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Abstract In this paper, the authors construct a univalent function having a relatively
compact Siegel disk whose boundary is a Jordan curve of positive area. The construction
is based on a general scheme in which Chéritat added Runge’s theorem, to construct a
relatively compact Siegel disk and Osgood’s method for constructing a Jordan curve of
positive area.
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1 Introduction

A Siegel disk is the biggest simply connected rotation domain of a holomorphic function.
In general, the boundary of a simply connected domain may have very complicated structure.
However, how complicated may the structure of a Siegel disk boundary be? For Siegel disks of
rational functions, it is conjectured that the topological structure is simple. See the following
well-known open question by Douady and Sullivan (see [5, 11]): “Is a Siegel disk boundary
of a rational function always a Jordan curve?” In the past few decades, there have been
some breakthroughs on this question (see [3, 6, 12, 14-16]). From the perspective of measure or
dimension, there is an open question that people are also concerned about (see [10] for quadratic
polynomials): “Can a Siegel disk boundary of a rational function have Hausdorff dimension 27”
In this paper, instead of studying Siegel disks of rational functions directly, we adapt these two

questions for a general class of holomorphic functions as follows.

Question Can a simple topological structure and a large Hausdorff dimension (equal to 2)

coexist for a relatively compact Siegel disk boundary of a holomorphic function?
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Our following main result gives this question an affirmative answer.

Main Theorem There exists a univalent function fizing 0 having a relatively compact

Siegel disk centered at 0 whose boundary is a Jordan curve of positive area.

Our proof is to adopt a general scheme for constructing a relatively compact Siegel disk.
Precisely, in the same spirit as Handel’s or Herman’s producing a diffeomorphism with a pseudo
disk (see [7-8]), Pérez-Marco used tube-log Riemann surfaces to construct examples of injective
holomorphic maps having a relatively compact Siegel disk whose boundary is a smooth Jordan
curve. Later, Biswas used Pérez-Marco’s construction to produce a set of interesting examples
(see [1-2]). In [4], Chéritat added Runge’s theorem to this construction and got a univalent
function having a relatively compact Siegel disk with non-locally connected boundary.! In [13],
Sun and Qu produced a univalent function having a relatively compact Siegel disk with positive
area boundary based on the construction having Runge’s theorem by Chéritat. In this paper,
together with Osgood’s method constructing a Jordan curve of positive area (see [9]), we also

use the general scheme having Runge’s theorem to prove our main theorem.

2 A General Scheme to Construct Siegel Disks

In this section, a general scheme for constructing univalent holomorphic maps with relatively
compact Siegel disks is briefly presented. This content is not new, refer [4] for more details.

Different from Chéritat’s convention, we immediately work in the complex plane C. The
following notations are needed:

e For any real number 6, define Ry : C — C, z — €712,

e For all t > 0, define D, := {z € C : |z| < t}, here we call a standard disk, in particular,
we also write D = ;.

e Forallt > 0 and z € C, define

Bi(z) :={weC:|w—z| <t}
e Forall0 <r <7’ and 0 < @', we set

H,,oi={z:r<|z| <7},
lo, = {pe? .7 < p<1}
and
Qg'(;// ={z=p" " r<p<rh<a<d},

. . . 1 .
in particular, we write also Qz’e, as Qp o, and write also H, 1 as H,.

e We denote by Dom(f) the domain of a map f.

'In [4], Chéritat, based on the new flexibility allowed by Runge’s theorem, proposed the following two claims.

Proposal 1 Prove that there exists an injective holomorphic map f defined in a simply connected open
subset U of C containing the origin, fixing 0 and having at 0 a hedgehog of positive Lebesgue measure compactly
contained in U.

Proposal 2 Prove that there exists an injective holomorphic map f defined in a doubly connected open
subset U of C and a Jordan curve J with positive Lebesgue measure contained in U that is invariant by f, and
carries an invariant line field.
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e We denote by H the set of entire functions satisfying that for all 8 € H, 8(z) =0 < z =0,
B'(0) > 0, f'(2) # 0 for all z € C and there exists a Jordan domain D(8) (C D) containing 0
such that (|p(g) is a conformal map from D(B) to D. We write D,.(3) := (B]ps)) ' (H,) for
all 0 <r < 1.

Given a sequence {g,}/> of positive integers and a sequence {3,}.> of elements in H,
for all n > 1, we let R,, be the single-valued analytic branch of %2 %n-1/3, (29192dn-1) (set
go = 1) such that (R,)’(0) > 0 and G,, be the holomorphic lift of Ry, with 6,, := m,
defined in a neighborhood of 0, under ¢,, :== Ry, c Rj,—1 0 - -+ o Ry, that is, ¢, c G, = Ry, © ©n.
In general, the domain of G,, is indefinite, but if g, is large enough, then Dom(G,,) contains any
given standard disk and Dom(G,,) is arbitrarily close to the identity map on the given standard

disk. Fix e > 0 and let f,, ;=G o Gp—y 0 -+ 0 Gy.

Assume 2.1 ¢,, n > 1 are large enough so that Dom(G,,) 2 D14, Dom(f,) 2 D;1. and
both G, and f,, are univalent on Dy, . for some fixed € > 0.

The following facts are easily checked:

27 S 6
(a) Foralln>1, (f,)(0)=e 7=t T

(b) Forallm >1, R, o Ry, _, = Ry, _, © Ry, and GI» = G,,_1 with Gy = Identity.

(¢) The map ¢, is semi-conjugate from f, to Ri , O D14, that is,
X 0n

Pn © fn(z) = Ri o, ° ‘Pn('z)

for all z € Dy4..
It is easy to see that ¢, € H. Then D(p,) (C D) is well-defined.

Assume 2.2 Asn — 400, D(p,) converges to a simply connected region D C D containing

0 in the sense of Carathéodory.

Let ¢ be the Riemann mapping with ¢(0) = 0 and ¢’(0) > 0 from D to D. By Assume 2.2
and a theorem of Carathéodory, v, |p(,,) converges locally uniformly to ¢ on D. Furthermore,

the following lemma can be proved.

Lemma 2.1 (see [4]) Aslong as ¢,(n>1) are large enough, f,, converges locally uniformly
on Dy, to f defined on D14 and satisfies

e f is univalent,

+oo
o there is an irrational number 6 = Y m such that ¢ o f o p™1(2) = Ry(z) on D.
=1 !

As seen, f is exactly what we want with a Siegel disk D if its boundary is not an analytic
curve. Thus to complete the proof, we only need to construct {3, } such that Assume 2.2 holds
and the boundary of D is a Jordan curve of positive area. At last, we need the following lemma
by Chéritat whose proof is based on Runge’s theorem (see [4, Lemma 5]), which will be used

to construct f,.
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Lemma 2.2 (see [4])  Assume W C C is a simply connected region containing 0 and ¢ is
a conformal bijection from W to D fizing 0. Then there exists a sequence of holomorphic maps
Uy, : C — C such that

e Y,(2)=0&2=0,

e ! does not vanish,

e asn tends to 400, ¥, tends uniformly to ¢ on every compact subset of W.

3 Technique Preparation for the Construction of {3,}

For all § > 0, a Jordan curve v : R/Z — C is called §-analytic if

e there exist 0 = a; < as < --- < ap < apq1 = 1 such that diam(y([a;,a;41])) < ¢ for all
j=1,2,-.,n,

o for all 1 < j < n, there exists an ¢;-neighborhood (a; — ¢,a; + ¢) of a; such that

Yl(a;—e;,a;+¢,) i an analytic arc.

Moreover, we say that a Jordan curve + is O-analytic if v is J-analytic for any § > 0. Let
H be a 2-connected region in C bounded by two Jordan curves y; and 7,. Then there exist
r > 0 and a conformal map ¢ from H, to H. We say that ¢ is d-admissible if there exist
01 < b0y < - <0, <B0p11 =01 +1such that for all 1 < j < n and all 2,2’ € QF

0;,05+1°
[¢(2) — o(2)] < 0.

Lemma 3.1 Let v be a §-analytic Jordan curve in H,» such that v surrounds 0. Then there
exist B € H and 0 < r” < 1 such that

* 7 C D (B) and Dy (B) € Hy,
o (Blp,,.(5)"" is 146-admissible.

Proof Let D; be the component of C \ 7 containing 0 and D5 be the component of C \ 7y
containing co. Let ¢ be the conformal map from D to D; such that ¢1(0) = 0 and ¢}(0) > 0.
Let ¢o be the conformal map from D to Dy such that ¢2(0) = oo and ;li% z¢2(z) > 0. For
all 0 < r < 1, we denote by D7 the component of C\ ¢2(0D,) containing 0. Let ¢, be the
conformal map from D to D such that ¢,.(0) = 0 and (¢,)’(0) > 0. Since D] converges to
D; in the sense of Carathéodory, by a theorem of Carathéodory we have that ¢! converges
uniformly to ¢; " on every compact subset of D; as r — 1~. For all z € D, we choose £ > 0
sufficiently small so that m C Dj. Then ¢, (w) = ﬁ f|§—<;5r(z)\:s %dz converges

ﬁ fl&—dn(Z)\:e 72(?117(3;(3 dz on some neighborhood of z as r — 17. Thus
¢, converges uniformly to ¢; on every compact subset of D as r — 1.

We denote also by ¢; the extension of ¢; to D. In this case, ¢1(0D) = v(]0,1]). Since v is a
d-analytic Jordan curve, we have that there exist 0 = a1 < as < -+ < a,, < ap+1 = 1 such that

o diam({¢1(e*™?) :a; <O <aj41}) <dforall j=12---n,

e for all 1 < j < n, there exists an e¢;-neighborhood (a; — ¢;,a; + ;) of a; such that

uniformly to ¢1(w) =

#1(e?™%) is an analytic arc in this neighborhood (thanks to the reflection principle).

We denote also by ¢ the extension of ¢5 to D. Let by > by > -+ > b, > bpy1 = b1 — 1



Siegel Disks Whose Boundaries are Jordan Curves with Positive Area 811

correspond to 0 = a3 < az < -+ < @y < Ape; = 1, that is ¢o(e?™%) = ¢ (e?™195) for
7=12,--- . n+1. Then

o diam({ga(e?™?):b; >0 >b;11}) <Sforallj=1,2---n,

e forall 1 < j <n, there exists an &}-neighborhood (b; —¢/;, b; +¢%) of b; such that ¢, (e*™?)

is an analytic arc in this neighborhood (thanks to the reflection principle).

We denote also by ¢, the extension of ¢, to D. We set
ﬁ) =DuU {e%ie 10 € U(aj —£&j,0; +5j)}.
j=1

We claim that ¢, converges uniformly to ¢; on every compact subset of Dasr — 1.
Indeed, for all j € {1,2,---,n} and 0 € (a; — gj,a; + €;), since ¢1(e*™) is an analytic arc
on (a; — £j,a; + ;), there exists a ball B.(¢y ' (¢1(e*™))) (0 < & < 1) such that ¢, can be
homeomorphically extended to D UB. (¢, ' (¢1(e279))) and univalent on DUBL (¢5 ' (1 (e2™9))),
written as ¢o. It follows that ¢, is univalent on D, U B. (r¢5 ' (¢1(e2™9))) for all 0 < r < 1.

Then ¢, 1 o 5 is univalent on B, (ré5 H(p1(e*™))) \ D, and continuous on

(Be(rey ' (61(e”™)) \ Dy) U (Be(repy ' (61(e°™7))) N OD;) = Be(repy ' (61(e™7))) \ D

Again, observe that ¢z maps Birg; (61(e>9))\ D, into D and maps Bo(réy (¢:(c2™%)
N oD, into dD. Thus the reflection principle gives that ¢,-1 o 552 can be univalently extended to

Er2 = (Be(roy (61(e*™))) \ Dy) U u(Be(rey ' (61(e*™9))) \ Dr),

written as ¢, 2, where ((z) = % The composition ¢, 2 o (527 1 is univalent on <Z2(ET72) and coin-

cides with 67 () on daBe (r (61(627%))\D,) (C DY). Since dr.z maps «(Be (rd; (1 (7))
\D,) into C\ D, we have that ¢,.5 o 52_1 maps gs o L(B.(réy (¢1(e*™9)))\ D,) into C\D. Thus

Gr,2 © 0351, z € $2(Er,2)7

D,.(z) =
¢;7'(2),  zeDj

is univalent on D] U ¢~52 (Er2). It follows from ¢ < 1 that for all » sufficiently close 1, there

exists a fixed neighborhood V' of 0 contained in D] and not intersecting &Q(Eng), and hence
br2 0 03 (62(Fr2)) N Br(V) = 1 (62(Br2)) 1 8 (V) = 0.

Montel’s theorem gives that ¢, o © 52_ ! (r sufficiently close to 1) is a normal family on 52(Er,2).
Again, since ¢,.5 o ¢5 * converges locally uniformly to ¢7* on ¢o(B.(¢5 ' (¢1(e2™)))\D) (C D)
as r — 17, we have that ¢, o (’5271 converges locally uniformly to ¢ 2 © 551 on q~52(E1’2) as
r — 17. Similar to the proof that ¢, converges locally uniformly to ¢;, we have that (¢, 2 ©
¢5 1)~ converges locally uniformly to (¢12 o ¢3 ')~ on ¢12(E1). Since 2™ € ¢y 5(E) 5),
we have that (¢, 2 o 551)_1 converges uniformly to (¢12 551)_1 on some neighborhood
U of €™ as r — 1~. It follows that Orlyap = (fr2 © 551)_1|Unﬁ converges uniformly to
O1lynp = (1,2 © 52_1)*1“]0@ on UND as r — 1. Again, since ¢, converges locally uniformly

to ¢1 on D as r — 17. Thus ¢, converges locally uniformly to ¢; on Dasr—1-.



812 H Y. QUand J. Y. QIAO

We choose 0 < r¢ < 1 sufficiently close to 1 so that ¢1(9D,,,) C H,» and for all 0 < 0 < 1
and ro < r <1,

|61(re®™) — p1(e*7)] < 0. (3.1)

For all 1 < j < n, there exists a unique 0; with |§; — b;| < 1 such that ¢,.(e2™%) = ¢o(re?™1%).
By the above claim, ¢,.(e?™%) = ¢q(re?™%) converges to ¢1(e?™%) = ¢o(e?™bi) as r — 1~
and hence 6; — b; asr — 17.

We choose r sufficiently close to 1 so that

(1) 6.(0D) = »(dD,) C H,,

(2) for all 0 < 6 < 1, |pa(re®™?) — ¢y (e2™9)| < 4,

(3) for all 0 < 0 < 1, |p,(roe*™?) — ¢1(rge?™?)| < § (thanks to that ¢, (roe?™?) converges
uniformly to ¢;(roe?™) for § € [0,1) as r — 17),

(4) é,(rge®™?) is contained in the intersection of H,. and the bounded component of C \ y
(thanks to that ¢, (rge®™%) converges uniformly to ¢1(rge?™%) for 6 € [0,1) as r — 17),

(5) for all € Q [a; — Za;+ 2] and 1o < 5 < 1, | (5¢2™9) — 6,(€>¥)] < § (thanks to
the above claim anjd (3.1)),

(6) foralll <j<m,|0; —b;| <c:=min{|by —ba|, -~ ,|bj —bjt1], -, |bp — bpy1|} (thanks
to that 8; — bj asr — 17).

Since v is contained in the bounded component of C\ ¢,.(0D) (= C\ ¢2(9D,)) and at the
same time by (4) 7 is contained in the unbounded component of C \ ¢, (roe?™%), we have v C
ér(Hyy). (1) and (4) give ¢,(0D) U ¢,.(roe?™?) C H,. and together with 0 ¢ ¢,.(H,,), we have

¢r(Hy,) € Hyr. Next, we prove that ¢,|m, is 140-admissible. Indeed, for all j € {1,2,--- ,n},
qﬁr(Qg‘;’aHl) is bounded by {¢,(roe?™?) : aj <0 < ajr}, dr(lorasrg)s Or(l2na; i) and

{¢p(e*™9) 2 a; < 0 < aj11}. By (3), (3.1) and diam({¢1(e*™) : a; < 0 < aj41}) < &
(j =1,2,--- ,n), we have that for all j =1,2,--- | n,
diam ({6, (roe*™) : a; < 0 < aj41}) < diam({¢1(r0e*™?) 1 a; <0 < a;j11}) +26
< diam({¢1(e*™) 1 a; < 0 < ajy1}) +40
< 54.
It follows from (5) that diam (¢, (l2ra;,r)) < 26 and diam(éy(lora;,,,m)) < 20. By (2), (6) and
diam({p2(e*™?) 1 b; > 0 > bj11}) <6
(j=1,2,---,n), we have
diam({¢,(e*™) : a; <0 < a;11}) < diam({p2(re*™) 1 bj 41 —c <O < b; +c})
< diam({¢o(e*™) 1 bj 11 —c <O <bj +c})+26

< 56.

Thus diam(¢, (200 )) < 144.

JrAj+1
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By Lemma 2.2 there exists a sequence of holomorphic maps ¢, : C — C such that
o Yu(2)=0&2=0,
e 1/ does not vanish,

e asn tends to +00, 1, tends uniformly to ¢, ! on every compact subset of ¢,.(D) (= D).

We choose r1 with 7o <r; <1 sufficiently close to 1 so that v C ¢, (Hry,ry ), ¢T( Hyy ) C Hy
and ¢T‘H7«0,r1 (r2) : Hro — ¢r(Hpyry) is 140-admissible. Since 1, converges uniformly to

¢! on every compact subset of ¢.(D) as n — oo, we have that 1, converges uniformly to

¢! on ¢,.(D JEE ) as n — oo and for sufficiently large n, 1|4, y is univalent. For all

D1+T
z € Ditry , we choose € > 0 sufficiently small so that B, (¢.(2)) C d)r(D Liry ). Then ¢, }(w) =
2

2;1 e on ()] =< fp(:b(gg (u?dz converges uniformly to ¢, (w) = 271'1 f‘f ()| Wdz on some

neighborhood of z as r — 17. Thus ¢, !|p, 1eny converges locally uniformly to ¢,|p,,, on
2
Diyr,. Thus 1/);1|H
2

Hro. Thus we can take n sufﬁmently large so that
1

rour (T12) H& — 5, "(Hyy r, ) converges uniformly to ¢/, ., (r12) on

¢;1|Hr0,r1 (TlH:—(lJ) = 'l/}r:l(Hro,m) 27, 1/’771|HT0,T1 (TIH:—?) = ¢771(Hro,7’1) C Hy

and ¥, |y ri1z) is 146-admissible. At last, we take §(z) = w’;iz) and 7" = ¢ < 1. This

completes the proof.

7‘0»7‘1(

For all 0 < r < 1, we let v be a d-analytic Jordan curve in H, such that « surrounds 0.
Then by Lemma 3.1 there exist 8 € H and 0 < r’ < 1 such that

e 7 CDy(f) and D, (B) C H,,

e (Blp,, ()" is 146-admissible.

For all positive integer g, we denote by R the single-value analytic branch of ¢/8(z7) such that
(R)'(0) > 0 and denote by ¥ the preimage of v under z%. Then

e Yisa i—analytic Jordan curve in H g and surrounds 0,

(] ’yCD\/»( )andDW(R)gH%,
[ ] 7:6%27”7)7’

* (Rlpy(r) " is ?—f—admissible.

Thus we have the following corollary.

Corollary 3.1 Let §, r be two positive real numbers with 0 < r < 1, q be a positive integer
and b = |ble*™® € H,. If v is a 0-analytic Jordan curve in H, such that v surrounds 0,
N l(§+9)2mr = {e§2mb}, 0<k<qg—1and eé%ify =, then there exist 3 € H and 0 <1’ < 1
such that

e 7CDy(R) and D (R) C H,,

o the inverse (R|p ,(r))~" is 6-admissible,

where R is the single-value analytic branch of ¥/ (29) such that (R)'(0) > 0.

i T q 3
contained in Qe oL Then ~{ is a

Jordan curve in H,q surrounding 0 and passing through b?9. Since 7y is O—analytlc we have that

Proof Let v, be the subarc of v connecting b and be?
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1 is O-analytic and hence 77 is 0-analytic. Applying Lemma 3.1 and ¢z to 7, we can obtain

the conclusion.

By applying Osgood’s method for constructing a Jordan curve of positive area [9], the

following lemma is easy to be proved.

Lemma 3.2 Let r be a positive real numbers with r < 1, q be a positive integer and b =
|ble?™® € H,. Then for all ¢ > 0, there exists a 0-analytic Jordan curve ~ in H, such that y
surrounds 0, vy Nk g)or T:{e§2wib}7 0<k<gqg-—1, e%%i,y = and densy. (H, \ ) < .

X ;

Proof We choose 1 > 0 sufficiently small so that

r+e1,l—e; o f . r,1
area(QHEI)H%_El) > (1 2) area(QaH%).

By Osgood’s method (see [9]), one can construct a simple curve 7{2) connecting (1—

1)e?m0+e) and (r + 51)62”1(9*‘%_81) such that

. (2) .. . . r+e1,l—eq
e except for the two endpoints, 7™ is contained in €, Fertl ey
(2)

e 7" is O-analytic,

(2) 1—¢ r+e1,l—e;
e area(y;”) > 1—< area(90+sl,0+%751)'

Let 7" be a simple analytic arc connecting b and (1 — e1)e2™i(0+21) guch that except for

the two endpoints, ﬁ” is contained in Qg’i) 4o, Let %3) be a simple analytic arc connecting

(r+ 51)e2”1(9+%_51) and be*™¢ such that except for the two endpoints, 7%3) is contained in

Qgilfq g41- We denote by 7; the simple arc obtained by connecting %1)’ ’y?) and 7%3) in
q ’ q

sequence. Then ~; connects b and bezm%; except for the two endpoints, ~; is contained in

2wk

Q! ~p is O-analytic; area(yy) > (1 —e) - area(Q") ). We set 7, = e %71 for all

0,041 0,0+1
1 <k < q. Then ~; connects be?™ T and be%i%; except for the two endpoints, 74 is contained
in Q;i%,(#%; vk is O-analytic; area(yg) > (1 —¢) - area(Qgi%y(Hg). We denote by v the
Jordan curve obtained by connecting 71, 72, - - -, 74 end-to-end in sequence. Then v is exactly

what we want.

4 Completing the Proof of Main Theorem

4.1 Construct {3,} step by step

o0
Let {e,}22, be a sequence of positive real numbers such that 0 < e, < 1 and > &, < 1.

n=1
We fix a 0 < r; < 1. It follows from Lemma 3.2 that there exists a Jordan curve v in H,, such
that ~; surrounds 0, v1 Nlp,, = {42} and densy, (Hy, \71) <e1. We write ag := 4

By Lemma 3.1 there exist 8; € H and 0 < ry < 1 such that 41 C D,.,(R1) and D,,(R1) C
H,,. Then

densg, (Hp, \D,,(R1)) = densp, (Hoy \Dry(B1)) < densy, (Hy, \m) < e



Siegel Disks Whose Boundaries are Jordan Curves with Positive Area 815
Observe Ry (D,,(R1)) = H,, and ag € 1 C D,,(R1). We write
-1
ax = ((Rilpr,))™" ° B o Ri)(ao)

foral0<k<qg —1. Forall0<k<q¢g —1,axr € D,(R1) CD and
a1

filag)=Gilaxr) = (Rilproy) "o RioRi)e (Rilpmy)) ' e Ry oRi)lao) = Gt

q

where a1 = ag. Since (Ri|p(r,))”"! has a homeomorphism extension from D to D(Ry), there

exists a d2 > 0 such that for all z1, 29 € H,., with |21 — 22| < d2,

(Rilpr) ™ (1) — (Ralprsy) " (z2)] < o

- (4.1)

We take 0 < § < qil. By Lemma 3.2 there exists a O0-analytic Jordan curve s in H,, such that
e 5 surrounds 0,
* 12N lkoniarg(Ry(ao))re = {e*™Ry(a0)}, 0 <k <qu— 1,
o e My, =,

e densy,, (H;, \ 72) is sufficiently small so that

densy, (Hy, \ (Rilpr,)) " (12)) < &1+ €.

By Corollary 3.1 there exist 83 € ‘H and 0 < r3 < 1 such that

* 72 C DTs (RQ) and D’l"3 (R2) c Hrz,
. (R2|DT3(R2))’1 is %—admissible.

Since (Ralp,, (rs)) " 1 % _admissible and (4.1), we have that for all z € (R1|p(r,)) " (Dry (R2)),
both two boundary components of (Ri|p(r,)) ' (Dr,(R2)) intersect B (2).
2
Since R1,Rs € H, we have oy = Rq 0 R € H. Since

Ri(ao) € v2 € Dy, (R2),

we have p2(ag) € Hy,. We write

_k_onri
a_i_ = (palp(es) (e s (ag))

91492

for all 0 < k < q1¢q2 — 1. Since Rg(eﬁ%iz) = eﬁ%iRg(z), we have that 0 < k < ¢ — 1,

kag i — ko
((Rz © R1)lp(roors)) (€719 M Ry o Ri(a0)) = (Rilp(ryery) ' (1 °"Ra(ag)).
So the two definitions coincide. Since (R2|D,r,3(732))_1 is %"’—admissible, we can take go large

73,1

enough so that for all 6 € R and all z,2" € Q

0,0+ 75"
_ _ 209
[(Ralp,,(ms)) " (2) = (Ralp,, (r2) ()] < =5
Since ¢a(ag) € Hy,, we have that for all z € H,,, there exist 6 and k such that z, R_» o
91492
wa(ap) € Qg%i#. Thus

9192

(Ralp,,(Ra)) ™ (2) = (Ralp, (ra)) ™ (R_x_ © pa(ao0))| <
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Again, since for all z1, 22 € H,., with |21 — 22| < 02, |(R1|’D(R1)>_1(zl) — (R1|'D(Rl))_1(22)| < 2%
holds, we have
_ _ 1
|(2D(p2)) " (2) = (P2lD(ea) T (R_k_ = a(a0))] < 7
that is,

1
k|<

—1/\ _ —
|(‘P2|D(<P2)) (2) a<11<12 22

Forall 0 <k <qiqgo—1,a_x € Dy, (p2) CD and by G;qj =G (j>1),
qa1492

fala_x ) =Ga2oGi(a_xr_)

9192 9192
o(1+

:GQ( Q2)(a &

q192

= (palpgen) o Ra 1 o pa)(a_s )

q1492 9192

€ {aL ke {071325"' yq1q2 — 1}}
Since ((R2 © R1)|p(roor,))” " has a homeomorphism extension from D to D(Rz o Ry), there
exists a d3 > 0 such that for all z1, 22 € H,, with |21 — 22| < J3,

_ _ 1
[((R2 ° R1)lpRaere))  (21) = (R2 © Ra)lp(raory)) ' (22)] < 55

(4.2)
We take 0 < §3 < ﬁ. It follows from Lemma 3.2 that there exists a 0-analytic Jordan curve
v3 in H,, such that

e 3 surrounds 0,

_k_omri
® 13Nk oniare(RooRy(a0))rs = {enn®™Ry 0 Ri(ao)}, 0 < k < qigo — 1,

q192
—L_oxi
e cd192 Y3 = Y3,

densy,, (Hy, \ 73) is sufficiently small so that

densp,, (Hr, \ (Rg o R1|D(R20R1))_1(73)) <éepteg+es.

By Corollary 3.1 there exist 83 € H and 0 < r4 < 1 such that
® 73 - Dr4 (RJ) and Dr4 (RS) c H’I“g?
. (R3|DT4(R3))’1 is %—admissible.

Since (Ralp,, (ry)) " is %—admissible and (4.2), we have that for all z € (Y2]p(py)) " (Dr,(R3)),

both two boundary components of (¢2|p(e,)) " (Dr, (R3)) intersects B, (2). Since R1,R2, R3 €
2
H, we have p3 = Rz o Rq o Ry € H. Since

wa(ao) € v3 C D, (Rs),

we have ¢3(ag) € H,,.
In general, ¢, = Rp o -0 Rao Ry € H and @, (ag) € H,

g1 We write

a__k__ = (‘Pn|D(<pn))71 °R__& ° ¢on(ao)

91492 "9n 9192 9n
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for all 0<k<¢1¢2- - -¢n—1. The definition coincides with the above ones. Since (R, ‘DTHI(R“))_I
is %"—admissible, we can take ¢, large enough so that for all 6 €R and all z, 2’ 6(22”011’1 L
’ 49192 " dn
—1 —1/_ 7 26n
(Ralo, %) (2) = (Rulp,,., () ()] < 222 (143)
Since ¢y, (ao) € H,,,,, we have that for all z € H,._, there exist # and k such that z, R__» o
4192 "dn
n(ag) € Qrrrnt . . Thus
v ( 0) 9’0+Q1‘12"'Qn
(Rulo,,, @)™ (2) = (Ralo,, ) (B s o pulan))] < 20,
D41 (Ren) Dy (Ren) T -3
Again, since for all z1, 20 € H,, with |21 — 23] < dp,
-1 -1 1
|(Pn-1lpen 1)) (21) = (Pn-tlpe, 1)) (22)] < o
holds, we have
(@aloien) ™ ()~ (alpn)  (B__x o gnlan))] < o
n|D(pn) n|D(pn) i n %0 on’
that is,
1
-1
(alo) () —a_u_|< 5 (4.4)

Foral0<k<qiqg2---qn—1,a__& eD

4192 °9n

fn(a$):Gn0"'0G20G1(a k )

4192 " "4dn 9192 "49n

(pn) CDand by G;% =G, (j > 1),

Tn41

_ G:L(l‘i’qn“rqntbtf1+"'+ann—1"'q2) a .

4192 " "9dn

= ((¢nlpp) e R iy ropn)la_x )

41492 "9n 41492 "9dn
e{a_x  :ke€{0,1,2, - ,q1q2- -qn — 1}},
41492 "4dn
that is,
fola_w Ye{a_x  :ke{0,1,2,- ,quqa- -qn — 1}}. (4.5)
41492 "dn 41492 "dn

Since (¢n|p(y,)) " has a homeomorphism extension from D to D(¢y), there exists a 6p41 > 0

such that for all 21,29 € H, | with |21 — 22| < 0py1,

n+1
-1 -1 1
[(Pnlpen) ™ (21) = (Pnlpen) ™ (22)] < g (4.6)
We take 0 < 0,41 < m. It follows from Lemma 3.2 that there exists a 0-analytic Jordan
curve yp41 in Hy., ., such that

® 7,41 surrounds 0,

k 27
® Ynt1 M l%2w+arg(@n(ag)),Tn+1 ={enm ", (a)}, 0<k<qge---qn — 1,

192 9n

— 1 9or
® @9192''dn Yn+1 = Vn+1,
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o densy,  (Hr,, \Vnt1) is sufficiently small so that

n+1
densy,, (Hp, \ (¢alpi,,)) " (ns1)) < Y 50 (4.7)
j=1

By Corollary 3.1 there exist 8,41 € H and 0 < rp42 < 1 such that
® Ynt+1C Dy (Rpn+1) and Dy, ., (Rn+1) C Hy, .,

. (Rn+1|'DT"+2(Rn+1))71 is %%—admissible.
Since (Rp41|p, +2(72"+1))_1 is &‘%—admissible and (4.6), we have that for all
ze (Spn|D(<pn))_l(DTn+2 (Rn-‘rl)),

both two boundary components of (¢n|p(e,)) " (Dr,.s(Rnt1)) intersects B - (). Since
o
R1,Ra2,-+ ,Rpt1 € H, we have @41 = Rpq10---0Roo Ry € H. Since

Pn (aO) € Ynt+1 C Dmu (Rn+1)a

we have p,11(ag) € H,

Tn42*
4.2 A good nest
We set
Tim{— " in>Lh€Z0<k<qe )

q192 - qn

and
A:={a, :x €T}
For all k € Z, we set
k k+1
leqQ,.,q = {z Cragr < 2] < 1, 2 < arg( ) < + 27r}
" Qg2 qn ¢n(ao) 7192 Gn
and
k o —1/0k

Uq1q2---qn = (‘P"‘D(%)) (quqz---qn)'

It is easy to see that QFL0192-a» — QF g, and Uktage an _ Uk g, for all k € Z.

Furthermore, we have the following properties:
(a) a__x €UF Cforall 0 <k < qiga- - qn;

o 71927 qr

-
(b) for all § = kgni1 +¢ with 0 <t < gnet — 1,

s k—1 k k+1
Uthqz'“qn+1 g UQ1IJ2"'qn U UQ1¢Z2"'qn U UQ1q2“'qn’
in particular,
kqn+1+qn+1—1 k k+1
Ugga-an1 S Uq1q2---qn U Uq1q2~~qn

and

kqn+1 k—1 k .
UQ1tI2"'¢In+1 g UQ1Q2“'qn U U41Q2“'qn’
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(c) for all z € 7 with |z — —= L we have
q142-Q4n q1492-dn
k41
Az € U Q1Q2
s=k—2

(d) diam(UF

L
q1q2- qn) < o

Proof (a) Since y,(ao) € H;,,,, we have R__» o ¢y, (ag) € Q’;IqQ___qn and hence

4192 +9n

¢kt __ = 90"|5%<pn) ° R ° 90"(0’0) € S0’7|D (¢n )(Q(I;ND CIn) Uéclth

91492 "9dn ‘11‘12

(b) Let v, | be the subarc of 7,41 in Q%

1 qa---q,, CONNECting Rq k. owp(ag)and R k1o

192 '4dn 91492
¢n(ag). Then (yf, )79 is a Jordan curve in H, a14an surrounding 0 and passing through
n+1

(R . ° (pn(ao))‘hln“'(hz — (R K1 ° sﬂn(ao))qmmq".

9192 9n 9192 dn

(Rn+1) to H,

is a conformal map from D otz

Since Ryp+1 |D7-n+2(Rn+1) S we have that £, is

a conformal map from (D, ., (Ryp41))9% 9 =D - (Bn41) to H, a192an Since 7%, C
Ynt1 € Dr,o(Rpy1) € D(Riq1), we have (yn_s_l)qlq2 i C (D(Ry H))qlq2 4. It follows that

Brs1((vf )12 %) is a Jordan curve in H, aia>an surrounding 0 and passing through

n+2

Bri1((R ° pn(ag)) =) = By (R_sta o pn(ag))® ).
192 "9dn q9192 9dn
Thus Rp1(vh ) = @927%/Buy1((vF, )09 ) is an arc in H, , connecting R__. o
q91492 ' "dn
©n+1(ag) and quqk;».l.qn o nt1(an), and at the same time homotopic to Ry o @ny1(ao),
qlqj-qn <0< §2+1q in H,,, ,. This implies that Rn+1<'yn+1) intersects each Q9 ..., .,
kgni1 < s < k@n+1 + Gn+1 — 1. Again, since 7n+1 C Q’;m .qn» We have that each
(Rot1lprnsn))” 1(Qq1q2~--qn+1)7 kqnt1 < s < k@ny1 + gny1 — 1 intersects Qé:l(IZ"'(In' It follows
1
from (43) and 0 < 5n+1 < T that
k—1 k k+1
(Rn+1|D(Rn+1)) (chnqz qn+1) quqz “Gn Uquqz “Gn quqz “Gn

for all kgn11 < s < kqni1 + gna1 — 1. Applying (gon|p(%))_1 to the above formula, we obtain
that
Us Uk 1 U Uk Uk+1

q192° " qdn+1 — q192-+qn 9192 qn q192-+dn

for all kgni1 <5 < kgny1 + qui1 — 1.

Since Riqlq;..q" ° ¢ny1(ao) € Q];f;;‘l'%ﬂ and quq’“;'l ° ¢ny1(aog) € Q’;f;;l;fffl_l, we
have that
Rt o pn(00) € Rutilpr,n) ™ (U6 00s)
and
R_re1_ o pnlao) € (Ris1lpRon) (R ad ™),
Similarly, by (4.3) and 0 < §,,41 < 7{11(12 > we have

1 k k—1 k
(Rn+1|D('Rn+1)) (qug;'l‘qn-%-l) Qq1q2 ‘ZHUQQIQZ “dn
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and
—1/0ktn+1+qni1—1 k k—+1
(Rn+1|D(Rn+1)) (Qq1q2‘“Qn+1 ) C quqzmqn U quqg'“qn'
Applying (gon|p(%))’1 to the above formula, we obtain that
kqn+t1 k—1 k
Uq1q2"‘qn+1 g Ulhqz"-qn U Uq1q2"'Qn
and
kqnt+1+qn+1—1 k k+1
UQIQ2"‘Qn+1 < Uqlqz---qn U Uq1Q2"'lZn‘
(c) Since xz € Z and |z — —F—| < —L_— we have
q9192°"dn q1q92--qn
s
xr =
q1q2.~.qn...qn+m
with

(k_l)QH+1"'Qn+m+1 S S S (k+1)Qn+1qn+m -1
for some positive integer m and s. Then (a)—(b) give

(k+1)Q7l+1"‘Qn+m_1

S
R = U Uql”'qn"‘Q7z+m

s=(k=1)gn+1-""qniym=+1
(k+1)gn+1-"@ntm—1

S
U A

s=(k—=1)qn+1-"qntm—-1—1

N

(k+1)gnt1-qnitm—2

s
g U Uql"'Qn"'q'nn{»mfZ
S:(k_l)Q7l+1"‘qn+m,—2—1

(k+1)gn+t1
S
< U Ui

s=(k—1)gn41—1
k+1

< U Ui

s=k—2

(d) Since (4.3) holds and for all z1, 22 € H,,, with

|21 — 22| < 0n,
_ _ 1
[(@n—1lD(on ) " (21) = (Pr—1lD(en_ ) (22)| < on

holds, we have that for all zq, 29 € leqz,,,qn7

_ _ 1
(@l Do) (21) = (PnlDen)  (22)] < o
2

Thus (d) holds.



Siegel Disks Whose Boundaries are Jordan Curves with Positive Area 821

4.3 9D has positive area
Since Dy, ,(Rny2) € H.

Tn429

(Rus1lpRoin) (Proys(Ruy2)) € (Rutilo®osn) ™ (Hrpps)s
that is,
(Rn-‘rl |D(Rn+1))71 (DT‘n+3 (Rn+2)) - DT’n+2 (Rn+1)~
Together with D, ,(Rp+1) € D, it follows that
‘Pn|5%¢n) ((Rn+1 ‘D(Rn+1))_1(Drn+3 (Rn+2))) - <Pn|73%¢") (Drn+2 (Rn+1))>

that is,

Pn+1 |5%¢n+1)(Dm+a (Rn-i-?)) - <Pn|5%%) (Drn+2 (Rn+1))-

o0
Thus ﬂ gpn|l_)1 (Drn+2 (Ry41)) is a nonempty compact set. Since Dy, ,,(Rn41) € Hy,,, We

have that D(Rpy1) €D and (Rotilp®nin) Dy, ,,) 2Dy . Thus
D(pn) = (¢nlD(en) ™ (D) 2 (2nlpp,) T (P(Rn+1)) = (Pnt1lp(onsn) ™ (D) = D(pn1)

and

(@nlD(en) " Dr, 1) € (@alpien)  (Rusilp®uin) ™ Dria)) = (Pntilponi) DOr,ys)-

Again, observe that

D(¢n) = (#nlpen) ™ D) U (enlp(on) ™ (Hr, )
= (@)™ D) U (@n-1lD(0n-1) " (Dryys (Ran)).

Thus
o0 o0 o0
N 2len) = (U @nloe) " @r)) U (N enlnly,) Pre(Rusn))
n=1 n=1 n=1

and

(@

(

Since D(@n+1) C D(py) for all n > 1, we have
o0
NP
n=1

and hence [ D(¢n) = [ D(pn) is a closed set. Since

n=1 n=2

(@alpien) ™ Broi)) O () Enlptyn) Praa(Rus1))) = 0.
n=1

1

e}

C () Dlen)
n=1

n=2

((Pn ‘D(wn))il (]D)Tn+1) - (9071+1 ‘D(¢n+1))71 (]D)Tn+2)a

we have
oo oo
U <Pn|D (¢n) Tn+1 U @n-&-l‘D(@nJA Tn+2 U @n‘D(son ]D)Tn+1)
n=1 n=1 n=1
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and hence

oo

U SDn|D (¢n) rn+1 U (Pn‘D(Lpn ]D)rn+1)

is a connected open set. Since for all z € <pn|1_)%%)(7)rn +2(Rnt1)), both two boundary compo-

nents of <pn|5%%)(Drn+2 (Rpn+1)) intersects Bﬁ (z), we have that for all

z € n SDn|D rn+2( n+1))

and all n > 1,

2n+1 ( ﬁ Tn+2 (Rn+1))>

oo
Thus ﬂl cpn\gé%)(l)rnﬁ (Ry+1)) does not contain any interior points. Then we have that
n—=

D= U (cpn"D(wn))il(Df’n-H)

n=1
and

oD = Pulpp)(Pruss(Rat1)).

n=1

Then it follows from v,+1 C D, ,(Rn41) and (4.7) that

Tn+2

area(0D) = lim_area(palp. (D, s(Ras1)))

> lim area(H,,) - densg, <pn|5(1¢n) (Dy,.s(Rint1))

n—o0

> limsup area(H,,) - densy,, ¢alp) (1)
n—oo "

> area(H, ( Z )

> 0.

4.4 0D is a Jordan curve

Observe that for all 0 < k < qi1q2---qn — 1,

k

eWQTri(pn(aO) € Tnt1 © DT‘n+2 (Rn+1)-

Then for all 0 <k <gqig2---gn — 1,

_ —k  oni _
o = (¢alpie,)  (emm T 00 (a0)) € (onlpip,) " (Praya(Rus1))

q192°9n

and hence for all m > n,

G__k__ =0 kapyi-am € (@mb(wm))_l(prmu (Rm+1))-

9192 9n 4142 dn - am
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Again, since {(¢n|p(p)) " (Dr,sis (Rn“))}zo:l is decreasing, we have that

m (@nlD(pn)” (Drn+2 (Rn+1))-
By (4.4) we have that A is dense in ﬂ (nlD(en)) H(Drpis(Rpg1)). Thus

A=

DX

(SDn|D(wn,))71 (Drn+z (Ryy1)) = 9D.

n=1

We define a map
7:ZT—C, x> ay.

For all z1,29 € T with |21 — 22| < there exists a positive integer k with 0 < k <

1
q192-+qn’

k k 1
1192 In such that ’$1 q192°qn < q192°"qn and ‘.132 q1492°dn q1q2-qn” By (C) we have
k+1
s 4 3 . . . .
Agy, gy € ij Ug gp-q,- By (d) we have |az, — az,| < 5. Thus 7 is uniformly continuous
5=

and hence 7 can be continuously extended to [0, 1], still denoted by 7. Evidently, ([0, 1]) = A.
At last, we only need to prove that 7 is a Jordan curve. Indeed, for any x#ye€l0,1), we

choose a sufficiently large n such that x = lim k - and y = lim , where
j—oo 9192795 j—o00 qlqz "4
|kn — kuZ/(qmzqu) > 8,
and for all j > n,
k; S
L Y | P 1)
q192 - - - qj R/Z  0<s<qig2---q;—1 L1q1q2 - q; R/Z
and
K’
‘7J—y‘ = min {‘#—y‘ } (4.9)
Q192 -+ qj R/Z  0<s<qigz-q;—1 LIq1q2 - qj R/Z

and y; := % for all j > n. Since |k, — k},12/(4145--q,) > 8, We have

. k;
We write z; := e

that a,, € Ukn  and a,, € qu .qn, With
kn+3 kr,+3
U V) (U Vo ) =0 (4.10)
Jj=kn—=3 J=k5,—

and |y; — —fo | < —1
J q1q2-qn q192°*qn

By (4.8)—(4.9) we have that for all j > n, |z; — qqu;TL-Aqn| < q1q21
Then by (c) we have that for all j > n,

kpn+1 Ky +1
Og; € U (I1Q2 and Qy; € U fI1(Z2
s=k,—2 s=k! —2
Thus
kn+1 kn+3
T(x lim a,, € U U U’
( ) j oo I qlqz 4192 qn

=k, —2 =k, —3
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and
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kI +1 kI, +3
— 7 J
T(y) - li{n ayj € U U(?lqz“-qn g U Uq1q2"'q”'
e s=h —2 j=k! —3

Together with (4.10), we have 7(x) # 7(y).
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