by a theorem of Carathéodory we have that ϕ−1
r converges

uniformly to ϕ−1
1 on every compact subset of D1 as r → 1−. For all z ∈ D, we choose ε > 0

sufficiently small so that Bε(ϕ1(z)) ⊆ D1. Then ϕr(w) =
1

2πi

∫
|ξ−ϕr(z)|=ε

ξ(ϕ−1
r )′(ξ)

ϕ−1
r (ξ)−w dz converges

uniformly to ϕ1(w) =
1

2πi

∫
|ξ−ϕ1(z)|=ε

ξ(ϕ−1
1 )′(ξ)

ϕ−1
1 (ξ)−w dz on some neighborhood of z as r → 1−. Thus

ϕr converges uniformly to ϕ1 on every compact subset of D as r → 1−.

We denote also by ϕ1 the extension of ϕ1 to D. In this case, ϕ1(∂D) = γ([0, 1]). Since γ is a

δ-analytic Jordan curve, we have that there exist 0 = a1 < a2 < · · · < an < an+1 = 1 such that

• diam({ϕ1(e2πiθ) : aj ≤ θ ≤ aj+1}) < δ for all j = 1, 2, · · · , n,
• for all 1 ≤ j ≤ n, there exists an εj-neighborhood (aj − εj , aj + εj) of aj such that

ϕ1(e
2πiθ) is an analytic arc in this neighborhood (thanks to the reflection principle).

We denote also by ϕ2 the extension of ϕ2 to D. Let b1 > b2 > · · · > bn > bn+1 = b1 − 1
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correspond to 0 = a1 < a2 < · · · < an < an+1 = 1, that is ϕ2(e
2πibj ) = ϕ1(e

2πiaj ) for

j = 1, 2, · · · , n+ 1. Then

• diam({ϕ2(e2πiθ) : bj ≥ θ ≥ bj+1}) < δ for all j = 1, 2, · · · , n,
• for all 1 ≤ j ≤ n, there exists an ε′j-neighborhood (bj−ε′j , bj+ε′j) of bj such that ϕ2(e

2πiθ)

is an analytic arc in this neighborhood (thanks to the reflection principle).

We denote also by ϕr the extension of ϕr to D. We set

D̂ = D ∪
{
e2πiθ : θ ∈

n∪
j=1

(aj − εj , aj + εj)
}
.

We claim that ϕr converges uniformly to ϕ1 on every compact subset of D̂ as r → 1−.

Indeed, for all j ∈ {1, 2, · · · , n} and θ ∈ (aj − εj , aj + εj), since ϕ1(e
2πiθ) is an analytic arc

on (aj − εj , aj + εj), there exists a ball Bε(ϕ−1
2 (ϕ1(e

2πiθ))) (0 < ε ≪ 1) such that ϕ2 can be

homeomorphically extended to D ∪ Bε(ϕ−1
2 (ϕ1(e2πiθ))) and univalent on D∪Bε(ϕ−1

2 (ϕ1(e
2πiθ))),

written as ϕ̃2. It follows that ϕ̃2 is univalent on Dr ∪ Bε(rϕ−1
2 (ϕ1(e

2πiθ))) for all 0 < r ≤ 1.

Then ϕ−1
r ◦ ϕ̃2 is univalent on Bε(rϕ−1

2 (ϕ1(e
2πiθ))) \ Dr and continuous on

(Bε(rϕ−1
2 (ϕ1(e

2πiθ))) \ Dr) ∪ (Bε(rϕ−1
2 (ϕ1(e

2πiθ))) ∩ ∂Dr) = Bε(rϕ−1
2 (ϕ1(e

2πiθ))) \ Dr.

Again, observe that ϕ−1
r ◦ ϕ̃2 maps Bε(rϕ−1

2 (ϕ1(e
2πiθ)))\ Dr into D and maps Bε(rϕ−1

2 (ϕ1(e
2πiθ)))

∩ ∂Dr into ∂D. Thus the reflection principle gives that ϕ−1
r ◦ ϕ̃2 can be univalently extended to

Er,2 := (Bε(rϕ−1
2 (ϕ1(e

2πiθ))) \ Dr) ∪ ι(Bε(rϕ−1
2 (ϕ1(e

2πiθ))) \ Dr),

written as ϕr,2, where ι(z) =
1
z . The composition ϕr,2 ◦ ϕ̃−1

2 is univalent on ϕ̃2(Er,2) and coin-

cides with ϕ−1
r (z) on ϕ̃2(Bε(rϕ−1

2 (ϕ1(e
2πiθ)))\Dr) (⊆ Dr

1). Since ϕr,2 maps ι(Bε(rϕ−1
2 (ϕ1(e

2πiθ)))

\Dr) into C\D, we have that ϕr,2 ◦ ϕ̃−1
2 maps ϕ̃2 ◦ ι(Bε(rϕ−1

2 (ϕ1(e
2πiθ)))\Dr) into C\D. Thus

Φr(z) =

ϕr,2 ◦ ϕ̃−1
2 , z ∈ ϕ̃2(Er,2),

ϕ−1
r (z), z ∈ Dr

1

is univalent on Dr
1 ∪ ϕ̃2(Er,2). It follows from ε ≪ 1 that for all r sufficiently close 1, there

exists a fixed neighborhood V of 0 contained in Dr
1 and not intersecting ϕ̃2(Er,2), and hence

ϕr,2 ◦ ϕ̃−1
2 (ϕ̃2(Er,2)) ∩ Φr(V ) = Φr(ϕ̃2(Er,2)) ∩ Φr(V ) = ∅.

Montel’s theorem gives that ϕr,2 ◦ ϕ̃−1
2 (r sufficiently close to 1) is a normal family on ϕ̃2(Er,2).

Again, since ϕr,2 ◦ ϕ̃−1
2 converges locally uniformly to ϕ−1

1 on ϕ̃2(Bε(ϕ−1
2 (ϕ1(e

2πiθ)))\D) (⊆ D1)

as r → 1−, we have that ϕr,2 ◦ ϕ̃−1
2 converges locally uniformly to ϕ1,2 ◦ ϕ̃−1

2 on ϕ̃2(E1,2) as

r → 1−. Similar to the proof that ϕr converges locally uniformly to ϕ1, we have that (ϕr,2 ◦

ϕ̃−1
2 )−1 converges locally uniformly to (ϕ1,2 ◦ ϕ̃−1

2 )−1 on ϕ1,2(E1,2). Since e2πiθ ∈ ϕ1,2(E1,2),

we have that (ϕr,2 ◦ ϕ̃−1
2 )−1 converges uniformly to (ϕ1,2 ◦ ϕ̃−1

2 )−1 on some neighborhood

U of e2πiθ as r → 1−. It follows that ϕr|U∩D = (ϕr,2 ◦ ϕ̃−1
2 )−1|U∩D converges uniformly to

ϕ1|U∩D = (ϕ1,2 ◦ ϕ̃−1
2 )−1|U∩D on U ∩ D as r → 1−. Again, since ϕr converges locally uniformly

to ϕ1 on D as r → 1−. Thus ϕr converges locally uniformly to ϕ1 on D̂ as r → 1−.
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We choose 0 < r0 < 1 sufficiently close to 1 so that ϕ1(∂Dr0) ⊆ Hr′ and for all 0 ≤ θ < 1

and r0 ≤ r ≤ 1,

|ϕ1(re2πiθ)− ϕ1(e
2πiθ)| < δ. (3.1)

For all 1 ≤ j ≤ n, there exists a unique θj with |θj − bj | < 1 such that ϕr(e
2πiaj ) = ϕ2(re

2πiθj ).

By the above claim, ϕr(e
2πiaj ) = ϕ2(re

2πiθj ) converges to ϕ1(e
2πiaj ) = ϕ2(e

2πibj ) as r → 1−

and hence θj → bj as r → 1−.

We choose r sufficiently close to 1 so that

(1) ϕr(∂D) = ϕ2(∂Dr) ⊆ Hr′ ,

(2) for all 0 ≤ θ < 1, |ϕ2(re2πiθ)− ϕ2(e
2πiθ)| < δ,

(3) for all 0 ≤ θ < 1, |ϕr(r0e2πiθ) − ϕ1(r0e
2πiθ)| < δ (thanks to that ϕr(r0e

2πiθ) converges

uniformly to ϕ1(r0e
2πiθ) for θ ∈ [0, 1) as r → 1−),

(4) ϕr(r0e
2πiθ) is contained in the intersection of Hr′ and the bounded component of C \ γ

(thanks to that ϕr(r0e
2πiθ) converges uniformly to ϕ1(r0e

2πiθ) for θ ∈ [0, 1) as r → 1−),

(5) for all θ ∈
n∪
j=1

[
aj − εj

2 , aj +
εj
2

]
and r0 ≤ s ≤ 1, |ϕr(se2πiθ)− ϕr(e

2πiθ)| < δ (thanks to

the above claim and (3.1)),

(6) for all 1 ≤ j ≤ n, |θj − bj | < c := min{|b1− b2|, · · · , |bj − bj+1|, · · · , |bn− bn+1|} (thanks

to that θj → bj as r → 1−).

Since γ is contained in the bounded component of C \ ϕr(∂D) (= C \ ϕ2(∂Dr)) and at the

same time by (4) γ is contained in the unbounded component of C \ ϕr(r0e2πiθ), we have γ ⊆
ϕr(Hr0). (1) and (4) give ϕr(∂D) ∪ ϕr(r0e2πiθ) ⊆ Hr′ and together with 0 ̸∈ ϕr(Hr0), we have

ϕr(Hr0) ⊆ Hr′ . Next, we prove that ϕr|Hr0
is 14δ-admissible. Indeed, for all j ∈ {1, 2, · · · , n},

ϕr(Ω
r0
aj ,aj+1

) is bounded by {ϕr(r0e2πiθ) : aj ≤ θ ≤ aj+1}, ϕr(l2πaj ,r0), ϕr(l2πaj+1,r0) and

{ϕr(e2πiθ) : aj ≤ θ ≤ aj+1}. By (3), (3.1) and diam({ϕ1(e2πiθ) : aj ≤ θ ≤ aj+1}) < δ

(j = 1, 2, · · · , n), we have that for all j = 1, 2, · · · , n,

diam({ϕr(r0e2πiθ) : aj ≤ θ ≤ aj+1}) ≤ diam({ϕ1(r0e2πiθ) : aj ≤ θ ≤ aj+1}) + 2δ

≤ diam({ϕ1(e2πiθ) : aj ≤ θ ≤ aj+1}) + 4δ

< 5δ.

It follows from (5) that diam(ϕr(l2πaj ,r0)) < 2δ and diam(ϕr(l2πaj+1,r0)) < 2δ. By (2), (6) and

diam({ϕ2(e2πiθ) : bj ≥ θ ≥ bj+1}) < δ

(j = 1, 2, · · · , n), we have

diam({ϕr(e2πiθ) : aj ≤ θ ≤ aj+1}) ≤ diam({ϕ2(re2πiθ) : bj+1 − c ≤ θ ≤ bj + c})

≤ diam({ϕ2(e2πiθ) : bj+1 − c ≤ θ ≤ bj + c}) + 2δ

< 5δ.

Thus diam(ϕr(Ω
r0
aj ,aj+1

)) < 14δ.
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By Lemma 2.2 there exists a sequence of holomorphic maps ψn : C → C such that

• ψn(z) = 0 ⇔ z = 0,

• ψ′
n does not vanish,

• as n tends to +∞, ψn tends uniformly to ϕ−1
r on every compact subset of ϕr(D) (= Dr

1).

We choose r1 with r0<r1<1 sufficiently close to 1 so that γ ⊆ ϕr(Hr0,r1), ϕr(Hr0,r1) ⊆ Hr′

and ϕr|Hr0,r1
(r1z) : H r0

r1

→ ϕr(Hr0,r1) is 14δ-admissible. Since ψn converges uniformly to

ϕ−1
r on every compact subset of ϕr(D) as n → ∞, we have that ψn converges uniformly to

ϕ−1
r on ϕr(D 1+r1

2
) as n → ∞ and for sufficiently large n, ψn|ϕr(D 1+r1

2

) is univalent. For all

z ∈ D 1+r1
2

, we choose ε > 0 sufficiently small so that Bε(ϕr(z)) ⊆ ϕr(D 1+r1
2

). Then ψ−1
n (w) =

1
2πi

∫
|ξ−ϕr(z)|=ε

ξ(ψn)
′(ξ)

ψn(ξ)−w dz converges uniformly to ϕr(w) =
1

2πi

∫
|ξ−ϕr(z)|=ε

ξ(ϕ−1
r )′(ξ)

ϕ−1
r (ξ)−w dz on some

neighborhood of z as r → 1−. Thus ψ−1
n |D 1+r1

2

converges locally uniformly to ϕr|D 1+r1
2

on

D 1+r1
2

. Thus ψ−1
n |Hr0,r1

(r1z) : H r0
r1

→ ψ−1
n (Hr0,r1) converges uniformly to ϕr|Hr0,r1

(r1z) on

H r0
r1

. Thus we can take n sufficiently large so that

ψ−1
n |Hr0,r1

(r1H r0
r1

) = ψ−1
n (Hr0,r1) ⊇ γ, ψ−1

n |Hr0,r1
(r1H r0

r1

) = ψ−1
n (Hr0,r1) ⊆ Hr′

and ψ−1
n |Hr0,r1

(r1z) is 14δ-admissible. At last, we take β(z) = ψn(z)
r1

and r′′ = r0
r1
< 1. This

completes the proof.

For all 0 < r < 1, we let γ be a δ-analytic Jordan curve in Hr such that γ surrounds 0.

Then by Lemma 3.1 there exist β ∈ H and 0 < r′ < 1 such that

• γ ⊆ Dr′(β) and Dr′(β) ⊆ Hr,

• (β|Dr′ (β)
)−1 is 14δ-admissible.

For all positive integer q, we denote by R the single-value analytic branch of q
√
β(zq) such that

(R)′(0) > 0 and denote by γ̃ the preimage of γ under zq. Then

• γ̃ is a δ
qr -analytic Jordan curve in H q

√
r and surrounds 0,

• γ̃ ⊆ D q√
r′(R) and D q√

r′(R) ⊆ H q
√
r,

• γ̃ = e
1
q 2πiγ̃,

• (R|D q√
r′ (R))

−1 is 14δ
qr -admissible.

Thus we have the following corollary.

Corollary 3.1 Let δ, r be two positive real numbers with 0 < r < 1, q be a positive integer

and b = |b|e2πiθ ∈ Hr. If γ is a 0-analytic Jordan curve in Hr such that γ surrounds 0,

γ ∩ l( k
q +θ)2π,r

= {e
k
q 2πib}, 0 ≤ k ≤ q− 1 and e

1
q 2πiγ = γ, then there exist β ∈ H and 0 < r′ < 1

such that

• γ ⊆ Dr′(R) and Dr′(R) ⊆ Hr,

• the inverse (R|Dr′ (R))
−1 is δ-admissible,

where R is the single-value analytic branch of q
√
β(zq) such that (R)′(0) > 0.

Proof Let γ1 be the subarc of γ connecting b and be
1
q 2πi contained in Ωr

θ,θ+ 1
q

. Then γq1 is a

Jordan curve in Hrq surrounding 0 and passing through bq. Since γ is 0-analytic, we have that
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γ1 is 0-analytic and hence γq1 is 0-analytic. Applying Lemma 3.1 and q
√
z to γq1 , we can obtain

the conclusion.

By applying Osgood’s method for constructing a Jordan curve of positive area [9], the

following lemma is easy to be proved.

Lemma 3.2 Let r be a positive real numbers with r < 1, q be a positive integer and b =

|b|e2πiθ ∈ Hr. Then for all ε > 0, there exists a 0-analytic Jordan curve γ in Hr such that γ

surrounds 0, γ ∩ l( k
q +θ)2π,r

={e
k
q 2πib}, 0 ≤ k ≤ q − 1, e

1
q 2πiγ = γ and densHr (Hr \ γ) < ε.

Proof We choose ε1 > 0 sufficiently small so that

area(Ωr+ε1,1−ε1
θ+ε1,θ+

1
q−ε1

) >
(
1− ε

2

)
· area(Ωr,1

θ,θ+ 1
q

).

By Osgood’s method (see [9]), one can construct a simple curve γ
(2)
1 connecting (1−

ε1)e
2πi(θ+ε1) and (r + ε1)e

2πi(θ+ 1
q−ε1) such that

• except for the two endpoints, γ
(2)
1 is contained in Ωr+ε1,1−ε1

θ+ε1,θ+
1
q−ε1

,

• γ
(2)
1 is 0-analytic,

• area(γ
(2)
1 ) > 1−ε

1− ε
2
· area(Ωr+ε1,1−ε1

θ+ε1,θ+
1
q−ε1

).

Let γ
(1)
1 be a simple analytic arc connecting b and (1 − ε1)e

2πi(θ+ε1) such that except for

the two endpoints, γ
(1)
1 is contained in Ωr,1θ,θ+ε1 . Let γ

(3)
1 be a simple analytic arc connecting

(r + ε1)e
2πi(θ+ 1

q−ε1) and be2πi
1
q such that except for the two endpoints, γ

(3)
1 is contained in

Ωr,1
θ+ 1

q−ε1,θ+
1
q

. We denote by γ1 the simple arc obtained by connecting γ
(1)
1 , γ

(2)
1 and γ

(3)
1 in

sequence. Then γ1 connects b and be2πi
1
q ; except for the two endpoints, γ1 is contained in

Ωr,1
θ,θ+ 1

q

; γ1 is 0-analytic; area(γ1) > (1 − ε) · area(Ωr,1
θ,θ+ 1

q

). We set γk = e2πi
k−1
q γ1 for all

1 ≤ k ≤ q. Then γk connects be2πi
k−1
q and be2πi

k
q ; except for the two endpoints, γk is contained

in Ωr,1
θ+ k−1

q ,θ+ k
q

; γk is 0-analytic; area(γk) > (1 − ε) · area(Ωr,1
θ+ k−1

q ,θ+ k
q

). We denote by γ the

Jordan curve obtained by connecting γ1, γ2, · · · , γq end-to-end in sequence. Then γ is exactly

what we want.

4 Completing the Proof of Main Theorem

4.1 Construct {βn} step by step

Let {εn}∞n=1 be a sequence of positive real numbers such that 0 < εn < 1 and
∞∑
n=1

εn < 1.

We fix a 0 < r1 < 1. It follows from Lemma 3.2 that there exists a Jordan curve γ1 in Hr1 such

that γ1 surrounds 0, γ1 ∩ l0,r1 = {1+r1
2 } and densHr1

(Hr1 \ γ1) < ε1. We write a0 := 1+r1
2 .

By Lemma 3.1 there exist β1 ∈ H and 0 < r2 < 1 such that γ1 ⊆ Dr2(R1) and Dr2(R1) ⊆
Hr1 . Then

densHr1
(Hr1 \ Dr2(R1)) = densHr1

(Hr1 \ Dr2(β1)) < densHr1
(Hr1 \ γ1) < ε1.
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Observe R1(Dr2(R1)) = Hr2 and a0 ∈ γ1 ⊆ Dr2(R1). We write

a k
q1

:= ((R1|D(R1))
−1 ◦ R k

q1

◦ R1)(a0)

for all 0 ≤ k ≤ q1 − 1. For all 0 ≤ k ≤ q1 − 1, a k
q1

∈ Dr2(R1) ⊆ D and

f1(a k
q1

) = G1(a k
q1

) = ((R1|D(R1))
−1 ◦ R 1

q1

◦ R1) ◦ ((R1|D(R1))
−1 ◦ R k

q1

◦ R1)(a0) = a k+1
q1

,

where a1 = a0. Since (R1|D(R1))
−1 has a homeomorphism extension from D to D(R1), there

exists a δ2 > 0 such that for all z1, z2 ∈ Hr2 with |z1 − z2| < δ2,

|(R1|D(R1))
−1(z1)− (R1|D(R1))

−1(z2)| <
1

22
. (4.1)

We take 0 < δ2 ≪ 1
q1
. By Lemma 3.2 there exists a 0-analytic Jordan curve γ2 in Hr2 such that

• γ2 surrounds 0,

• γ2 ∩ l k
q1

2π+arg(R1(a0)),r2
= {e

k
q1

2πiR1(a0)}, 0 ≤ k ≤ q1 − 1,

• e
1
q1

2πiγ2 = γ2,

• densHr2
(Hr2 \ γ2) is sufficiently small so that

densHr1
(Hr1 \ (R1|D(R1))

−1(γ2)) < ε1 + ε2.

By Corollary 3.1 there exist β2 ∈ H and 0 < r3 < 1 such that

• γ2 ⊆ Dr3(R2) and Dr3(R2) ⊆ Hr2 ,

• (R2|Dr3 (R2))
−1 is δ2

3 -admissible.

Since (R2|Dr3 (R2))
−1 is δ23 -admissible and (4.1), we have that for all z ∈ (R1|D(R1))

−1(Dr3(R2)),

both two boundary components of (R1|D(R1))
−1(Dr3(R2)) intersect B 1

22
(z).

Since R1,R2 ∈ H, we have φ2 = R2 ◦ R1 ∈ H. Since

R1(a0) ∈ γ2 ⊆ Dr3(R2),

we have φ2(a0) ∈ Hr3 . We write

a k
q1q2

:= (φ2|D(φ2))
−1(e

k
q1q2

2πiφ2(a0))

for all 0 ≤ k ≤ q1q2 − 1. Since R2(e
1
q1

2πiz) = e
1
q1

2πiR2(z), we have that 0 ≤ k ≤ q1 − 1,

((R2 ◦ R1)|D(R2◦R1))
−1(e

kq2
q1q2

2πiR2 ◦ R1(a0)) = (R1|D(R2◦R1))
−1(e

k
q1

2πiR1(a0)).

So the two definitions coincide. Since (R2|Dr3 (R2))
−1 is δ2

3 -admissible, we can take q2 large

enough so that for all θ ∈ R and all z, z′ ∈ Ωr3,1
θ,θ+ 1

q1q2

,

|(R2|Dr3 (R2))
−1(z)− (R2|Dr3 (R2))

−1(z′)| ≤ 2δ2
3
.

Since φ2(a0) ∈ Hr3 , we have that for all z ∈ Hr3 , there exist θ and k such that z,R k
q1q2

◦

φ2(a0) ∈ Ωr3,1
θ,θ+ 1

q1q2

. Thus

|(R2|Dr3 (R2))
−1(z)− (R2|Dr3 (R2))

−1(R k
q1q2

◦ φ2(a0))| ≤
2δ2
3
.
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Again, since for all z1, z2 ∈ Hr2 with |z1−z2| < δ2, |(R1|D(R1))
−1(z1)− (R1|D(R1))

−1(z2)| < 1
22

holds, we have

|(φ2|D(φ2))
−1(z)− (φ2|D(φ2))

−1(R k
q1q2

◦ φ2(a0))| <
1

22
,

that is,

|(φ2|D(φ2))
−1(z)− a k

q1q2

| < 1

22
.

For all 0 ≤ k ≤ q1q2 − 1, a k
q1q2

∈ Dr3(φ2) ⊆ D and by G
◦qj
j = Gj−1 (j ≥ 1),

f2(a k
q1q2

) = G2 ◦ G1(a k
q1q2

)

= G
◦(1+q2)
2 (a k

q1q2

)

= (φ2|D(φ2))
−1 ◦ R 1

q1q2
+ 1

q1

◦ φ2)(a k
q1q2

)

∈ {a k
q1q2

: k ∈ {0, 1, 2, · · · , q1q2 − 1}}.

Since ((R2 ◦ R1)|D(R2◦R1))
−1 has a homeomorphism extension from D to D(R2 ◦ R1), there

exists a δ3 > 0 such that for all z1, z2 ∈ Hr3 with |z1 − z2| < δ3,

|((R2 ◦ R1)|D(R2◦R1))
−1(z1)− ((R2 ◦ R1)|D(R2◦R1))

−1(z2)| <
1

23
. (4.2)

We take 0 < δ3 ≪ 1
q1q2

. It follows from Lemma 3.2 that there exists a 0-analytic Jordan curve

γ3 in Hr3 such that

• γ3 surrounds 0,

• γ3 ∩ l k
q1q2

2π+arg(R2◦R1(a0)),r3
= {e

k
q1q2

2πiR2 ◦ R1(a0)}, 0 ≤ k ≤ q1q2 − 1,

• e
1

q1q2
2πiγ3 = γ3,

• densHr3
(Hr3 \ γ3) is sufficiently small so that

densHr1
(Hr1 \ (R2 ◦ R1|D(R2◦R1))

−1(γ3)) < ε1 + ε2 + ε3.

By Corollary 3.1 there exist β3 ∈ H and 0 < r4 < 1 such that

• γ3 ⊆ Dr4(R3) and Dr4(R3) ⊆ Hr3 ,

• (R3|Dr4 (R3))
−1 is δ3

3 -admissible.

Since (R3|Dr4
(R3))

−1 is δ33 -admissible and (4.2), we have that for all z ∈ (φ2|D(φ2))
−1(Dr4(R3)),

both two boundary components of (φ2|D(φ2))
−1(Dr4(R3)) intersects B 1

23
(z). SinceR1,R2,R3 ∈

H, we have φ3 = R3 ◦ R2 ◦ R1 ∈ H. Since

φ2(a0) ∈ γ3 ⊆ Dr4(R3),

we have φ3(a0) ∈ Hr4 .

In general, φn = Rn ◦ · · · ◦ R2 ◦ R1 ∈ H and φn(a0) ∈ Hrn+1 . We write

a k
q1q2···qn

:= (φn|D(φn))
−1 ◦ R k

q1q2···qn
◦ φn(a0)
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for all 0≤k≤q1q2· · ·qn−1. The definition coincides with the above ones. Since (Rn|Drn+1
(Rn))

−1

is δn
3 -admissible, we can take qn large enough so that for all θ∈R and all z, z′∈Ω

rn+1,1

θ,θ+ 1
q1q2···qn

,

|(Rn|Drn+1
(Rn))

−1(z)− (Rn|Drn+1
(Rn))

−1(z′)| ≤ 2δn
3
. (4.3)

Since φn(a0) ∈ Hrn+1 , we have that for all z ∈ Hrn+1 , there exist θ and k such that z,R k
q1q2···qn

◦

φn(a0) ∈ Ω
rn+1,1

θ,θ+ 1
q1q2···qn

. Thus

|(Rn|Drn+1
(Rn))

−1(z)− (Rn|Drn+1
(Rn))

−1(R k
q1q2···qn

◦ φn(a0))| ≤
2δn
3
.

Again, since for all z1, z2 ∈ Hrn with |z1 − z2| < δn,

|(φn−1|D(φn−1))
−1(z1)− (φn−1|D(φn−1))

−1(z2)| <
1

2n

holds, we have

|(φn|D(φn))
−1(z)− (φn|D(φn))

−1(R k
q1q2···qn

◦ φn(a0))| <
1

2n
,

that is,

|(φn|D(φn))
−1(z)− a k

q1q2···qn
| < 1

2n
. (4.4)

For all 0 ≤ k ≤ q1q2 · · · qn − 1, a k
q1q2···qn

∈ Drn+1(φn) ⊆ D and by G
◦qj
j = Gj−1 (j ≥ 1),

fn(a k
q1q2···qn

) = Gn ◦ · · · ◦ G2 ◦ G1(a k
q1q2···qn

)

= G◦(1+qn+qnqn−1+···+qnqn−1···q2)
n (a k

q1q2···qn
)

= ((φn|D(φn))
−1 ◦ R 1

q1q2···qn +···+ 1
q1

◦ φn)(a k
q1q2···qn

)

∈ {a k
q1q2···qn

: k ∈ {0, 1, 2, · · · , q1q2 · · · qn − 1}},

that is,

fn(a k
q1q2···qn

) ∈ {a k
q1q2···qn

: k ∈ {0, 1, 2, · · · , q1q2 · · · qn − 1}}. (4.5)

Since (φn|D(φn))
−1 has a homeomorphism extension from D to D(φn), there exists a δn+1 > 0

such that for all z1, z2 ∈ Hrn+1 with |z1 − z2| < δn+1,

|(φn|D(φn))
−1(z1)− (φn|D(φn))

−1(z2)| <
1

2n+1
. (4.6)

We take 0 < δn+1 ≪ 1
q1q2···qn . It follows from Lemma 3.2 that there exists a 0-analytic Jordan

curve γn+1 in Hrn+1 such that

• γn+1 surrounds 0,

• γn+1 ∩ l k
q1q2···qn 2π+arg(φn(a0)),rn+1

= {e
k

q1q2···qn 2πiφn(a0)}, 0 ≤ k ≤ q1q2 · · · qn − 1,

• e
1

q1q2···qn 2πiγn+1 = γn+1,
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• densHrn+1
(Hrn+1 \ γn+1) is sufficiently small so that

densHr1
(Hr1 \ (φn|D(φn)

)−1(γn+1)) <
n+1∑
j=1

εj . (4.7)

By Corollary 3.1 there exist βn+1 ∈ H and 0 < rn+2 < 1 such that

• γn+1 ⊆ Drn+2(Rn+1) and Drn+2(Rn+1) ⊆ Hrn+1 ,

• (Rn+1|Drn+2
(Rn+1))

−1 is δn+1

3 -admissible.

Since (Rn+1|Drn+2
(Rn+1))

−1 is δn+1

3 -admissible and (4.6), we have that for all

z ∈ (φn|D(φn))
−1(Drn+2(Rn+1)),

both two boundary components of (φn|D(φn))
−1(Drn+2

(Rn+1)) intersects B 1

2n+1
(z). Since

R1,R2, · · · ,Rn+1 ∈ H, we have φn+1 = Rn+1 ◦ · · · ◦ R2 ◦ R1 ∈ H. Since

φn(a0) ∈ γn+1 ⊆ Drn+2(Rn+1),

we have φn+1(a0) ∈ Hrn+2 .

4.2 A good nest

We set

I :=
{ k

q1q2 · · · qn
: n ≥ 1, k ∈ Z, 0 ≤ k ≤ q1q2 · · · qn

}
and

A := {ax : x ∈ I}.

For all k ∈ Z, we set

Ωkq1q2···qn :=
{
z : rn+1 < |z| < 1,

k

q1q2 · · · qn
2π ≤ arg

( z

φn(a0)

)
≤ k + 1

q1q2 · · · qn
2π

}
and

Ukq1q2···qn := (φn|D(φn))
−1(Ωkq1q2···qn).

It is easy to see that Ωk+q1q2···qnq1q2···qn = Ωkq1q2···qn and Uk+q1q2···qnq1q2···qn = Ukq1q2···qn for all k ∈ Z.
Furthermore, we have the following properties:

(a) a k
q1q2···qn

∈ Ukq1q2···qn for all 0 ≤ k ≤ q1q2 · · · qn;
(b) for all s = kqn+1 + t with 0 ≤ t ≤ qn+1 − 1,

Usq1q2···qn+1
⊆ Uk−1

q1q2···qn ∪ Ukq1q2···qn ∪ Uk+1
q1q2···qn ;

in particular,

U
kqn+1+qn+1−1
q1q2···qn+1 ⊆ Ukq1q2···qn ∪ Uk+1

q1q2···qn

and

U
kqn+1
q1q2···qn+1 ⊆ Uk−1

q1q2···qn ∪ Ukq1q2···qn ;
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(c) for all x ∈ I with
∣∣x− k

q1q2···qn

∣∣ < 1
q1q2···qn , we have

ax ∈
k+1∪
s=k−2

Usq1q2···qn ;

(d) diam(Ukq1q2···qn) ≤
1
2n .

Proof (a) Since φn(a0) ∈ Hrn+1 , we have R k
q1q2···qn

◦ φn(a0) ∈ Ωkq1q2···qn and hence

a k
q1q2···qn

= φn|−1
D(φn)

◦ R k
q1q2···qn

◦ φn(a0) ∈ φn|−1
D(φn)

(Ωkq1q2···qn) = Ukq1q2···qn .

(b) Let γkn+1 be the subarc of γn+1 in Ωkq1q2···qn connectingR k
q1q2···qn

◦ φn(a0) and R k+1
q1q2···qn

◦

φn(a0). Then (γkn+1)
q1q2···qn is a Jordan curve in Hr

q1q2···qn
n+1

surrounding 0 and passing through

(R k
q1q2···qn

◦ φn(a0))
q1q2···qn = (R k+1

q1q2···qn
◦ φn(a0))

q1q2···qn .

Since Rn+1|Drn+2
(Rn+1) is a conformal map from Drn+2(Rn+1) to Hrn+2 , we have that βn+1 is

a conformal map from (Drn+2(Rn+1))
q1q2···qn = Drq1q2···qn

n+2
(βn+1) to Hr

q1q2···qn
n+2

. Since γkn+1 ⊆
γn+1 ⊆ Drn+2(Rn+1) ⊆ D(Rn+1), we have (γkn+1)

q1q2···qn ⊆ (D(Rn+1))
q1q2···qn . It follows that

βn+1((γ
k
n+1)

q1q2···qn) is a Jordan curve in Hr
q1q2···qn
n+2

surrounding 0 and passing through

βn+1((R k
q1q2···qn

◦ φn(a0))
q1q2···qn) = βn+1((R k+1

q1q2···qn
◦ φn(a0))

q1q2···qn).

Thus Rn+1(γ
k
n+1) = q1q2···qn

√
βn+1((γkn+1)

q1q2···qn) is an arc in Hrn+2 connecting R k
q1q2···qn

◦

φn+1(a0) and R k+1
q1q2···qn

◦ φn+1(a0), and at the same time homotopic to Rθ ◦ φn+1(a0),

k
q1q2···qn ≤ θ ≤ k+1

q1q2···qn in Hrn+2 . This implies that Rn+1(γ
k
n+1) intersects each Ωsq1q2···qn+1

,

kqn+1 ≤ s ≤ kqn+1 + qn+1 − 1. Again, since γkn+1 ⊆ Ωkq1q2···qn , we have that each

(Rn+1|D(Rn+1))
−1(Ωsq1q2···qn+1

), kqn+1 ≤ s ≤ kqn+1 + qn+1 − 1 intersects Ωkq1q2···qn . It follows

from (4.3) and 0 < δn+1 ≪ 1
q1q2···qn that

(Rn+1|D(Rn+1))
−1(Ωsq1q2···qn+1

) ⊆ Ωk−1
q1q2···qn ∪ Ωkq1q2···qn ∪ Ωk+1

q1q2···qn

for all kqn+1 ≤ s ≤ kqn+1 + qn+1 − 1. Applying (φn|D(φn))
−1 to the above formula, we obtain

that

Usq1q2···qn+1
⊆ Uk−1

q1q2···qn ∪ Ukq1q2···qn ∪ Uk+1
q1q2···qn

for all kqn+1 ≤ s ≤ kqn+1 + qn+1 − 1.

Since R k
q1q2···qn

◦ φn+1(a0) ∈ Ω
kqn+1
q1q2···qn+1 and R k+1

q1q2···qn
◦ φn+1(a0) ∈ Ω

kqn+1+qn+1−1
q1q2···qn+1 , we

have that

R k
q1q2···qn

◦ φn(a0) ∈ (Rn+1|D(Rn+1))
−1(Ω

kqn+1
q1q2···qn+1)

and

R k+1
q1q2···qn

◦ φn(a0) ∈ (Rn+1|D(Rn+1))
−1(Ω

kqn+1+qn+1−1
q1q2···qn+1 ).

Similarly, by (4.3) and 0 < δn+1 ≪ 1
q1q2···qn , we have

(Rn+1|D(Rn+1))
−1(Ω

kqn+1
q1q2···qn+1) ⊆ Ωk−1

q1q2···qn ∪ Ωkq1q2···qn
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and

(Rn+1|D(Rn+1))
−1(Ω

kqn+1+qn+1−1
q1q2···qn+1 ) ⊆ Ωkq1q2···qn ∪ Ωk+1

q1q2···qn .

Applying (φn|D(φn))
−1 to the above formula, we obtain that

U
kqn+1
q1q2···qn+1 ⊆ Uk−1

q1q2···qn ∪ Ukq1q2···qn

and

U
kqn+1+qn+1−1
q1q2···qn+1 ⊆ Ukq1q2···qn ∪ Uk+1

q1q2···qn .

(c) Since x ∈ I and |x− k
q1q2···qn | <

1
q1q2···qn , we have

x =
s

q1q2 · · · qn · · · qn+m

with

(k − 1)qn+1 · · · qn+m + 1 ≤ s ≤ (k + 1)qn+1 · · · qn+m − 1

for some positive integer m and s. Then (a)–(b) give

ax ∈
(k+1)qn+1···qn+m−1∪
s=(k−1)qn+1···qn+m+1

Usq1···qn···qn+m

⊆
(k+1)qn+1···qn+m−1∪

s=(k−1)qn+1···qn+m−1−1

Usq1···qn···qn+m−1

⊆
(k+1)qn+1···qn+m−2∪

s=(k−1)qn+1···qn+m−2−1

Usq1···qn···qn+m−2

· · · · · ·

⊆
(k+1)qn+1∪

s=(k−1)qn+1−1

Usq1···qnqn+1

⊆
k+1∪
s=k−2

Usq1···qn .

(d) Since (4.3) holds and for all z1, z2 ∈ Hrn with

|z1 − z2| < δn,

|(φn−1|D(φn−1))
−1(z1)− (φn−1|D(φn−1))

−1(z2)| <
1

2n

holds, we have that for all z1, z2 ∈ Ωkq1q2···qn ,

|(φn|D(φn))
−1(z1)− (φn|D(φn))

−1(z2)| <
1

2n
.

Thus (d) holds.
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4.3 ∂D has positive area

Since Drn+3(Rn+2) ⊆ Hrn+2 ,

(Rn+1|D(Rn+1))
−1(Drn+3(Rn+2)) ⊆ (Rn+1|D(Rn+1))

−1(Hrn+2),

that is,

(Rn+1|D(Rn+1))
−1(Drn+3(Rn+2)) ⊆ Drn+2(Rn+1).

Together with Drn+2(Rn+1) ⊆ D, it follows that

φn|−1
D(φn)

((Rn+1|D(Rn+1))
−1(Drn+3(Rn+2))) ⊆ φn|−1

D(φn)
(Drn+2(Rn+1)),

that is,

φn+1|−1
D(φn+1)

(Drn+3(Rn+2)) ⊆ φn|−1
D(φn)

(Drn+2(Rn+1)).

Thus
∞∩
n=1

φn|−1
D(φn)

(Drn+2(Rn+1)) is a nonempty compact set. Since Drn+2(Rn+1) ⊆ Hrn+1 , we

have that D(Rn+1) ⊆ D and (Rn+1|D(Rn+1))
−1(Drn+2) ⊇ Drn+1 . Thus

D(φn) = (φn|D(φn))
−1(D) ⊇ (φn|D(φn))

−1(D(Rn+1)) = (φn+1|D(φn+1))
−1(D) = D(φn+1)

and

(φn|D(φn))
−1(Drn+1) ⊆ (φn|D(φn))

−1((Rn+1|D(Rn+1))
−1(Drn+2)) = (φn+1|D(φn+1))

−1(Drn+2).

Again, observe that

D(φn) = (φn|D(φn))
−1(Drn+1) ∪ (φn|D(φn))

−1(Hrn+1)

= (φn|D(φn))
−1(Drn+1) ∪ (φn−1|D(φn−1))

−1(Drn+1(Rn)).

Thus
∞∩
n=1

D(φn) =
( ∞∪
n=1

(φn|D(φn))
−1(Drn+1)

)
∪
( ∞∩
n=1

φn|−1
D(φn)

(Drn+2(Rn+1))
)

and ( ∞∪
n=1

(φn|D(φn))
−1(Drn+1)

)
∩
( ∞∩
n=1

φn|−1
D(φn)

(Drn+2(Rn+1))
)
= ∅.

Since D(φn+1) ⊆ D(φn) for all n ≥ 1, we have

∞∩
n=1

D(φn) ⊆
∞∩
n=2

D(φn) ⊆
∞∩
n=1

D(φn)

and hence
∞∩
n=1

D(φn) =
∞∩
n=2

D(φn) is a closed set. Since

(φn|D(φn))
−1(Drn+1) ⊆ (φn+1|D(φn+1))

−1(Drn+2),

we have

∞∪
n=1

(φn|D(φn))
−1(Drn+1) ⊆

∞∪
n=1

(φn+1|D(φn+1))
−1(Drn+2) ⊆

∞∪
n=1

(φn|D(φn))
−1(Drn+1)
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and hence

∞∪
n=1

(φn|D(φn))
−1(Drn+1) =

∞∪
n=1

(φn|D(φn))
−1(Drn+1)

is a connected open set. Since for all z ∈ φn|−1
D(φn)

(Drn+2(Rn+1)), both two boundary compo-

nents of φn|−1
D(φn)

(Drn+2(Rn+1)) intersects B 1

2n+1
(z), we have that for all

z ∈
∞∩
n=1

φn|−1
D(φn)

(Drn+2(Rn+1))

and all n ≥ 1,

B 1

2n+1
(z) ̸⊆

( ∞∩
n=1

φn|−1
D(φn)

(Drn+2
(Rn+1))

)
.

Thus
∞∩
n=1

φn|−1
D(φn)

(Drn+2(Rn+1)) does not contain any interior points. Then we have that

D =
∞∪
n=1

(φn|D(φn))
−1(Drn+1

)

and

∂D =
∞∩
n=1

φn|−1
D(φn)

(Drn+2(Rn+1)).

Then it follows from γn+1 ⊆ Drn+2(Rn+1) and (4.7) that

area(∂D) = lim
n→∞

area(φn|−1
D(φn)

(Drn+2(Rn+1)))

≥ lim
n→∞

area(Hr1) · densHr1
φn|−1

D(φn)
(Drn+2(Rn+1))

≥ lim sup
n→∞

area(Hr1) · densHr1
φn|−1

D(φn)
(γn+1)

≥ area(Hr1) ·
(
1−

∞∑
n=1

εn

)
.

> 0.

4.4 ∂D is a Jordan curve

Observe that for all 0 ≤ k ≤ q1q2 · · · qn − 1,

e
k

q1q2···qn 2πiφn(a0) ∈ γn+1 ⊆ Drn+2(Rn+1).

Then for all 0 ≤ k ≤ q1q2 · · · qn − 1,

a k
q1q2···qn

= (φn|D(φn))
−1(e

k
q1q2···qn 2πiφn(a0)) ∈ (φn|D(φn))

−1(Drn+2(Rn+1))

and hence for all m ≥ n,

a k
q1q2···qn

= a kqn+1···qm
q1q2···qn···qm

∈ (φm|D(φm))
−1(Drm+2(Rm+1)).
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Again, since
{
(φn|D(φn))

−1(Drn+2(Rn+1))
}∞
n=1

is decreasing, we have that

A ⊆
∞∩
n=1

(φn|D(φn))
−1(Drn+2(Rn+1)).

By (4.4) we have that A is dense in
∞∩
n=1

(φn|D(φn))
−1(Drn+2(Rn+1)). Thus

A =
∞∩
n=1

(φn|D(φn))
−1(Drn+2(Rn+1)) = ∂D.

We define a map

τ : I → C, x 7→ ax.

For all x1, x2 ∈ I with |x1 − x2| < 1
q1q2···qn , there exists a positive integer k with 0 ≤ k ≤

q1q2 · · · qn such that
∣∣x1 − k

q1q2···qn

∣∣ < 1
q1q2···qn and

∣∣x2 − k
q1q2···qn

∣∣ < 1
q1q2···qn . By (c) we have

ax1 , ax2 ∈
k+1∪
s=k−2

Usq1q2···qn . By (d) we have |ax1 − ax2 | < 4
2n . Thus τ is uniformly continuous

and hence τ can be continuously extended to [0, 1], still denoted by τ . Evidently, τ([0, 1]) = A.

At last, we only need to prove that τ is a Jordan curve. Indeed, for any x ̸= y ∈ [0, 1), we

choose a sufficiently large n such that x = lim
j→∞

kj
q1q2···qj and y = lim

j→∞

k′j
q1q2···qj , where

|kn − k′n|Z/(q1q2···qn) > 8,

and for all j ≥ n, ∣∣∣ kj
q1q2 · · · qj

− x
∣∣∣
R/Z

= min
0≤s≤q1q2···qj−1

{∣∣∣ s

q1q2 · · · qj
− x

∣∣∣
R/Z

}
(4.8)

and ∣∣∣ k′j
q1q2 · · · qj

− y
∣∣∣
R/Z

= min
0≤s≤q1q2···qj−1

{∣∣∣ s

q1q2 · · · qj
− y

∣∣∣
R/Z

}
. (4.9)

We write xj :=
kj

q1q2···qj and yj :=
k′j

q1q2···qj for all j ≥ n. Since |kn − k′n|Z/(q1q2···qn) > 8, we have

that axn ∈ Uknq1q2···qn and ayn ∈ U
k′n
q1q2···qn with

( kn+3∪
j=kn−3

U jq1q2···qn

)
∩
( k′n+3∪
j=k′n−3

U jq1q2···qn

)
= ∅. (4.10)

By (4.8)–(4.9) we have that for all j ≥ n, |xj− kn
q1q2···qn | <

1
q1q2···qn and |yj− k′n

q1q2···qn | <
1

q1q2···qn .

Then by (c) we have that for all j ≥ n,

axj ∈
kn+1∪
s=kn−2

Usq1q2···qn and ayj ∈
k′n+1∪
s=k′n−2

Usq1q2···qn .

Thus

τ(x) = lim
j→∞

axj ∈
kn+1∪
s=kn−2

Usq1q2···qn ⊆
kn+3∪
j=kn−3

U jq1q2···qn



824 H. Y. QU and J. Y. QIAO

and

τ(y) = lim
j→∞

ayj ∈
k′n+1∪
s=k′n−2

Usq1q2···qn ⊆
k′n+3∪
j=k′n−3

U jq1q2···qn .

Together with (4.10), we have τ(x) ̸= τ(y).
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France, Paris, 1983, 39–63 (in French).

[6] Douady, A., Disques de Siegel et anneaux de Herman, Bourbaki seminar, vol. 1986/87, Astérisque, Soc.
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