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Abstract This paper constructs a finite Lie conformal superalgebra R associated to
the N = 1 Bondi-Metzner-Sachs (BMS for short) superalgebra. The authors completely
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1 Introduction

The notion of Lie conformal superalgebras was introduced by Kac as a formal language de-
scribing the singular part of the operator product expansion of chiral fields in two-dimensional
quantum field theory. It is closely connected to the Lie superalgebra spanned by the coeffi-
cients of a family of mutually local formal distributions. In fact, a Lie conformal superalgebra
canonically associates a maximal formal distribution Lie superalgebra, which establishes an e-
quivalence between the category of Lie conformal superalgebras and the category of equivalence
classes of formal distribution Lie superalgebras (see [15]).

The classification of finite simple Lie conformal superalgebras was completed in [13]. The list
consists of current Lie conformal superalgebras Cur g, where g is a simple finite-dimensional Lie
superalgebra, four series of “Virasoro like” Lie conformal superalgebras W,, (n > 0), S, and
S, (n>2beC), K, (n >0,n # 4), and the exceptional Lie conformal superalgebras C Kg
and Kj. The structure theory and finite irreducible representations of simple Lie conformal
superalgebras were developed in a series of papers (see [1, 3-6, 8, 13, 18, 20]).

It is interesting to study non-simple or even non-semisimple Lie conformal (super)algebras

since the conformal analogues of the Levi theorem fail, although there exists conformal version
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of Lie’s Theorem (see [14, 17]). What we mainly consider in this paper is a non-semisimple

finite Lie conformal superalgebra
R=NRy DRy, Ry=COILeCOIM, Ry=C[0|Q
satisfying A-brackets
[LAL] = (0+2N)L, [LAM] = (0+2\)M,

22 = (04 53)Q, Q@1 =2M,  [QxM] = [MM] =0,

Clearly, R contains a subalgebra Vir = C[9]L which is isomorphic to the Virasoro Lie conformal
algebra. The even part SRy is exactly the W(2,2) Lie conformal algebra (see [23, 25]), and the
subalgebra generated by M and @ is a solvable ideal (and thus R is non-semisimple).

We shall see in Section 2 that the annihilation superalgebra of R is a maximal subalgebra
of the N = 1 Bondi-Metzner-Sachs (BMS for short) superalgebra

G =Gz ® Gy,
where
G5 =spang{L,, M, |n€Z}, Gr= spanC{QT |re % + Z}
with the following commutation relations:

(L, Ln] = (m — 1) Lin g, (L, Myp] = (m —n) My i,

L Qe = (5 =7)@uers (@i Qe =20y, [Qr M) = (M, My] = 0
for any m,n € Z, r,s € % + Z. Hence, we refer to this Lie conformal superalgebra R as the
N = 1 BMS Lie conformal superalgebra. The N = 1 BMS superalgebra has a close relation with
the N = 1 Neveu-Schwarz algebra and plays a key role in describing asymptotic supergravity
in three-dimensional flat spacetime (see [2, 10-12, 19]). Note that the even part G corresponds
to the centerless W-algebra W (2,2) introduced in [26]. Thus, it is interesting to study the
structure and representation theory of the Lie conformal superalgebra R associated to the
N =1 BMS superalgebra. This is also our motivation to present this paper.

The paper is organized as follows. In Section 2, we introduce some basic definitions, and then
construct Lie conformal superalgebra R by generating relations. In Section 3, we determine
conformal derivations, the automorphism group and the second cohomology group of R with
coefficients in trivial module. In Sections 4-5, we classify free conformal modules of rank (1+1)
over R and obtain that all finite irreducible conformal modules are simply irreducible ones over
the Virasoro Lie conformal algebra, where some results in [22, 24] will be used.

Throughout this paper, we denote by C, C*, Z and N the sets of complex numbers, non-
zero complex numbers, integers and non-negative integers, respectively. Let C[J] be the ring of

polynomials in the indeterminate 0.

2 Preliminaries

In this section, we recall some definitions related to a Lie conformal superalgebra (see [6, 16])
and construct Lie conformal superalgebra SR by some generating relations.



N =1 Bondi-Metzner-Sachs Lie Conformal Superalgebra 827

2.1 Basic definitions

Let g be a Lie superalgebra. A g-valued formal distribution in one indeterminate z is a

formal power series
a(z) = Za(n)z_"_l, a(n) € 9.
nez

Two g-valued formal distributions a(z) and b(z) are called mutually local if
(= = w)N[a(2), b(w)] = 0

for some N € N.
Define Res.a(z) = a(g) and

§(z—w)=z"" Z (%)n

ne
The bracket of two local formal distributions is given by the formula

no(z —w)

n!

[a(2), b(w)] = D (a(mb) (w)

neN

3

where (a(,)b)(w) = Res.(z — w)"[a(z),b(w)]. This is called the operator product expansion.

Definition 2.1 The Lie superalgebra g is called a Lie superalgebra of formal distributions

if there exists a family of pairwise local formal distributions whose coefficients span g.

Example 2.1 (see [6]) The Virasoro algebra has a basis L,, (n € Z) and commutation
relations

[Liy L) = (M —n) Lipgon.

It is spanned by the local formal distribution L(z) = . L,z~""2, since one has
neZ

[L(2), L(w)] = 0w L(w)d(z — w) + 2L(w)0yd(z — w).

Example 2.2 (see [6]) The N = 1 Neveu-Schwarz algebra, apart from even basis Virasoro

elements L,, has odd basis elements G,.,r € % + 7 with commutation relations:

Loy Grl = (5 =7)Gutrs (GG = 2L

It is spanned by the following family of pairwise local formal distributions

L(z) = Z L,z "2 G(z) = Z Gn+%z_”_2.

nez ne”z

Note that one has
1 3

where other products are zero.
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For a Lie superalgebra of formal distributions, we define the following A-bracket (see [9, 15]):

n

[a(w)ab(w)] = %Resz(z — w)"[a(z), b(w)].

nely
The properties of this A-bracket lead to the following definition.

Definition 2.2 A Lie conformal superalgebra R = Ry @ Ry is a Za-graded C[0]-module
(satisfying [Ra xRg] C Ra+p for any a, B € {0,1}) endowed with a A-bracket, that is a C-linear
map R®R — C[A|®R, denoted by a®b — [axb], satisfying the following properties (a,b,c € R) :

[Daxb] = —A[axb], [ax0b] = (0 + N)[aab] (conformal sesquilinearity),
[axb] = —(=1)IP[b_y_sa] (skew-commutativity),

[ax[buc]] = [[axb]asnc] + (—1)1PI[b,[are]]  (Jacobi identity).

Here and further, we use the notation |a| € Zs to denote the parity of a, and we always
assume that a is homogeneous if |a| appears in an expression. If there exists a finite generating
subset S C R such that S generates R as a C[0]-module, then we call that R is a finite rank
Lie conformal superalgebra. Otherwise, it is called infinite.

Let R be a Lie conformal superalgebra. We may associate to R a Lie superalgebra of formal
distributions (see [6]). This leads to the following definition.

Definition 2.3 The annihilation superalgebra A(R) of a Lie conformal superalgebra R is a
Lie superalgebra with C-basis {a(,)|a € R,n € N} and relations

m
[agm)» by = Y ( K )(a(k)b)(m+n—k)v (9a)(n) = —na(m-1), (2.1)
keN
where a)b is given by

/\k

k k
[axb] = > AFagyb, AW = o

keN

Here, the reason why A(R) is a Lie superalgebra can be found in the book by Kac [15, p.
41-42]. The parity |a)| of a(,) € A(R) is the same as |a| for any a € R and n € N. Note that
A(R) admits a derivation T given by T'(a(,)) = —na(,—1) for ag,) € A(R). Denote by A(R)*
the semidirect sum of CT" and A(R) with the commutation relations given by (2.1) and

[T, a(n)] = —Na(p-1), ) € A(R), n € N. (2.2)

Then A(R)¢ = CT x A(R) forms a Lie superalgebra called the extended annihilation superal-
gebra.

2.2 N =1 BMS Lie conformal superalgebra
Recall that the commutation relations over the N = 1 BMS superalgebra are defined by

[Lin, Ln] = (m —n)Lpgn,  [Lm, Myp] = (m —n) My, pn, (2.3)
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m
[Lma Qr] = (E - 7‘) Qm+r7 [Qra Qs] = 2MT‘+S7 [Qra Mn] = [Mrm Mn] =0, (24)
where m,n € Z,r,s € % + Z. Introducing the following local formal distributions
z) = Z L,z "%, M(z) = Z M,z"""2 Qz)= Z Q%_Mz_”_Q,
nez nez nez

one can check that

[L(2), L(w)] = B L(w)d(z — ) + 2L ()= — w),
[1(2), M(w)] = 9 M(w)3(z — w) + 2M (w)0u6(z — ),
[L(2), Qw)] = (w)é(z—w>+§cz<w>aw6<z—w>,
Q(=), Q(w)] = 2M )iz — w).

Q). M(w)] = [M(), M(w)] = 0.

From these generating relations above, we have the following theorem.
Theorem 2.1 Let R = Ry © Ry with
Ry = C[O]L @ C[o]M, Ry =C[0]Q.
Define the A-brackets over R by
[L L] = (94 2)\)L, [LAM] = (04 2)\)M,
1201 = (04 30)@, Q@) =2M,  [@2M] = [MM] =0.
Then R becomes a Lie conformal superalgebra.

Next we determine the generators and relations of the (extended) annihilation superalgebra
of ! (see Proposition 2.1). First, it follows from Definition 2.3 and the A-brackets over 9 that
A(R) has a C-basis { L), M), Qn) | n € N} with nonvanishing relations

[L(m), L(n)] = (m — n)L(m+n_1), [L(m), M(n)] = (m — n)L(m+n_1), (25)
m

Lim)s Q) = (5 = 1) Qmin-1)s  [Qm), @n)] = 2M(mtn), (2.6)
2

where m,n € N. In addition, by (2.2), we see that A(R) admits a derivation T' given by
[T, X(n)] = —nX(n_l) for X € {L, M, Q} (2.7)
Now define L,, = Ly41), Mp = M, 41y and Q, = Q(TJF%), where n € Z>_1 and r € % +Z>_1.
Then by (2.5)—(2.7), we obtain the following proposition.
Proposition 2.1 Let A(R) be the annihilation superalgebra of R and T be a derivation
of R given by (2.7). Then A(R) admits a C-basis {Ln,Mn,QT |n€Zs_1,1€ %—F ZZ—l}

with super-commutation relations given by (2.3)—(2.4). The extended annihilation superalgebra
A(R)¢ = CT x A(R) is generated by T and A(R) with the additional relations

[T, Ln) = —(n+ 1) Lp_y, [I,Mn]=—(n+1)Mn_1, [[,Q,]= —(r + %)Qr_l. (2.8)

One sees that the annihilation superalgebra A(R) of 2R is a maximal subalgebra of the N =1
BMS Lie superalgebra. Hence, we refer to this Lie conformal superalgebra R as the N = 1
BMS Lie conformal superalgebra.
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3 Derivations and Automorphisms and Central Extensions of R

In this section, we shall study the structure theory of Lie conformal superalgebra Si. Con-
cretely, we investigate conformal derivations, automorphism group and the second cohomology
group with coefficients in trivial module of fA.

3.1 Conformal derivations

Let V and W be Zs-graded C[0]-modules. A conformal linear map between V and W is a

C-linear map ¢, : V. — W/[A] such that
oA(00) = (0 + N)(dav), Vv e V.

Let Chom(V,W) be the C-vector space of all conformal linear maps from V' to W. It has a
C[0]-module structure by

(8(;5))\11 = —)\(bAU.

Denote Chom(V, V) by Cend V. When V is finite over C[9], Cend V' becomes an associative
conformal superalgebra with the A-product (axb),v = ax(b,—»v) for any a,b € Cend V. Fur-
thermore, an element ¢, € CendV is called a conformal linear map of degree « if it satisfies
dx(Va) C Vagp[A for any «, 8 € Zs. Denote by (Cend V'), the space of all conformal linear
maps of degree a. Then CendV = (Cend V)5 4 (Cend V)y. Similarly, we use the notation
|da| € Zs to denote the parity of ¢y.

Definition 3.1 A conformal derivation of a Lie conformal superalgebra R is a conformal

endomorphism Dy € Cend R such that for any homogeneous a,b € R,
Dilaub] = [(Daa)xyub] + (—1)' P11/ a, (DrD)].

Denote by CDer R the space of all conformal derivations of R. Then it is obvious that
CDer R = (CDer R)5 @ (CDer R)y is a subalgebra of Cend R. Note that, for any a € R, one can
define a conformal derivation ada of R by (ad a)xb = [axb] for b € R. All conformal derivations

of this kind are called inner. We denote by Clnder R the space of all inner conformal derivations.

Lemma 3.1 Let Dy € (CDerR)g. Then there exist a1(X), b1 (X) € C[A] such that
D)L = a1 (A\) (0 +2\)L 4+ b1 (M) (0 + 2)\) M,
DyM = a1 (\)(D + 20)M,  DAQ = ar(\) (a + g/\)Q.
Proof Since D) is an even conformal derivation, we can set
D)L =a1(0,\)L +b1(0,\)M, D M = a3(0,\)L + b2(0,\)M, DxQ = a3(9,\)Q,

where z(0,\) € C[0,A] for x € {ai,b1,a2,b2,a3}. By using Dy[L,L]| = [(DaL)r+,L] +
[L,.(DL)], we have

(O+2u)x(0+ py A) + (O 4+ 22+ 2p)x(—A — p, A) = (O + XN+ 2u)x(9, N)
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for © € {a1,b1}. Thus by [9, Lemma 6.1], we can set 2(9,\) = z(A\)(9 + 2X) for z(A\) € C[)]
and = € {a,b}. Furthermore, applying Dy to [L,M] = (0 + 2p)M, we get

(04 2p)az (0 + p, A) = (0 4+ X+ 2p)az(0, \),
(04 21)b2(0 + p, A) + (0 42X + 2u)ar (N (X — p) = (0 + X+ 2u)b2(9, \),

which give a2(0,\) = 0 and b2(0,\) = a1(A)(0 + 2X), respectively. Thus we have D M =
a1(X)(0 4+ 2X)M. Now, by [(DAQ)x+,Q] + [Qu(DAQ)] = 2D M, we have

(l3(—/\—/1,,)\) +a3(8+u,)\) = al(/\)(8+2)\) (31)

Then we can assume that az(9,\) = ag(\) + a1 (N)0 for some az(A) € C[A]. This together with
(3.1) gives a3(8,A) = a1(A)(0 + 3X). Hence, the lemma follows.

Lemma 3.2 Let Dy € (CDer R)y. Then there exists c1(X) € C[A] such that
D)L =ci(\)(0+3)N)Q, DM =0, DxQ =4ci(\)M.
Proof Assume that
D)L =c1(0,\)Q, D \M =c3(0,\)Q, DxQ =c3(0,\)L+d3(0,\) M.
Then, by direct computation, we can get the lemma.
Theorem 3.1 For the N =1 BMS Lie conformal superalgebra R, we have
CDer i = Clnder fA.

Proof Let Dy = Do+ D; € CDer® with Dy € (CDerR); and D; € (CDerR);. By
Lemmas 3.1-3.2, we get Dy = ad (a1(—0)L + b1(—90)M) and Dy = ad (2¢1(—9)Q). Hence, D)
is an inner conformal derivation induced by the element a1(—0)L +b1(—0)M +2¢1(—0)Q. This

completes the proof.

3.2 Automorphism group

Denote by Aut(9R) the automorphism group of R. For any ¢ € C and b € C*, define the
C[0]-linear maps ¢, 7 : R — R by

oc(L)=L+cOM, oc.(M)=M, oc.(Q)=0Q, (3.2)

(L) =L, (M) =b"M, 7,(Q)=bQ. (3.3)
One can verify that o., 7, € Aut(9R) and

ToOc = Op2:Th, Ucl UC2 = Ucl “+ca Tbl Tbg = Tb1b27 (3'4)

where c1,cs € C, by, by € C*. Denote by

H={o.|ceC}, K={n|beC. (3.5)



832 W. Wang, D. Liv and C. G. Xia

Clearly, H, K and HK are subgroups of Aut(fR). Next, we shall describe the structure of
Aut(R).
Take o € Aut(R). Since R = C[9]L @ C[9]M @ C[9]Q, we may assume that

o(L) = fL(O)L +gr(0)M + h,(0)Q,

where f1,(9),95(0),hr(9) € C[0]. Note that C[0]M @& C[0]Q is a maximal ideal of R, and any
maximal ideal of R does not contain an element of the form k(9)L with k(9) € C[9]. Thus we
can safely set

o(X)=ax(0)M +bx(0)Q, ax(9), bx(9) € C[J], X € {M,Q}.
Lemma 3.3 Using notations as above, we have
fr(0)=1, g1(0) =cd, hr(0)=0,
where ¢ is a complex number.

Proof By applying o to [LaL] = (0 + 2)\)L, we get

fr(0) = frL(=N)fL(0+A), (3.6)
2(0 42X\ h(9) = (20 + 3N fL(=Nhr (A + ) + (0 + 3Nh(=N) frL (A + 9), (3.7)
2h(=N)hL(9+A) = (9 4+ 2A)(g1(0) — fL(=N)gr(0+ A) — gL(=A) fL(0 + N)). (3-8)

From (3.6), we get fr(0) = 1. Using this in (3.7), we have

204 2M)h(0) = (20 + 3N h (A4 0) + (O + 3N)hr(—A). (3.9)
Assume that hp(9) = 3. ¢;0" € C[9] with ¢, # 0 and n > 1. Comparing the coefficients of
i=0
AL A9 and A, respectively, we have

cn(l+ (1)) =2+ 3n+ (—1)") = 1 (1 + (=1)" 1) = 0. (3.10)

Since n > 1, we get ¢, = 0, a contradiction. Thus, it follows from (3.10) that hz(9) = ¢10.
Using this and f1,(9) = 1 in (3.8), we have

263A(0 + A) = (0 +20)(9.(0 + N) + gr(—=A) — g1(9)). (3.11)

If ¢; =0, we have g7,(0 + \) + gr.(—\) — gr.(9) = 0, which gives gr,(9) = cd for some ¢ € C.

Assume that ¢; # 0 and set g.,(9) = 3. e;0" € C[9] with e,, # 0 and n > 1. Comparing the
i=0

coefficients of ON™, we get e, (1 + (—1)" +2n) = 0. Since n > 1, we get e,, = 0, a contradiction.

Thus, we can set gr,(0) = eg+e10. This together with (3.11) gives ¢; = 0. Thus the case ¢; # 0
does not occur. This completes the proof.

Lemma 3.4 Using notations as above, we have
aQ(a) = bM(8) = 0, CLM(a) = b2, bQ(a) = b,

where b € C*.
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Proof Recall that hz(9) = 0 by Lemma 3.3. By applying o to [LaM] = (0 + 2\) M, we
get

2(0 4 2X)bps(0) = (204 3X)bas (0 + N), (3.12)

(O +2X)an(0) = (O + 2 )an (0 + N). (3.13)
Considering the highest degree of X in (3.12), we deduce by(9) € C. Using this in (3.12),
we have by(9) = 0. It is obvious that ap(9) € C by (3.13). Furthermore, by applying o to
[LAQ] = (04 2X) M, we get

bo(0+ A) = bg(9), (3.14)

(20 + 3XN)ag(9) = 2(0 + 2X\)ag (0 + ). (3.15)
From (3.14), we get bg(0) € C. By (3.15), we can deduce that ag(d) = 0. Besides, by

applying o to [Q\Q] = 2M, we get bps(0) = 0 and bg(—A)bg(0 + A) = an(9). Since o is an
automorphism, we get b (9) # 0. Thus the lemma follows by setting bg(9) = b € C*.

The following theorem is our main result of this subsection.

Theorem 3.2 For the N =1 BMS Lie conformal superalgebra R, we have
Aut(i)%) ~CxCr, (01, bl)(CQ, bg) = (01 + b%CQ, blbg),

where c1,co € C,by,by € C*.

Proof Let o € Aut(R). It follows from Lemmas 3.3-3.4 that there exists some ¢ € C and
b € C* such that o(L) = L + cOM, o(M) = b*M and o(Q) = bQ. Thus o = 0.7, where o,
and 7, are defined in (3.2) and (3.3), respectively. Let H and K be as those defined in (3.5).

Then by the multiplicative relations given in (3.4), we get
AUt(%) =HxK, (o Tbl)(ac2 sz) = Ocy4b2ca Thibas

where o,,,0., € H, T, , Ty, € K. Thus the theorem follows.

3.3 Second cohomology group

In this subsection, we discuss central extensions of JR. Note that an equivalence class in the
second cohomology group defines a central extension, and vice versa. Thus it is sufficient to
determine second cohomology group of fR.

Let R be a Lie conformal superalgebra. It is obvious that one-dimensional vector space C
can be regarded as a trivial R-module with the action of 9 and R being zero.

Definition 3.2 A 2-cocycle of R is a C-linear map ¢y : R®? — C[)], denoted by a @ b +—
oa(a,b), satisfying the following conditions (a,b,c € R) :

¢>\ (aaa b) = _/\d))\ (CL, b)7 ¢>\ (a7 8b) = )\(bA (a7 b)a

N (b7 a) = _(_1)‘aHb|¢—>\(a‘7 b),
Oriu[ard]; ) = da(a, [buc]) — (=D, (b, [ard). (3.16)
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For a 2-cocycle ¢y, if there exists a C[d]-linear map f : R — C such that the condition
oa(a,b) = — f([axrb]) holds, then the 2-cocycle ¢y is called a 2-coboundary or a trivial 2-cocycle.
Let C?(R,C) and B?(R,C) denote the spaces of 2-cocycles and 2-coboundaries, respectively.
Then the second cohomology group of R with trivial coeflicients C is defined by

H?*(R,C) = C*(R,C)/B*(R,C).

In the following part, we shall compute the group H?(R, C).

Lemma 3.5 Let ¢y € C?(R,C). There exist some @, a,b,b € C such that
wk(LaL):E)\_Fa‘)\Bv dJA(LvM):B)\_'—b)\Ba wk(QvQ):E+4b)\2a

where all other terms are vanishing.

Proof Since L generates the Virasoro conformal algebra, there exist some @,a € C such
that ¥\ (L, L) = a\ + aX3 (see [21, Section 4]). Since [LyxM] = (9 + 2\)M, one can safely set
Ya(L, M) = bX + bA3 for some b, b € C. Now, by (3.16) for triple (L, L, Q), we get

2(A = Wasu(L, @) = (A + 3p)ha(L, Q) — (2 + 3N (L, Q).

n

Set YA(L,Q) = > ¢;A' € C[\]. Then by comparing the coefficients of A", one has (2n —
i=0

3)enpe = 0, which gives ¢, = 0 for any n > 0. Thus, ¥(L,Q) = 0. Furthermore, by

(3.16) for triple (L, M, M), we get (p — N)Yagpu(M, M) = (u + 2A\), (M, M), which forces

Y (M, M) = 0 by comparing the coefficients of A. Now, by (3.16) for triple (L, M, @), we get

2(p = Noasn (M, Q) = (2p + 3N (M, Q). Thus, ¢, (M, Q) = 0.
Similarly, by (3.16) for triple (L, Q, Q), and using ¥ (L, M) = bA + b3, we get

(A = 20)9r44(Q, Q) = 4(BA +DX%) — (21 + 3M)¥u(Q, Q). (3.17)

Considering the degree of \, one can set ¥ (Q, Q) = ey + e1 A + eaA? for some ey, e1,es € C.
Using this in (3.17) and comparing the coefficients of A3, A2, \, respectively, we obtain ey = b,
e; =0 and ey = 4b. Hence, we get ¥ (Q, Q) = b + 4bA2. This completes the proof.

By direct computation, we have the following non-trivial 2-cocycles ¥ and 1Z defined by
AL L) =N, (L, M) =X, da(Q,Q) = 4N, (3.18)

where all other terms are vanishing.

Theorem 3.3 Let [¢,] and [1%\] denote the equivalence classes of 1, and ¥y in H?(R,C),
respectively. We have
H*(],C) = C[y,] @ Clya].

Proof Assume that 1y is a 2-cocycle on R. It follows from Lemma 3.5 that there exist

some @, a,b,b € C such that (any other terms are vanishing)

UA(L, L) =a\+aX3, (L, M) =b\+b0)\>, ¥r(Q,Q) = b+ 4b)\°.
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Thus, ¥y = ah, + szA +ag) + I_)qﬁ, where 1, and zZA are defined in (3.18). The two trivial
cocycles ¢} and ¢3 are defined by ¢4 (X,Y) = —f;([X,Y]) withi € {1,2} and X, Y € {L, M, Q},

where

flL) = (M) = ~3, A(M) = 11(Q) = (L) = £(Q) =0,

This completes the proof.

4 Free Conformal Modules of Rank (1 + 1)

In this section, we shall classify free conformal modules of rank (1 4 1) over fR.

Definition 4.1 A conformal module V = V5 @ Vg over a Lie conformal superalgebra R is
a Za-graded C[0]-module endowed with a C-linear map RQV — C[]A] Q@ V, a x v+ ayv called
A-action, such that (a,b € R,v € V)

(Da)av = —Aayv, ax(9v) = (D + Naxv, [axblaruv = ax(bw) — (—1)b, (ayv).

Let V = V5@ Vi. We call V finite if it is finitely generated over C[d]. As C[d]-modules, if Vj
has rank m and V5 has rank n, we say that V has rank (m +n), denoted by rank(V) = m + n.
Recall that YR contains a Virasoro conformal subalgebra Vir. It is known that all free

non-trivial Vir-modules of rank 1 over C[9] are the following ones (A, a € C):
Vaa =C[0lv, Lyv=(0+a+ A\wv.

The modules Va o with A # 0 exhaust all finite irreducible non-trivial Vir-modules (see [6]).
It is clear that for any cg, c1,dp,dy € C, one sees that the following A-actions define a rank

(1+ 1) free conformal SR-module:

L>‘U6 = (8 +co+ do)\)’Ua, L}\,UT = (6 +c1+ dl )\)UT’

(4.1)
X)\’L)@:X)\’UTZO, XG{Q,M}.

Furthermore, for complex numbers A, «, 8 # 0, up to parity change, we construct four classes
of rank (1 4 1) conformal 93-modules as follows:
(1) The B-module V{') ; defined by
1

Lyvg = (@+ AN)vg, Lyvy = (6 + (A + 5))\) vy, Qavg = Bur (4.2)

(2) the %-module VA”) ; defined by

1

Lwg=(@+(A+3)A\)w Lwr=@+ANer, Qug=B8@@+28\vy  (43)

(3) the R-module VOSBg defined by

Lyg= @+, Lywr= (@3- )er, Qug=f@+N@-Nes  (44)
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(4) the %-module V,'*) defined by

Lyvg = (a + 5/\) v, Lavp =0y,  Qavg = fa(a + 2\ vy

and in all cases M vy = Myvy =
above are all reducible.

W. Wang,

D. Liv and C. G. Xia

(4.5)

Qx vy =0 and @ = 0 + a. It is obvious that these SR-modules

Now, assume that V' = C[9]vg ® C[0]vy is a free conformal module of rank (1 + 1) over 9.

Then, there exist some ay, a1, Ag, A1 € C such that

Ly
Ly

vg = (0 + ao + AoA)vg,
vy = (0 + a1 + A M)y,

MXU@ = fM (85 /\)U67
Myvy = Hy (0, Moy,  Qavy

where fM(8, /\), fQ(a, )\), HM(8, )\), HQ (8, /\) S (C[&, )\]

QA’U6 = .fQ(aa A)va
= HQ(B, )\)’Ua,

In the following part, we shall determine the polynomials fx(9,\), Hx(9,\) with X €
{M,Q}, and thus obtain the main result of this subsection (see Theorem 4.1).

Lemma 4.1 Using notations as above, we have fur(0, 1)

Proof By [MxM]xi,v5 = 0, we get far( + p, ) far (9, 1)

= HM(aa /J') =0.
= far(® + A p) fa0(8, \). This

gives degy far(0, A) = 0, where degy far(A, 0) stands for the degree of 0 in fpr(9, A). Further-

more, by applying [LyxM] = (0+2A)M to vy, we obtain pfar (0, u) =
far (0, 1) = 0. Similarly, one gets Hps (9, 1) = 0.

(L=N)far (0, A+ p). Thus

Remark 4.1 By Lemma 4.1, we see that the problem reduces to the same problem for

the Lie conformal superalgebra S (%,

0). The results for general S(a,b) have been given in [22].

Here, for the convenience of the reader, we retain the remaining proof details (see Lemma 4.2).

Lemma 4.2 Using notations as above, we have (up to scalars)
(1) if ap # a1, then fo(0,) = 0;
(2) if ap = a1, then

1, if Ag—Ar=—7

0+ ag +2A1 ), if No—A=
1o(0,2) = O+ a1 +A)(0+a1 —N), if (Ao, A1) =

(04 a1)(0 + a1 +2)), (Ao, Aq) =

0, otherwise.

Proof By applying [L Q] = (0 + 2))Q to vy, we get

(04 00 + DX fo(0+ A, ) — (9-+ 4 00 + Ao (0, ) = (52

Taking A = 0 in (4.7), we have (a1 — ap) fo(9, ) = 0. Thus fg(9,

Assume that ap = «1. By letting = 0 in (4.7), we have

fQ(Bv )‘) =

20+ o1 + A (@ +1,0) ~ fa(0,0)) + (A1 — B)Afa(0,0).

1
57
(1’ ) (4.6)
(5:9)
— ) fa@ A+ ). (47)
) =0 for ag # aj.
(4.8)
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Taking A — 0, we get
d
(1+2(Ap —Al))fQ(B, 0) = 2(64—0[1)@]0@(8,0). (4.9)

Case 1 Ag— A; = —1. In this case, (4.9) forces f(9,0) € C. Thus, fo(9,A) =1 (up to
scalars) by (4.8).

Case 2 Ay — Ay # —1. In this case, we can check that fo(0,0) = k\/(0 + a;)+2(B0=21)
with k # 0. Since fg(0,0) € C[d], it is necessary that Ag — Ay € 1 + N. Thus we can set
fq(9,0) = k(04 o1)™ with n =  + (Ag — Ay). Using this in (4.8), together with (4.7), we get
the lemma (see also [24, Lemma 4.1]).

Note that by applying [L\Q] = (8 + %)\)Q to vy, we get

1
(0 + a0 + AN Ho(d+ A\ 1) — (8 + p+ ay + AN Ho (8, 1) = (5)\ - u) Ho (0, + 1)

Thus, by the same argument as that of Lemma 4.2, we obtain the expression of Hg(9, \) by
replacing (Ao, A1) by (A1,Ag) in Lemma 4.2. Furthermore, by applying [Q:Q] = 2M to vg,
we get

fQ(8+ )\,,U)HQ(@, /\) + fQ(a+ ,LL,)\)HQ(&, :u) = 0.

This gives Xq(9,\) = 0 if Yp(0,A) € C*, where (X,Y) € {(f,H),(H, f)}. Combining
these observations and Lemma 4.2, we see that if fo(0,\) has nontrivial forms of (4.6), then

Hg(0,A) =0, and vice versa. Namely, we have proved the following result.

Theorem 4.1 Let V be a free rank (14 1) conformal R-module. Then, up to parity change,
V is one of the modules defined by (4.1)—(4.5).

5 Finite Irreducible Conformal Modules

First, we recall the following proposition (see [6, Proposition 2.1]).

Proposition 5.1 A conformal module V' over a Lie conformal superalgebra R is precisely
a module over the Lie superalgebra A(R)® satisfying apv =0 for a € R, v € V, n. > 0, where
A(R)® is the extended annihilation superalgebra of R.

5.1 Irreducible representations of the quotient algebra ggx

Consider a subalgebra A(R)+ of A(R):
1
ARy = spanC{Lm,Mm,Qr |meNre 3 + N}.
For any fixed K € N, the set defined by
1
Tk :spanC{Lm,Mm,Qr |m>K,r> 5 —l—K}
is an ideal of A(fR),. Thus we obtain a subquotient algebra of A(R)., denoted by

The following key lemma is due to Cheng and Kac [6-7].
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Lemma 5.1 Let g be a finite-dimensional Lie superalgebra and n be a solvable ideal of g.
Let a be an even subalgebra of g such that n is a completely reducible ada-module with no trivial

summand. Then n acts trivially on any irreducible finite-dimensional g-module V.
Now we shall describe finite-dimensional irreducible modules over gx defined in (5.1).

Theorem 5.1 Let V = V5@ Vg be a nontrivial finite-dimensional irreducible module over
gx- We have dim Vs <1 for any s € Zs.

Proof From (5.1), we see that gx = a +n with K € N, where

a = spanc{Lg, Mo},

Note that

Lo, L) = (~n)L,,, [Lo,M,]=(—n)M,, [Lo.Q,] = (—r)Q,.

(Mo, L) =nM,, [Mo,M,]=[Moy,Q,]=0,

where 1 < n < K,% <r< % 4+ K. One checks that n is a nilpotent ideal of gx. Then n
is a completely reducible ada-module with no trivial summand. Thus n acts trivially on V'
by Lemma 5.1. It follows that V' can be viewed as a nontrivial finite-dimensional irreducible
module over a = spans{Lg, Mo}. Since a is an Abelian Lie algebra, we have dimV, < 1 for any
s € ZLo.

5.2 Finite irreducible conformal modules over R

In this subsection, we shall classify all finite irreducible conformal modules over R based on
the results in Section 4.

Lemma 5.2 Let V = V5 @ V7 be a nontrivial finite irreducible conformal module over R.
We have dimVy <1 for any s € Zo.

Proof Proposition 5.1 shows that V' can be viewed as a module over the extended annihi-
lation algebra A(R)€ satisfying

Liv=Mv=Q; 1v=0 (5.2)
for any v € V, 0 < ¢ € Z>_1. Note that A(R)® = A(R) & CT', where
1
A(%) = SpanC{LnaanQr | ne ZZ—lﬂ" S 5 + ZZ—l}-

For a fixed o € Z4, let A(R)q = spang{L,—1,Mp_1,Q
subalgebra of A(R) and

1ln = a}. Then AR)q is a

n—

AR D AR D - DAR), D -+ .
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Furthermore, we see that [T, A(R),] = A(R)a—1 for a > 1. Now, let V; = {v € V | A(R);v = 0}
for i € Zy. Then by (5.2), V; # 0 for i > 0. Assume that § is the smallest integer satisfying
VB #0.

Case 1 Suppose that 8 =0 and let 0 # v € My. Then U(A(R)¢)v = C[T]U(A(R)o)v =
C[Tv. So, V.= C[T]v by the irreducibility of M. Note that A(R)o is an ideal of A(97)¢. Then
A(R)o acts trivially on V. Thus V is an irreducible C[T]-module. It follows that V is one-
dimensional since T is even. Equivalently, V' is a one-dimensional trivial conformal $R-module,
a contradiction.

Case 2 Assume that 8 > 1. Then by the equalities (2.8), we have that T'— L_; is an even
central element, so T — L_; acts on V as a scalar and A(R) acts irreducibly on V. Note that

Loy =[Lo, L], M-_y=[Mo, L], Q_;=[Qs,L-l.

Then the action of A(R)g is determined by L_; and A(2R)1, that is, is determined by T and
A(R)1. Note that V3 is an A(R)1-module. Thus by the irreducibility of V' and [6, Lemma
3.1], we have V = C[T|V3 = C[T] ®c Vp and V3 is a nontrivial irreducible finite-dimensional
A(R)1-module. If § = 1, then by the definition of V3, we have A(9R);v = 0 for any v € V4. Thus
V1 is a trivial A(R)i-module, a contradiction. Now, suppose that § > 1. Note that A(R)g is
an ideal of A(R);. Thus V3 is an A(R)1/A(R)s-module. Since A(R)1/A(R)s = gs—1 defined
as in (5.1), we have dimV; <1 for any s € Zy by Theorem 5.1.
The main theorem of this subsection is as follows.

Theorem 5.2 Let V' be a finite irreducible conformal module over R. Then V is simply a

finite irreducible conformal module over Vir.

Proof Assume that V' = V5@ V4. It follows from Lemma 5.2 that dimV, <1 for any s € Zs.
If dimVg = dimV7 = 1, then from Theorem 4.1, V' is isomorphic to one of the Si-modules defined
n (4.1)—(4.5), which are all reducible. Thus rank(V) = (1 + 0) or rank(V) = (0 + 1). These

imply our results.
Declarations

Conflicts of interest The authors declare no conflicts of interest.

References

[1] Bagnoli, L. and Caselli, F., Classification of finite irreducible conformal modules for K}, J. Math. Phys.,
63, 2022, 091701, 41 pp.

[2] Barnich, G., Donnay, L., Matulich, J. and Troncoso, R., Asymptotic symmetries and dynamics of three-
dimensional flat supergravity, J. High Energy Phys., 2014, 2014, Paper No. 71, 18 pp.

[3] Boyallian, C., Kac, V. G. and Liberati, J. L., Irreducible modules over finite simple Lie conformal superal-
gebras of type K, J. Math. Phys., 51, 2010, 063507, 37 pp.

[4] Boyallian, C., Kac, V. G. and Liberati, J. I., Classification of finite irreducible modules over the Lie
conformal superalgebra C'Kg, Comm. Math. Phys., 317, 2013, 503-546.

[5] Boyallian, C., Kac, V. G., Liberati, J. I. and Rudakov, A., Representations of simple finite Lie conformal
superalgebras of type W and S, J. Math. Phys., 47, 2006, 043513, 25 pp.

[6] Cheng, S. J. and Kac, V. G., Conformal modules, Asian J. Math., 1, 1997, 181-193.



840

[7]

9]
[10]
[11]
[12]
[13]
[14]

(15]
[16]

[17]
[18]
[19]
[20]
[21]
[22]
[23]

[24]
25]

[26]

W. Wang, D. Liv and C. G. Xia

Cheng, S. J. and Kac, V. G., Erratum: Conformal modules, Asian J. Math., 2, 1998, 153—156.

Cheng, S. J. and Lam, N., Finite conformal modules over N = 2, 3,4 superconformal algebras, J. Math.
Phys., 42, 2001, 906-933.

D’Andrea, A. and Kac, V. G., Structure theory of finite conformal algebras, Selecta Math. New Ser., 4,
1998, 377-418.

Dilxat, M., Chen, L. Y. and Liu, D., Classification of simple Harish-Chandra modules over the Ovsienko-
Roger superalgebra, Proc. Roy. Soc. Edinburgh A, 154(2), 2024, 483-493.

Dilxat, M., Gao, S. L. and Liu, D., Super-biderivations and post-Lie superalgebras on some Lie superalge-
bras, Acta Math. Sinica, English Series, 39(9), 2023, 1736-1754.

Dilxat, M., Gao, S. L. and Liu, D., Whittaker modules for the N = 1 super-BMS3 algebra, J. Alg. Appl.,
23(5), 2024, 2450088, 16 pp.

Fattori, D., Kac, V. G. and Retakh, A., Structure theory of finite Lie conformal superalgebras, Lie Theory
and Its Applications in Physics V, World Sci. Publ., River Edge, NJ, 2004, 27-63.

Han, X., Wang, D. Y. and Xia, C. G., Representations of Lie conformal algebras related to Galilean
conformal algebras, Comm. Algebra, 50, 2022, 2427-2438.

Kac, V. G., Vertex Algebras for Beginners, 2nd ed., American Mathematical Society, Providence, RI, 1998.

Kac, V. G., Formal distribution algebras and conformal algebras, XIIth International Congress of Mathe-
matical Physics (ICMP 97), Int. Press, Cambridge, MA, 1999, 80-97.

Kolesnikov, P., The Ado theorem for finite Lie conformal algebras with Levi decomposition, J. Algebra
Appl., 15(7), 2016, 1650130, 13 pp.

Lan, C., Liu, D. and Wu, Q. Y., Local and 2-Local Derivations on the N = 1 BMS Superalgebra, Bull.
Iranian Math. Soc., 51, 2025, Paper No. 62, 20 pp.

Liu, D., Pei, Y. F. and Zhao, K. M., Smooth modules over the N = 1 Bondi-Metzner-Sachs superalgebra,
Commun. Contemp. Math., 27(4), 2025, 2450021, 30 pp.

Martinez, C. and Zelmanov, E., Irreducible representations of the exceptional Cheng-Kac superalgebra,
Trans. Am. Math. Soc., 366, 2014, 5853-5876.

Wang, W., Xu, Y. and Xia, C. G., A class of Schrodinger-Virasoro type Lie conformal algebras, Int. J.
Math., 26, 2015, 1550058, 12 pp.

Wu, Y., Wang, H. D. and Xia, C. G., Representations of super deformation of Heisenberg-Virasoro type
Lie conformal algebras, Comm. Algebra, 51, 2023, 1944-1954.

Wu, H. N. and Yuan, L. M., Classification of finite irreducible conformal modules over some Lie conformal
algebras related to the Virasoro conformal algebra, J. Math. Phys., 58, 2017, 041701, 10 pp.

Xia, C. G., Representations of twisted infinite Lie conformal superalgebras, J. Algebra, 596, 2022, 155-176.

Xu, Y. and Yue, X. Q., W(a,b) Lie conformal algebra and its conformal module of rank one, Algebra
Collog., 22(3), 2015, 405-412.

Zhang, W. and Dong, C. Y., W-algebra W (2,2) and the vertex operator algebra L(%, 0)® L(%,O)7 Comm.
Math. Phys., 285, 2009, 991-1004.



