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1 Introduction

The notion of Lie conformal superalgebras was introduced by Kac as a formal language de-

scribing the singular part of the operator product expansion of chiral fields in two-dimensional

quantum field theory. It is closely connected to the Lie superalgebra spanned by the coeffi-

cients of a family of mutually local formal distributions. In fact, a Lie conformal superalgebra

canonically associates a maximal formal distribution Lie superalgebra, which establishes an e-

quivalence between the category of Lie conformal superalgebras and the category of equivalence

classes of formal distribution Lie superalgebras (see [15]).

The classification of finite simple Lie conformal superalgebras was completed in [13]. The list

consists of current Lie conformal superalgebras Cur g, where g is a simple finite-dimensional Lie

superalgebra, four series of “Virasoro like” Lie conformal superalgebras Wn (n ≥ 0), Sn,b and

S̃n (n ≥ 2, b ∈ C), Kn (n ≥ 0, n 6= 4), and the exceptional Lie conformal superalgebras CK6

and K ′
4. The structure theory and finite irreducible representations of simple Lie conformal

superalgebras were developed in a series of papers (see [1, 3–6, 8, 13, 18, 20]).

It is interesting to study non-simple or even non-semisimple Lie conformal (super)algebras

since the conformal analogues of the Levi theorem fail, although there exists conformal version

Manuscript received October 23, 2023. Revised September 5, 2025.
1School of Mathematics and Statistics, Ningxia University, Yinchuan 750021, China.
E-mail: wangwei596@nxu.edu.cn

2Corresponding author. Department of Mathematics, Huzhou University, Huzhou 313000, Zhejiang,
China. E-mail: liudong@zjhu.edu.cn

3School of Mathematics, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China;
Jiangsu Center for Applied Mathematics (CUMT), Xuzhou 221116, Jiangsu, China.
E-mail: chgxia@cumt.edu.cn

∗This work was supported by the National Natural Science Foundation of China (No. 12361006), the
Zhejiang Provincial Natural Science Foundation of China (No. ZCLMS25A0101) and the Fundamental
Research Funds for the Central Universities (No. 2024KYJD2006).



826 W. Wang, D. Liu and C. G. Xia

of Lie’s Theorem (see [14, 17]). What we mainly consider in this paper is a non-semisimple

finite Lie conformal superalgebra

R = R0 ⊕R1, R0 = C[∂]L⊕ C[∂]M, R1 = C[∂]Q

satisfying λ-brackets

[L λL] = (∂ + 2λ)L, [L λM ] = (∂ + 2λ)M,

[L λQ] =
(
∂ +

3

2
λ
)
Q, [QλQ] = 2M, [Q λM ] = [M λM ] = 0.

Clearly, R contains a subalgebra Vir = C[∂]L which is isomorphic to the Virasoro Lie conformal

algebra. The even part R0 is exactly the W (2, 2) Lie conformal algebra (see [23, 25]), and the

subalgebra generated by M and Q is a solvable ideal (and thus R is non-semisimple).

We shall see in Section 2 that the annihilation superalgebra of R is a maximal subalgebra

of the N = 1 Bondi-Metzner-Sachs (BMS for short) superalgebra

G = G0 ⊕ G1,

where

G0 = spanC{Ln,Mn | n ∈ Z}, G1 = spanC

{
Qr | r ∈

1

2
+ Z

}

with the following commutation relations:

[Lm, Ln] = (m− n)Lm+n, [Lm,Mn] = (m− n)Mm+n,

[Lm, Qr] =
(m
2

− r
)
Qm+r, [Qr, Qs] = 2Mr+s, [Qr,Mn] = [Mm,Mn] = 0

for any m,n ∈ Z, r, s ∈ 1
2 + Z. Hence, we refer to this Lie conformal superalgebra R as the

N = 1 BMS Lie conformal superalgebra. The N = 1 BMS superalgebra has a close relation with

the N = 1 Neveu-Schwarz algebra and plays a key role in describing asymptotic supergravity

in three-dimensional flat spacetime (see [2, 10–12, 19]). Note that the even part G0 corresponds

to the centerless W -algebra W (2, 2) introduced in [26]. Thus, it is interesting to study the

structure and representation theory of the Lie conformal superalgebra R associated to the

N = 1 BMS superalgebra. This is also our motivation to present this paper.

The paper is organized as follows. In Section 2, we introduce some basic definitions, and then

construct Lie conformal superalgebra R by generating relations. In Section 3, we determine

conformal derivations, the automorphism group and the second cohomology group of R with

coefficients in trivial module. In Sections 4–5, we classify free conformal modules of rank (1+1)

over R and obtain that all finite irreducible conformal modules are simply irreducible ones over

the Virasoro Lie conformal algebra, where some results in [22, 24] will be used.

Throughout this paper, we denote by C, C∗, Z and N the sets of complex numbers, non-

zero complex numbers, integers and non-negative integers, respectively. Let C[∂] be the ring of

polynomials in the indeterminate ∂.

2 Preliminaries

In this section, we recall some definitions related to a Lie conformal superalgebra (see [6, 16])

and construct Lie conformal superalgebra R by some generating relations.
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2.1 Basic definitions

Let g be a Lie superalgebra. A g-valued formal distribution in one indeterminate z is a

formal power series

a(z) =
∑

n∈Z

a(n)z
−n−1, a(n) ∈ g.

Two g-valued formal distributions a(z) and b(z) are called mutually local if

(z − w)N [a(z), b(w)] = 0

for some N ∈ N.

Define Resza(z) = a(0) and

δ(z − w) = z−1
∑

n∈Z

(w
z

)n

.

The bracket of two local formal distributions is given by the formula

[a(z), b(w)] =
∑

n∈N

(a(n)b)(w)
∂nwδ(z − w)

n!
,

where (a(n)b)(w) = Resz(z − w)n[a(z), b(w)]. This is called the operator product expansion.

Definition 2.1 The Lie superalgebra g is called a Lie superalgebra of formal distributions

if there exists a family of pairwise local formal distributions whose coefficients span g.

Example 2.1 (see [6]) The Virasoro algebra has a basis Ln (n ∈ Z) and commutation

relations

[Lm, Ln] = (m− n)Lm+n.

It is spanned by the local formal distribution L(z) =
∑
n∈Z

Lnz
−n−2, since one has

[L(z), L(w)] = ∂wL(w)δ(z − w) + 2L(w)∂wδ(z − w).

Example 2.2 (see [6]) The N = 1 Neveu-Schwarz algebra, apart from even basis Virasoro

elements Ln, has odd basis elements Gr, r ∈
1
2 + Z with commutation relations:

[Ln, Gr] =
(n
2
− r

)
Gn+r, [Gr, Gs] = 2Lr+s.

It is spanned by the following family of pairwise local formal distributions

L(z) =
∑

n∈Z

Lnz
−n−2, G(z) =

∑

n∈Z

Gn+ 1
2
z−n−2.

Note that one has

L(0)G = ∂G, G(0)L =
1

2
∂G, L(1)G = G(1)L =

3

2
G, G(0)G = 2L,

where other products are zero.
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For a Lie superalgebra of formal distributions, we define the following λ-bracket (see [9, 15]):

[a(w)λb(w)] =
∑

n∈Z+

λn

n!
Resz(z − w)n[a(z), b(w)].

The properties of this λ-bracket lead to the following definition.

Definition 2.2 A Lie conformal superalgebra R = R0 ⊕ R1 is a Z2-graded C[∂]-module

(satisfying [RαλRβ ] ⊆ Rα+β for any α, β ∈ {0, 1}) endowed with a λ-bracket, that is a C-linear

map R⊗R → C[λ]⊗R, denoted by a⊗b 7→ [aλb], satisfying the following properties (a, b, c ∈ R) :

[∂aλb] = −λ[aλb], [aλ∂b] = (∂ + λ)[aλb] (conformal sesquilinearity),

[aλb] = −(−1)|a||b|[b−λ−∂a] (skew-commutativity),

[aλ[bµc]] = [[aλb]λ+µc] + (−1)|a||b|[bµ[aλc]] (Jacobi identity).

Here and further, we use the notation |a| ∈ Z2 to denote the parity of a, and we always

assume that a is homogeneous if |a| appears in an expression. If there exists a finite generating

subset S ⊂ R such that S generates R as a C[∂]-module, then we call that R is a finite rank

Lie conformal superalgebra. Otherwise, it is called infinite.

Let R be a Lie conformal superalgebra. We may associate to R a Lie superalgebra of formal

distributions (see [6]). This leads to the following definition.

Definition 2.3 The annihilation superalgebra A(R) of a Lie conformal superalgebra R is a

Lie superalgebra with C-basis {a(n) | a ∈ R, n ∈ N} and relations

[a(m), b(n)] =
∑

k∈N

(
m
k

)
(a(k)b)(m+n−k), (∂a)(n) = −na(n−1), (2.1)

where a(k)b is given by

[aλb] =
∑

k∈N

λ(k)a(k)b, λ(k) =
λk

k!
.

Here, the reason why A(R) is a Lie superalgebra can be found in the book by Kac [15, p.

41–42]. The parity |a(n)| of a(n) ∈ A(R) is the same as |a| for any a ∈ R and n ∈ N. Note that

A(R) admits a derivation T given by T (a(n)) = −na(n−1) for a(n) ∈ A(R). Denote by A(R)e

the semidirect sum of CT and A(R) with the commutation relations given by (2.1) and

[T, a(n)] = −na(n−1), a(n) ∈ A(R), n ∈ N. (2.2)

Then A(R)e = CT ⋉A(R) forms a Lie superalgebra called the extended annihilation superal-

gebra.

2.2 N = 1 BMS Lie conformal superalgebra

Recall that the commutation relations over the N = 1 BMS superalgebra are defined by

[Lm, Ln] = (m− n)Lm+n, [Lm,Mn] = (m− n)Mm+n, (2.3)
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[Lm, Qr] =
(m
2

− r
)
Qm+r, [Qr, Qs] = 2Mr+s, [Qr,Mn] = [Mm,Mn] = 0, (2.4)

where m,n ∈ Z, r, s ∈ 1
2 + Z. Introducing the following local formal distributions

L(z) =
∑

n∈Z

Lnz
−n−2, M(z) =

∑

n∈Z

Mnz
−n−2, Q(z) =

∑

n∈Z

Q 1
2
+nz

−n−2,

one can check that

[L(z), L(w)] = ∂wL(w)δ(z − w) + 2L(w)∂wδ(z − w),

[L(z),M(w)] = ∂wM(w)δ(z − w) + 2M(w)∂wδ(z − w),

[L(z), Q(w)] = ∂wQ(w)δ(z − w) +
3

2
Q(w)∂wδ(z − w),

[Q(z), Q(w)] = 2M(w)δ(z − w),

[Q(z),M(w)] = [M(z),M(w)] = 0.

From these generating relations above, we have the following theorem.

Theorem 2.1 Let R = R0 ⊕R1 with

R0 = C[∂]L⊕ C[∂]M, R1 = C[∂]Q.

Define the λ-brackets over R by

[L λL] = (∂ + 2λ)L, [L λM ] = (∂ + 2λ)M,

[L λQ] =
(
∂ +

3

2
λ
)
Q, [QλQ] = 2M, [Q λM ] = [M λM ] = 0.

Then R becomes a Lie conformal superalgebra.

Next we determine the generators and relations of the (extended) annihilation superalgebra

of R (see Proposition 2.1). First, it follows from Definition 2.3 and the λ-brackets over R that

A(R) has a C-basis {L(n),M(n), Q(n) | n ∈ N} with nonvanishing relations

[L(m), L(n)] = (m− n)L(m+n−1), [L(m),M(n)] = (m− n)L(m+n−1), (2.5)

[L(m), Q(n)] =
(m
2

− n
)
Q(m+n−1), [Q(m), Q(n)] = 2M(m+n), (2.6)

where m,n ∈ N. In addition, by (2.2), we see that A(R) admits a derivation T given by

[T,X(n)] = −nX(n−1) for X ∈ {L,M,Q}. (2.7)

Now define Ln = L(n+1), Mn =M(n+1) and Qr = Q(r+ 1
2
), where n ∈ Z≥−1 and r ∈ 1

2 + Z≥−1.

Then by (2.5)–(2.7), we obtain the following proposition.

Proposition 2.1 Let A(R) be the annihilation superalgebra of R and T be a derivation

of R given by (2.7). Then A(R) admits a C-basis
{
Ln,Mn, Qr | n ∈ Z≥−1, r ∈ 1

2 + Z≥−1

}

with super-commutation relations given by (2.3)–(2.4). The extended annihilation superalgebra

A(R)e = CT ⋉A(R) is generated by T and A(R) with the additional relations

[T, Ln] = −(n+ 1)Ln−1, [T,Mn] = −(n+ 1)Mn−1, [T,Qr] = −
(
r +

1

2

)
Qr−1. (2.8)

One sees that the annihilation superalgebraA(R) ofR is a maximal subalgebra of the N = 1

BMS Lie superalgebra. Hence, we refer to this Lie conformal superalgebra R as the N = 1

BMS Lie conformal superalgebra.
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3 Derivations and Automorphisms and Central Extensions of R

In this section, we shall study the structure theory of Lie conformal superalgebra R. Con-

cretely, we investigate conformal derivations, automorphism group and the second cohomology

group with coefficients in trivial module of R.

3.1 Conformal derivations

Let V and W be Z2-graded C[∂]-modules. A conformal linear map between V and W is a

C-linear map φλ : V →W [λ] such that

φλ(∂v) = (∂ + λ)(φλv), ∀v ∈ V.

Let Chom(V,W ) be the C-vector space of all conformal linear maps from V to W . It has a

C[∂]-module structure by

(∂φ)λv = −λφλv.

Denote Chom(V, V ) by CendV . When V is finite over C[∂], CendV becomes an associative

conformal superalgebra with the λ-product (aλb)µv = aλ(bµ−λv) for any a, b ∈ CendV . Fur-

thermore, an element φλ ∈ CendV is called a conformal linear map of degree α if it satisfies

φλ(Vβ) ⊆ Vα+β [λ] for any α, β ∈ Z2. Denote by (CendV )α the space of all conformal linear

maps of degree α. Then CendV = (Cend V )0 ⊕ (CendV )1. Similarly, we use the notation

|φλ| ∈ Z2 to denote the parity of φλ.

Definition 3.1 A conformal derivation of a Lie conformal superalgebra R is a conformal

endomorphism Dλ ∈ CendR such that for any homogeneous a, b ∈ R,

Dλ[aµb] = [(Dλa)λ+µb] + (−1)|D||a|[aµ(Dλb)].

Denote by CDerR the space of all conformal derivations of R. Then it is obvious that

CDerR = (CDerR)0⊕ (CDerR)1 is a subalgebra of CendR. Note that, for any a ∈ R, one can

define a conformal derivation ada of R by (ad a)λb = [aλb] for b ∈ R. All conformal derivations

of this kind are called inner. We denote by CInderR the space of all inner conformal derivations.

Lemma 3.1 Let Dλ ∈ (CDerR)0. Then there exist a1(λ), b1(λ) ∈ C[λ] such that

DλL = a1(λ)(∂ + 2λ)L+ b1(λ)(∂ + 2λ)M,

DλM = a1(λ)(∂ + 2λ)M, DλQ = a1(λ)
(
∂ +

3

2
λ
)
Q.

Proof Since Dλ is an even conformal derivation, we can set

DλL = a1(∂, λ)L + b1(∂, λ)M, DλM = a2(∂, λ)L+ b2(∂, λ)M, DλQ = a3(∂, λ)Q,

where x(∂, λ) ∈ C[∂, λ] for x ∈ {a1, b1, a2, b2, a3}. By using Dλ[LµL] = [(DλL)λ+µL] +

[Lµ(DλL)], we have

(∂ + 2µ)x(∂ + µ, λ) + (∂ + 2λ+ 2µ)x(−λ− µ, λ) = (∂ + λ+ 2µ)x(∂, λ)
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for x ∈ {a1, b1}. Thus by [9, Lemma 6.1], we can set x(∂, λ) = x(λ)(∂ + 2λ) for x(λ) ∈ C[λ]

and x ∈ {a1, b1}. Furthermore, applying Dλ to [LµM ] = (∂ + 2µ)M , we get

(∂ + 2µ)a2(∂ + µ, λ) = (∂ + λ+ 2µ)a2(∂, λ),

(∂ + 2µ)b2(∂ + µ, λ) + (∂ + 2λ+ 2µ)a1(λ)(λ − µ) = (∂ + λ+ 2µ)b2(∂, λ),

which give a2(∂, λ) = 0 and b2(∂, λ) = a1(λ)(∂ + 2λ), respectively. Thus we have DλM =

a1(λ)(∂ + 2λ)M . Now, by [(DλQ)λ+µQ] + [Qµ(DλQ)] = 2DλM , we have

a3(−λ− µ, λ) + a3(∂ + µ, λ) = a1(λ)(∂ + 2λ). (3.1)

Then we can assume that a3(∂, λ) = a3(λ) + a1(λ)∂ for some a3(λ) ∈ C[λ]. This together with

(3.1) gives a3(∂, λ) = a1(λ)
(
∂ + 3

2λ
)
. Hence, the lemma follows.

Lemma 3.2 Let Dλ ∈ (CDerR)1. Then there exists c1(λ) ∈ C[λ] such that

DλL = c1(λ)(∂ + 3λ)Q, DλM = 0, DλQ = 4c1(λ)M.

Proof Assume that

DλL = c1(∂, λ)Q, DλM = c2(∂, λ)Q, DλQ = c3(∂, λ)L+ d3(∂, λ)M.

Then, by direct computation, we can get the lemma.

Theorem 3.1 For the N = 1 BMS Lie conformal superalgebra R, we have

CDerR = CInderR.

Proof Let Dλ = D0 + D1 ∈ CDerR with D0 ∈ (CDerR)0 and D1 ∈ (CDerR)1. By

Lemmas 3.1–3.2, we get D0 = ad (a1(−∂)L + b1(−∂)M) and D1 = ad (2c1(−∂)Q). Hence, Dλ

is an inner conformal derivation induced by the element a1(−∂)L+b1(−∂)M +2c1(−∂)Q. This

completes the proof.

3.2 Automorphism group

Denote by Aut(R) the automorphism group of R. For any c ∈ C and b ∈ C∗, define the

C[∂]-linear maps σc, τb : R → R by

σc(L) = L+ c∂M, σc(M) =M, σc(Q) = Q, (3.2)

τb(L) = L, τb(M) = b2M, τb(Q) = bQ. (3.3)

One can verify that σc, τb ∈ Aut(R) and

τbσc = σb2cτb, σc1σc2 = σc1+c2 , τb1τb2 = τb1b2 , (3.4)

where c1, c2 ∈ C, b1, b2 ∈ C∗. Denote by

H = {σc | c ∈ C}, K = {τb | b ∈ C
∗}. (3.5)
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Clearly, H , K and HK are subgroups of Aut(R). Next, we shall describe the structure of

Aut(R).

Take σ ∈ Aut(R). Since R = C[∂]L⊕ C[∂]M ⊕ C[∂]Q, we may assume that

σ(L) = fL(∂)L + gL(∂)M + hL(∂)Q,

where fL(∂), gL(∂), hL(∂) ∈ C[∂]. Note that C[∂]M ⊕ C[∂]Q is a maximal ideal of R, and any

maximal ideal of R does not contain an element of the form k(∂)L with k(∂) ∈ C[∂]. Thus we

can safely set

σ(X) = aX(∂)M + bX(∂)Q, aX(∂), bX(∂) ∈ C[∂], X ∈ {M,Q}.

Lemma 3.3 Using notations as above, we have

fL(∂) = 1, gL(∂) = c∂, hL(∂) = 0,

where c is a complex number.

Proof By applying σ to [LλL] = (∂ + 2λ)L, we get

fL(∂) = fL(−λ)fL(∂ + λ), (3.6)

2(∂ + 2λ)hL(∂) = (2∂ + 3λ)fL(−λ)hL(λ+ ∂) + (∂ + 3λ)hL(−λ)fL(λ+ ∂), (3.7)

2hL(−λ)hL(∂ + λ) = (∂ + 2λ)(gL(∂)− fL(−λ)gL(∂ + λ)− gL(−λ)fL(∂ + λ)). (3.8)

From (3.6), we get fL(∂) = 1. Using this in (3.7), we have

2(∂ + 2λ)hL(∂) = (2∂ + 3λ)hL(λ+ ∂) + (∂ + 3λ)hL(−λ). (3.9)

Assume that hL(∂) =
n∑

i=0

ci∂
i ∈ C[∂] with cn 6= 0 and n > 1. Comparing the coefficients of

λn+1, λn∂ and λn, respectively, we have

cn(1 + (−1)n) = cn(2 + 3n+ (−1)n) = cn−1(1 + (−1)n−1) = 0. (3.10)

Since n > 1, we get cn = 0, a contradiction. Thus, it follows from (3.10) that hL(∂) = c1∂.

Using this and fL(∂) = 1 in (3.8), we have

2c21λ(∂ + λ) = (∂ + 2λ)(gL(∂ + λ) + gL(−λ)− gL(∂)). (3.11)

If c1 = 0, we have gL(∂ + λ) + gL(−λ) − gL(∂) = 0, which gives gL(∂) = c∂ for some c ∈ C.

Assume that c1 6= 0 and set gL(∂) =
n∑

i=0

ei∂
i ∈ C[∂] with en 6= 0 and n > 1. Comparing the

coefficients of ∂λn, we get en(1+ (−1)n +2n) = 0. Since n > 1, we get en = 0, a contradiction.

Thus, we can set gL(∂) = e0+e1∂. This together with (3.11) gives c1 = 0. Thus the case c1 6= 0

does not occur. This completes the proof.

Lemma 3.4 Using notations as above, we have

aQ(∂) = bM (∂) = 0, aM (∂) = b2, bQ(∂) = b,

where b ∈ C∗.
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Proof Recall that hL(∂) = 0 by Lemma 3.3. By applying σ to [LλM ] = (∂ + 2λ)M , we

get

2(∂ + 2λ)bM (∂) = (2∂ + 3λ)bM (∂ + λ), (3.12)

(∂ + 2λ)aM (∂) = (∂ + 2λ)aM (∂ + λ). (3.13)

Considering the highest degree of λ in (3.12), we deduce bM (∂) ∈ C. Using this in (3.12),

we have bM (∂) = 0. It is obvious that aM (∂) ∈ C by (3.13). Furthermore, by applying σ to

[LλQ] =
(
∂ + 3

2λ
)
M , we get

bQ(∂ + λ) = bQ(∂), (3.14)

(2∂ + 3λ)aQ(∂) = 2(∂ + 2λ)aQ(∂ + λ). (3.15)

From (3.14), we get bQ(∂) ∈ C. By (3.15), we can deduce that aQ(∂) = 0. Besides, by

applying σ to [QλQ] = 2M , we get bM (∂) = 0 and bQ(−λ)bQ(∂ + λ) = aM (∂). Since σ is an

automorphism, we get bQ(∂) 6= 0. Thus the lemma follows by setting bQ(∂) = b ∈ C∗.

The following theorem is our main result of this subsection.

Theorem 3.2 For the N = 1 BMS Lie conformal superalgebra R, we have

Aut(R) ∼= C⋊ C
∗, (c1, b1)(c2, b2) = (c1 + b21c2, b1b2),

where c1, c2 ∈ C, b1, b2 ∈ C∗.

Proof Let σ ∈ Aut(R). It follows from Lemmas 3.3–3.4 that there exists some c ∈ C and

b ∈ C∗ such that σ(L) = L + c∂M , σ(M) = b2M and σ(Q) = bQ. Thus σ = σcτb, where σc

and τb are defined in (3.2) and (3.3), respectively. Let H and K be as those defined in (3.5).

Then by the multiplicative relations given in (3.4), we get

Aut(R) = H ⋊K, (σc1τb1)(σc2τb2) = σc1+b2
1
c2τb1b2 ,

where σc1 , σc2 ∈ H , τb1 , τb2 ∈ K. Thus the theorem follows.

3.3 Second cohomology group

In this subsection, we discuss central extensions of R. Note that an equivalence class in the

second cohomology group defines a central extension, and vice versa. Thus it is sufficient to

determine second cohomology group of R.

Let R be a Lie conformal superalgebra. It is obvious that one-dimensional vector space C

can be regarded as a trivial R-module with the action of ∂ and R being zero.

Definition 3.2 A 2-cocycle of R is a C-linear map φλ : R⊗2 → C[λ], denoted by a ⊗ b 7→

φλ(a, b), satisfying the following conditions (a, b, c ∈ R) :

φλ(∂a, b) = −λφλ(a, b), φλ(a, ∂b) = λφλ(a, b),

φλ(b, a) = −(−1)|a||b|φ−λ(a, b),

φλ+µ([aλb], c) = φλ(a, [bµc])− (−1)|a||b|φµ(b, [aλc]). (3.16)
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For a 2-cocycle φλ, if there exists a C[∂]-linear map f : R → C such that the condition

φλ(a, b) = −f([aλb]) holds, then the 2-cocycle φλ is called a 2-coboundary or a trivial 2-cocycle.

Let C2(R,C) and B2(R,C) denote the spaces of 2-cocycles and 2-coboundaries, respectively.

Then the second cohomology group of R with trivial coefficients C is defined by

H2(R,C) = C2(R,C)/B2(R,C).

In the following part, we shall compute the group H2(R,C).

Lemma 3.5 Let ψλ ∈ C2(R,C). There exist some a, a, b, b ∈ C such that

ψλ(L,L) = aλ+ aλ3, ψλ(L,M) = bλ+ bλ3, ψλ(Q,Q) = b+ 4bλ2,

where all other terms are vanishing.

Proof Since L generates the Virasoro conformal algebra, there exist some a, a ∈ C such

that ψλ(L,L) = aλ + aλ3 (see [21, Section 4]). Since [LλM ] = (∂ + 2λ)M , one can safely set

ψλ(L,M) = bλ+ bλ3 for some b, b ∈ C. Now, by (3.16) for triple (L,L,Q), we get

2(λ− µ)ψλ+µ(L,Q) = (2λ+ 3µ)ψλ(L,Q)− (2µ+ 3λ)ψµ(L,Q).

Set ψλ(L,Q) =
n∑

i=0

ciλ
i ∈ C[λ]. Then by comparing the coefficients of λn, one has (2n −

3)cnµ = 0, which gives cn = 0 for any n ≥ 0. Thus, ψλ(L,Q) = 0. Furthermore, by

(3.16) for triple (L,M,M), we get (µ − λ)ψλ+µ(M,M) = (µ + 2λ)ψµ(M,M), which forces

ψµ(M,M) = 0 by comparing the coefficients of λ. Now, by (3.16) for triple (L,M,Q), we get

2(µ− λ)ψλ+µ(M,Q) = (2µ+ 3λ)ψµ(M,Q). Thus, ψµ(M,Q) = 0.

Similarly, by (3.16) for triple (L,Q,Q), and using ψλ(L,M) = bλ+ bλ3, we get

(λ− 2µ)ψλ+µ(Q,Q) = 4(bλ+ bλ3)− (2µ+ 3λ)ψµ(Q,Q). (3.17)

Considering the degree of λ, one can set ψλ(Q,Q) = e0 + e1λ + e2λ
2 for some e0, e1, e2 ∈ C.

Using this in (3.17) and comparing the coefficients of λ3, λ2, λ, respectively, we obtain e0 = b,

e1 = 0 and e2 = 4b. Hence, we get ψλ(Q,Q) = b+ 4bλ2. This completes the proof.

By direct computation, we have the following non-trivial 2-cocycles ψ and ψ̂ defined by

ψλ(L,L) = λ3, ψ̂λ(L,M) = λ3, ψ̂λ(Q,Q) = 4λ2, (3.18)

where all other terms are vanishing.

Theorem 3.3 Let [ψλ] and [ψ̂λ] denote the equivalence classes of ψλ and ψ̂λ in H2(R,C),

respectively. We have

H2(R,C) = C[ψλ]⊕ C[ψ̂λ].

Proof Assume that ψλ is a 2-cocycle on R. It follows from Lemma 3.5 that there exist

some a, a, b, b ∈ C such that (any other terms are vanishing)

ψλ(L,L) = aλ+ aλ3, ψλ(L,M) = bλ+ bλ3, ψλ(Q,Q) = b+ 4bλ2.
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Thus, ψλ = aψλ + bψ̂λ + aφ1λ + bφ2λ, where ψλ and ψ̂λ are defined in (3.18). The two trivial

cocycles φ1λ and φ2λ are defined by φiλ(X,Y ) = −fi([X,Y ]) with i ∈ {1, 2} andX,Y ∈ {L,M,Q},

where

f1(L) = f2(M) = −
1

2
, f1(M) = f1(Q) = f2(L) = f2(Q) = 0.

This completes the proof.

4 Free Conformal Modules of Rank (1 + 1)

In this section, we shall classify free conformal modules of rank (1 + 1) over R.

Definition 4.1 A conformal module V = V0 ⊕ V1 over a Lie conformal superalgebra R is

a Z2-graded C[∂]-module endowed with a C-linear map R⊗ V → C[λ]⊗ V , a× v 7→ aλv called

λ-action, such that (a, b ∈ R, v ∈ V )

(∂a)λv = −λaλv, aλ(∂v) = (∂ + λ)aλv, [aλb]λ+µv = aλ(bµv)− (−1)|a||b|bµ(aλv).

Let V = V0⊕V1. We call V finite if it is finitely generated over C[∂]. As C[∂]-modules, if V0
has rank m and V1 has rank n, we say that V has rank (m+ n), denoted by rank(V ) = m+ n.

Recall that R contains a Virasoro conformal subalgebra Vir. It is known that all free

non-trivial Vir-modules of rank 1 over C[∂] are the following ones (∆, α ∈ C):

V∆,α = C[∂]v, Lλv = (∂ + α+∆λ)v.

The modules V∆,α with ∆ 6= 0 exhaust all finite irreducible non-trivial Vir-modules (see [6]).

It is clear that for any c0, c1, d0, d1 ∈ C, one sees that the following λ-actions define a rank

(1 + 1) free conformal R-module:

Lλv0 = (∂ + c0 + d0λ)v0, Lλv1 = (∂ + c1 + d1λ)v1,

Xλv0 = Xλv1 = 0, X ∈ {Q,M}.
(4.1)

Furthermore, for complex numbers ∆, α, β 6= 0, up to parity change, we construct four classes

of rank (1 + 1) conformal R-modules as follows:

(1) The R-module V
(1)
∆,α,β defined by

Lλv0 = (α+∆λ)v0, Lλv1 =
(
α+

(
∆+

1

2

)
λ
)
v1, Qλv0 = βv1; (4.2)

(2) the R-module V
(2)
∆,α,β defined by

Lλv0 =
(
α+

(
∆+

1

2

)
λ
)
v0, Lλv1 = (α+∆λ)v1, Qλv0 = β(α + 2∆λ)v1; (4.3)

(3) the R-module V
(3)
α,β defined by

Lλv0 = (α + λ)v0, Lλv1 =
(
α−

1

2
λ
)
v1, Qλv0 = β(α+ λ)(α − λ)v1; (4.4)
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(4) the R-module V
(4)
α,β defined by

Lλv0 =
(
α+

3

2
λ
)
v0, Lλv1 = αv1, Qλv0 = βα(α+ 2λ)v1, (4.5)

and in all cases Mλv0 =Mλv1 = Qλv1 = 0 and α = ∂ + α. It is obvious that these R-modules

above are all reducible.

Now, assume that V = C[∂]v0 ⊕ C[∂]v1 is a free conformal module of rank (1 + 1) over R.

Then, there exist some α0, α1,∆0,∆1 ∈ C such that

Lλv0 = (∂ + α0 +∆0λ)v0, Mλv0 = fM (∂, λ)v0, Qλv0 = fQ(∂, λ)v1,

Lλv1 = (∂ + α1 +∆1λ)v1, Mλv1 = HM (∂, λ)v1, Qλv1 = HQ(∂, λ)v0,

where fM (∂, λ), fQ(∂, λ), HM (∂, λ), HQ(∂, λ) ∈ C[∂, λ].

In the following part, we shall determine the polynomials fX(∂, λ), HX(∂, λ) with X ∈

{M,Q}, and thus obtain the main result of this subsection (see Theorem 4.1).

Lemma 4.1 Using notations as above, we have fM (∂, µ) = HM (∂, µ) = 0.

Proof By [MλM ]λ+µv0 = 0, we get fM (∂ + µ, λ)fM (∂, µ) = fM (∂ + λ, µ)fM (∂, λ). This

gives deg∂fM (∂, λ) = 0, where deg∂fM (λ, ∂) stands for the degree of ∂ in fM (∂, λ). Further-

more, by applying [LλM ] = (∂+2λ)M to v0, we obtain µfM (∂, µ) = (µ−λ)fM (∂, λ+µ). Thus

fM (∂, µ) = 0. Similarly, one gets HM (∂, µ) = 0.

Remark 4.1 By Lemma 4.1, we see that the problem reduces to the same problem for

the Lie conformal superalgebra S
(
3
2 , 0

)
. The results for general S(a, b) have been given in [22].

Here, for the convenience of the reader, we retain the remaining proof details (see Lemma 4.2).

Lemma 4.2 Using notations as above, we have (up to scalars)

(1) if α0 6= α1, then fQ(∂, λ) = 0;

(2) if α0 = α1, then

fQ(∂, λ) =





1, if ∆0 −∆1 = −
1

2
,

∂ + α1 + 2∆1λ, if ∆0 −∆1 =
1

2
,

(∂ + α1 + λ)(∂ + α1 − λ), if (∆0,∆1) =
(
1,−

1

2

)
,

(∂ + α1)(∂ + α1 + 2λ), if (∆0,∆1) =
(3
2
, 0
)
,

0, otherwise.

(4.6)

Proof By applying [LλQ] =
(
∂ + 3

2λ
)
Q to v0, we get

(∂ + α1 +∆1λ)fQ(∂ + λ, µ) − (∂ + µ+ α0 +∆0λ)fQ(∂, µ) =
(1
2
λ− µ

)
fQ(∂, λ+ µ). (4.7)

Taking λ = 0 in (4.7), we have (α1 − α0)fQ(∂, µ) = 0. Thus fQ(∂, µ) = 0 for α0 6= α1.

Assume that α0 = α1. By letting µ = 0 in (4.7), we have

fQ(∂, λ) =
2

λ
((∂ + α1 +∆1λ)(fQ(∂ + λ, 0)− fQ(∂, 0)) + (∆1 −∆0)λfQ(∂, 0)). (4.8)
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Taking λ→ 0, we get

(1 + 2(∆0 −∆1))fQ(∂, 0) = 2(∂ + α1)
d

d∂
fQ(∂, 0). (4.9)

Case 1 ∆0 −∆1 = − 1
2 . In this case, (4.9) forces fQ(∂, 0) ∈ C. Thus, fQ(∂, λ) = 1 (up to

scalars) by (4.8).

Case 2 ∆0 −∆1 6= − 1
2 . In this case, we can check that fQ(∂, 0) = k

√
(∂ + α1)1+2(∆0−∆1)

with k 6= 0. Since fQ(∂, 0) ∈ C[∂], it is necessary that ∆0 − ∆1 ∈ 1
2 + N. Thus we can set

fQ(∂, 0) = k(∂ + α1)
n with n = 1

2 + (∆0 −∆1). Using this in (4.8), together with (4.7), we get

the lemma (see also [24, Lemma 4.1]).

Note that by applying [LλQ] =
(
∂ + 3

2λ
)
Q to v1, we get

(∂ + α0 +∆0λ)HQ(∂ + λ, µ)− (∂ + µ+ α1 +∆1λ)HQ(∂, µ) =
(1
2
λ− µ

)
HQ(∂, λ+ µ).

Thus, by the same argument as that of Lemma 4.2, we obtain the expression of HQ(∂, λ) by

replacing (∆0,∆1) by (∆1,∆0) in Lemma 4.2. Furthermore, by applying [QλQ] = 2M to v0,

we get

fQ(∂ + λ, µ)HQ(∂, λ) + fQ(∂ + µ, λ)HQ(∂, µ) = 0.

This gives XQ(∂, λ) = 0 if YQ(∂, λ) ∈ C∗, where (X,Y ) ∈ {(f,H), (H, f)}. Combining

these observations and Lemma 4.2, we see that if fQ(∂, λ) has nontrivial forms of (4.6), then

HQ(∂, λ) = 0, and vice versa. Namely, we have proved the following result.

Theorem 4.1 Let V be a free rank (1+1) conformal R-module. Then, up to parity change,

V is one of the modules defined by (4.1)–(4.5).

5 Finite Irreducible Conformal Modules

First, we recall the following proposition (see [6, Proposition 2.1]).

Proposition 5.1 A conformal module V over a Lie conformal superalgebra R is precisely

a module over the Lie superalgebra A(R)e satisfying anv = 0 for a ∈ R, v ∈ V , n ≫ 0, where

A(R)e is the extended annihilation superalgebra of R.

5.1 Irreducible representations of the quotient algebra gK

Consider a subalgebra A(R)+ of A(R):

A(R)+ = spanC

{
Lm,Mm, Qr | m ∈ N, r ∈

1

2
+ N

}
.

For any fixed K ∈ N, the set defined by

IK = spanC

{
Lm,Mm, Qr | m > K, r >

1

2
+K

}

is an ideal of A(R)+. Thus we obtain a subquotient algebra of A(R)+, denoted by

gK = A(R)+/IK and x = x+ IK , ∀x ∈ A(R)+. (5.1)

The following key lemma is due to Cheng and Kac [6–7].
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Lemma 5.1 Let g be a finite-dimensional Lie superalgebra and n be a solvable ideal of g.

Let a be an even subalgebra of g such that n is a completely reducible ada-module with no trivial

summand. Then n acts trivially on any irreducible finite-dimensional g-module V .

Now we shall describe finite-dimensional irreducible modules over gK defined in (5.1).

Theorem 5.1 Let V = V0 ⊕ V1 be a nontrivial finite-dimensional irreducible module over

gK. We have dimVs ≤ 1 for any s ∈ Z2.

Proof From (5.1), we see that gK = a+ n with K ∈ N, where

a = spanC{L0,M0},

n = spanC

{
L
′

n,Mn, Qr | 1 ≤ n ≤ K,
1

2
≤ r ≤

1

2
+K

}
,

L
′

n = Ln +Mn.

Note that

[L0, L
′

n] = (−n)L
′

n, [L0,Mn] = (−n)Mn, [L0, Qr] = (−r)Qr,

[M0, L
′

n] = nMn, [M0,Mn] = [M0, Qr] = 0,

where 1 ≤ n ≤ K, 12 ≤ r ≤ 1
2 + K. One checks that n is a nilpotent ideal of gK . Then n

is a completely reducible ada-module with no trivial summand. Thus n acts trivially on V

by Lemma 5.1. It follows that V can be viewed as a nontrivial finite-dimensional irreducible

module over a = spanC{L0,M0}. Since a is an Abelian Lie algebra, we have dimVs ≤ 1 for any

s ∈ Z2.

5.2 Finite irreducible conformal modules over R

In this subsection, we shall classify all finite irreducible conformal modules over R based on

the results in Section 4.

Lemma 5.2 Let V = V0 ⊕ V1 be a nontrivial finite irreducible conformal module over R.

We have dimVs ≤ 1 for any s ∈ Z2.

Proof Proposition 5.1 shows that V can be viewed as a module over the extended annihi-

lation algebra A(R)e satisfying

Liv =Miv = Qi+ 1
2
v = 0 (5.2)

for any v ∈ V , 0 ≪ i ∈ Z≥−1. Note that A(R)e = A(R)⊕ CT , where

A(R) = spanC

{
Ln,Mn, Qr | n ∈ Z≥−1, r ∈

1

2
+ Z≥−1

}
.

For a fixed α ∈ Z+, let A(R)α = spanC{Ln−1,Mn−1, Qn− 1
2
|n ≥ α}. Then A(R)α is a

subalgebra of A(R) and

A(R)e ⊃ A(R)0 ⊃ · · · ⊃ A(R)n ⊃ · · · .
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Furthermore, we see that [T,A(R)α] = A(R)α−1 for α ≥ 1. Now, let Vi = {v ∈ V | A(R)iv = 0}

for i ∈ Z+. Then by (5.2), Vi 6= 0 for i ≫ 0. Assume that β is the smallest integer satisfying

Vβ 6= 0.

Case 1 Suppose that β = 0 and let 0 6= v ∈ M0. Then U(A(R)e)v = C[T ]U(A(R)0)v =

C[T ]v. So, V = C[T ]v by the irreducibility of M . Note that A(R)0 is an ideal of A(R)e. Then

A(R)0 acts trivially on V . Thus V is an irreducible C[T ]-module. It follows that V is one-

dimensional since T is even. Equivalently, V is a one-dimensional trivial conformal R-module,

a contradiction.

Case 2 Assume that β ≥ 1. Then by the equalities (2.8), we have that T −L−1 is an even

central element, so T − L−1 acts on V as a scalar and A(R)0 acts irreducibly on V . Note that

L−1 = [L0, L−1], M−1 = [M0, L−1], Q− 1
2
= [Q 1

2
, L−1].

Then the action of A(R)0 is determined by L−1 and A(R)1, that is, is determined by T and

A(R)1. Note that Vβ is an A(R)1-module. Thus by the irreducibility of V and [6, Lemma

3.1], we have V = C[T ]Vβ = C[T ] ⊗C Vβ and Vβ is a nontrivial irreducible finite-dimensional

A(R)1-module. If β = 1, then by the definition of V1, we have A(R)1v = 0 for any v ∈ V1. Thus

V1 is a trivial A(R)1-module, a contradiction. Now, suppose that β > 1. Note that A(R)β is

an ideal of A(R)1. Thus Vβ is an A(R)1/A(R)β-module. Since A(R)1/A(R)β ∼= gβ−1 defined

as in (5.1), we have dimVs ≤ 1 for any s ∈ Z2 by Theorem 5.1.

The main theorem of this subsection is as follows.

Theorem 5.2 Let V be a finite irreducible conformal module over R. Then V is simply a

finite irreducible conformal module over Vir.

Proof Assume that V = V0⊕V1. It follows from Lemma 5.2 that dimVs ≤ 1 for any s ∈ Z2.

If dimV0 = dimV1 = 1, then from Theorem 4.1, V is isomorphic to one of the R-modules defined

in (4.1)–(4.5), which are all reducible. Thus rank(V ) = (1 + 0) or rank(V ) = (0 + 1). These

imply our results.
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