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Abstract Let (M,J, g) be an anti-Kähler manifold of dimension n = 2k with an almost
complex structure J and a pseudo-Riemannian metric g and let T ∗M be its cotangent bun-
dle with modified Riemannian extension metric g̃∇,G. The modified Riemannian extension
metric g̃∇,G is obtained by deformation in the horizontal part of the Riemannian extension
known in the literature by means of the twin Norden metric G. The paper aims first to
examine the curvature properties of the cotangent bundle T ∗M with modified Riemanni-
an extension metric g̃∇,G and second to study some geometric solitons on the cotangent
bundle T ∗M according to the modified Riemannian extension metric g̃∇,G.
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1 Introduction

Let M be an n-dimensional Riemannian manifold and let T ∗M be its cotangent bundle

with a torsion-free affine connection ∇. Patterson and Walker [16] introduced the notion of

Riemannian extensions and they showed how to construct a pseudo-Riemannian metric g̃∇

on the 2n-dimensional cotangent bundle of any n-dimensional differentiable manifold with a

torsion-free connection ∇. Afifi [1] studied the local properties of the Riemannian extension of

connected affine spaces. Riemannian extensions were also studied by Garcia-Rio et al. [8]. They

established the following very nice characterization: (T ∗M, g̃∇) satisfies the Osserman condition

if and only if (M,∇) is an affine Osserman space. Since Riemannian extensions provide a link

between affine and pseudo-Riemannian geometries, some properties of the affine connection ∇

can be investigated by means of corresponding properties of the Riemannian extension g̃∇. The

different properties of the Riemannian extension g̃∇ were studied by some authors (see [2–3,

7, 14–15, 19–22]). Later, in [4–5], the authors considered the deformations of the Riemannian

extension g̃∇ on the cotangent bundle T ∗M ; the first one is given by g̃∇,c = g̃∇ + π∗c for

a symmetric (0, 2)-tensor field c; the second one is defined by g̃∇,c,T,S = g̃∇ + π∗c + ıT ◦ ıS

for a symmetric (0, 2) -tensor field c and (1, 1)-tensor fields T , S. The authors referred to

the deformation metrics as modified Riemannian extensions. In [9], the authors studied some
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properties of the modified Riemannian extension g̃∇,c = g̃∇ + π∗c.

Let J be an almost complex structure on a smooth manifold, i.e., J2 = −id. Then the pair

(M,J) is called a 2n-dimensional almost complex manifold. If the pseudo-Riemannian metric

g of neutral signature (n, n) satisfies

g(JX, JY ) = g(X,Y )

or equivalent to this equation

g(JX, Y ) = g(X, JY ) (purity condition)

for any vector fields X,Y on M , then this metric is referred to as a Norden (also known as

anti-Hermitian) metric (see [3]). The 2n-dimensional manifold M equipped with an almost

complex structure and an anti-Hermitian metric g is referred to as an almost anti-Hermitian

manifold or an almost Norden manifold. It is also defined as an anti-Kähler or a Kähler-

Norden if the almost complex structure J is parallel with regard to the Levi-Civita connection

∇ (∇J = 0). It is well known that the condition ∇J = 0 is equivalent to the holomorphicity

of the Norden metric g, that is, ΦJg = 0, where (ΦJg)(X,Y, Z) = (LJXg − LXG)(Y, Z).

G(Y, Z) = (g ◦ J)(Y, Z) = g(JY, Z) is the twin Norden metric (see [17]). It is a remarkable fact

that (M,J, g) is Kähler-Norden if and only if (M,J,G) is Kähler-Norden. This is of special

significance for Kähler-Norden metrics since in such case g and G share the same Levi-Civita

connection (∇g = ∇G = 0) (see [18]).

Salimov and Cakan considered, on the cotangent bundle T ∗M , a special type of the modified

Riemannian extension given in [18]. They constructed this metric on the cotangent bundle

over a Kähler-Norden manifold (M,J, g) using the twin Norden metric G and studied some

properties. This metric is of the form: g̃∇,G = g̃∇+π∗G, where ∇ is the Levi-Civita connection

of g. In this paper, we shall consider the special type of the modified Riemannian extension:

g̃∇,G = g̃∇ + π∗G. In Section 1, we introduce essential notions, definitions, and preliminary

results concerning the deformed Riemannian extension, which serve as a foundation for the

subsequent analysis. Section 2 is devoted to the study of various soliton structures, including

Ricci solitons, generalized Ricci-Yamabe solitons, generalized gradient Ricci-Yamabe solitons,

as well as Riemannian and gradient Riemannian solitons.

Throughout this paper, all manifolds, tensor fields and connections are always assumed to

be differentiable of class C∞. Also, we denote by ℑp
q(M) the set of all tensor fields of type (p, q)

on M , and by ℑp
q(T

∗M) the corresponding set on the cotangent bundle T ∗M . The Einstein

summation convention is used, the range of the indices i, j, s being always {1, 2, · · · , n}.

1.1 The cotangent bundle

Let M be an n-dimensional differentiable manifold with a torsion-free affine connection

∇, T ∗M be its cotangent bundle and π be the natural projection T ∗M → M . A system of

local coordinates (U, xi), i = 1, · · · , n in M induces on T ∗M a system of local coordinates
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(π−1(U), xi, xi = pi), i = n+ i = n+1, · · · , 2n, where xi = pi are components of covectors p in

each cotangent space T ∗
xM, x ∈ U with respect to the natural coframe {dxi}.

Let X = X i∂i and ω = ωidx
i be the local expressions in U of a vector field X and covector

(1-form) field ω on M, respectively. Then, the vertical lift Vω of ω, the horizontal lift HX and

the complete lift CX of X are given, with respect to the induced coordinates, by

Vω = ωi∂i, (1.1)

HX = X i∂i + phΓ
h
ijX

j∂i (1.2)

and
CX = X i∂i − ph∂iX

h∂i,

where ∂i = ∂
∂xi , ∂i = ∂

∂xi
and Γh

ij are the coefficients of a symmetric (torsion-free) affine

connection ∇ in M .

The Lie bracket operation of vertical and horizontal vector fields on T ∗M are given by the

formulas

[HX,HY ] = H [X,Y ] + V(p ◦R(X,Y )),

[HX,Vω] = V(∇Xω), (1.3)

[Vθ,Vω] = 0

for any X,Y ∈ ℑ1
0(M) and θ, ω ∈ ℑ0

1(M), where R is the Riemannian curvature tensor of the

symmetric affine connection ∇ defined by R(X,Y ) = [∇X ,∇Y ]−∇[X,Y ] (for details, see [23]).

1.2 Expressions in the adapted frame

We will use the adapted frame that simplifies our tensor calculations in the cotangent bundle

T ∗M . With the symmetric affine connection ∇ in M , we can introduce the adapted frame on

each induced coordinate neighbourhood π−1(U) of T ∗M . In each local chart U ⊂ M , if we

write X(j) =
∂

∂xj , θ
(j) = dxj , j = 1, · · · , n, then from (1.1)–(1.2), we can see that these vector

fields have, respectively, the local expressions

HX(j) = ∂j + paΓ
a
hj∂h,

Vθ(j) = ∂j

with respect to the natural frame {∂j , ∂j}. These 2n-vector fields are linearly independent and

they generate the horizontal distribution of∇ and the vertical distribution of T ∗M , respectively.

The set {HX(j),
Vθ(j)} is called the frame adapted to ∇ in π−1(U) ⊂ T ∗M . By putting

Ej =
HX(j),

Ej =
Vθ(j),

(1.4)

we can write the adapted frame as {Eα} = {Ej , Ej}. Using (1.1)–(1.2) and (1.4), we have

Vω = ωjEj (1.5)
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and

HX = XjEj (1.6)

with respect to the adapted frame {Eα} (for details, see [23]). By straightforward calculations,

we have the lemma below.

Lemma 1.1 The Lie brackets of the adapted frame of T ∗M satisfy the following identities

[Ei, Ej ] = psR
s
ijlEi,

[Ei, Ej ] = −Γj
ilEl,

[Ei, Ej ] = 0,

where Rs
ijl denotes the components of the curvature tensor of the symmetric affine connection

∇ in M (see [23]).

1.3 The modified Riemannian extension on the cotangent bundle

Let (M,J, g) be an almost anti-Hermitian manifold of dimension n = 2k. G(X,Y ) =

g(JX, Y ) is the twin Norden metric, which is locally expressed as Gij = gihJ
h
j . The modified

Riemannian extension, denoted by g̃∇,G, is a pseudo-Riemannian metric of neutral signature

(n, n) on the cotangent bundle, given by g̃∇,G = g̃∇ + V G∗. The pseudo-Riemannian metric

g̃∇,G has the components

((g̃∇,G)IJ ) =

(
Gij − 2psΓ

s
ij δ

j
i

δij 0

)

with respect to the induced coordinates (xi, pi), where Γ
s
ij are the coefficients of the Levi-Civita

connection ∇ (see [5]). Here, VG∗ has the form

(V G∗) =

(
Gij 0
0 0

)
.

The modified Riemannian extension and its inverse have the following components with

respect to the adapted frame {Eα}, respectively,

((g̃∇,G)IJ) =

(
Gij δ

j
i

δij 0

)

and

((g̃∇,G)
IJ ) =

(
0 δ

j
i

δij −Gij

)
. (1.7)

We will now compute the Levi-Civita connection ∇̃ of the modified Riemannian extension

g̃∇,G. The coefficients of the Levi-Civita connection ∇̃ can be determined by

Γ̃α
γβ =

1

2
g̃αε(ηγ g̃εβ + ηβ g̃γε − ηεg̃γβ) +

1

2
(Ωα

γβ +Ωα
γβ +Ωα

βγ),
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where

Ωα
γβ = g̃αεg̃δβΩ

δ
εγ ,

Ωh
ji = psR

s
jih,

Ωh
ji
= −Ωh

ij
= −Γi

jh

and it will be used as γ = j, j, β = i, i, α = h, h, ε = k, k and δ = m,m.

For the Levi-Civita connection ∇̃ of the modified Riemannian extension g̃∇,G, we give the

following proposition.

Proposition 1.1 (see [18]) Let (M,J, g) be an anti-Kähler manifold and (T ∗M, g̃∇,G) be

its cotangent bundle with the modified Riemannian extension. The Levi-Civita connection ∇̃ of

the modified Riemannian extension g̃∇,G on T ∗M is locally given by

∇̃Ei
Ej = Γk

ijEk + psR
s
kjiEk,

∇̃Ei
Ej = −Γj

ikEk,

∇̃E
i
Ej = 0,

∇̃Ei
Ej = 0,

where R is the Riemannian curvature tensor of g.

The Riemannian curvature tensor is obtained by

R̃α
δγβ = EδΓ̃

α
γβ − EγΓ̃

α
δβ + Γ̃α

δεΓ̃
ε
γβ − Γ̃α

γεΓ̃
ε
δβ − Ωε

δγ Γ̃
α
εβ .

Here, we use the following notation: γ = j, j, β = i, i, α = h, h, ε = k, k and δ = m,m. In

the subsequent proposition, we present the components of the Riemannian curvature tensor

associated with the modified Riemannian extension g̃∇,G.

Proposition 1.2 Let (M,J, g) be an anti-Kähler manifold and (T ∗M, g̃∇,G) be its cotangent

bundle with the modified Riemannian extension. Then, the corresponding Riemannian curvature

tensor R̃ is locally given by

R̃h
ijk = Rh

ijk,

R̃h
ijk = ps(∇iR

s
hkj −∇jR

s
hki)−

1

2
(Rm

ijkGmh +Rm
ijhGkm),

R̃h

ijk
= Rk

jih,

R̃h
ijk

= R
j
hki,

R̃h
ıjk = Ri

hkj

and other components are zero (see also [9]).

We now examine the Ricci and scalar curvature tensors. Utilizing Proposition 1.2 and

performing the standard calculations, we obtain the following result.
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Proposition 1.3 Let (M,J, g) be an anti-Kähler manifold and (T ∗M, g̃∇,G) be its cotan-

gent bundle with the deformed Riemannian extension. Then, the corresponding Ricci curvature

tensor is given by

R̃jk = Rjk +Rkj = 2Rjk,

R̃jk = R̃jk = R̃jk = 0.
(1.8)

Using (1.7)–(1.8), we calculate

r̃ = (g̃∇,G)
αβR̃αβ = (g̃∇,G)

jkR̃jk + (g̃∇,G)
jkR̃jk

+ (g̃∇,G)
jkR̃jk + (g̃∇,G)

jkR̃jk

= 0.

Hence, we have the following result.

Proposition 1.4 Let (M,J, g) be an anti-Kähler manifold and (T ∗M, g̃∇,G) be its cotangent

bundle with the modified Riemannian extension. Then, the corresponding scalar curvature r̃ is

zero.

2 Soliton Structures on the Cotangent Bundle with the Modified

Riemannian Extension

Before examining the soliton structures, we first present the Lie derivative of the modified

Riemannian extension g̃∇,G = g̃∇+V G∗, as well as the Hessian operator of the smooth function
V f on T ∗M with respect to g̃∇,G. These concepts will be utilized in the subsequent study of

soliton structures. Let L
X̃

denote the Lie derivative with respect to a vector field X̃. A vector

field X̃, expressed in components as (vh, vh), is characterized as fibre-preserving if and only if

the functions vh depend exclusively on the base coordinates (xh).

Proposition 2.1 Let X̃ be a fibre-preserving vector field of T ∗M with components (vh, vh).

Then, the Lie derivatives of the adapted frame and dual basis are given as follows

(i) L
X̃
Ei = −(Eiv

k)Ek − (vapsR
s
iak + Eiv

k − vaΓa
ik)Ek,

(ii) L
X̃
Ei = −(vaΓi

ak + Eiv
k)Ek,

(iii) L
X̃
dxh = (Emvh)dxm,

(iv) L
X̃
δph = [vapsR

s
mah − vaΓa

mh + (Emvk)δkh]dx
m

+[vaΓm
ah + (Emvk)δkh]δpm,

where δph = dph − psΓ
s
ihdx

i.

Now, let us give the following lemma which are needed later on.

Proposition 2.2 The Lie derivative of g̃∇,G = g̃∇+VG∗ with respect to the fibre-preserving

vector field X̃ is given as follows

L
X̃
(g̃∇,G) = [LXGij + 2vapsR

s
iaj − 2vaΓa

ij + 2(Eiv
j)]dxidxj
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+ 2[∇iv
j + Ejv

i]dxiδpj ,

where L
X̃
(g̃∇,G) and LXG denote the components of the Lie derivative g̃∇,G = g̃∇ + VG∗ and

the twin Norden metric G, respectively.

For any smooth function f on M , the vertical lift Vf of f to T ∗M is defined by Vf = f ◦ π.

To introduce our main notion, we denote as usually the Hessian operator of the vertical lift Vf

of any smooth function f on M with respect to the modified Riemannian extension g̃∇,G, by

(Hessg̃∇,G

Vf)(X,Y ) = XY Vf − (∇̃XY )Vf, ∀X,Y ∈ ℑ1
0(T

∗M)

or in local coordinates the above expression can be expressed as

(∇̃2 Vf)βγ = ∂β∂γ
Vf − Γ̃ε

βγ∂ε
Vf

for γ = j, j and β = i, i.

Proposition 2.3 Let f be a smooth function on an anti-Kähler manifold (M,J, g). Then,

the Hessian (with respect to the modified Riemannian extension g̃∇,G) of its vertical lift is

expressed by

(i) (∇̃2f)ij = ∂i∂jf − Γ̃k
ij∂kf = ∂i∂jf − Γk

ij∂kf = (∇2f)ij ,

(ii) (∇̃2f)ij = ∂i∂jf − Γ̃k
ij
∂kf = 0,

(iii) (∇̃2f)ij = ∂i∂jf − Γ̃k
ij
∂kf = 0,

(iv) (∇̃2f)ij = ∂i∂jf − Γ̃k
ij
∂kf = 0.

2.1 Ricci solitons with respect to the modified Riemannian extension

The notion of Ricci flow was introduced by Hamilton [11] and is given by the evolution

equation
∂

∂t
g(t) = −2Ric(t),

where Ric denotes the Ricci tensor associated with the metric g(t). A Ricci soliton is defined as

a self-similar solution to this flow. Ricci solitons play a fundamental role in geometric analysis,

particularly due to their crucial contribution to the resolution of the Poincaré conjecture. Let

M be a smooth manifold of dimension n ≥ 2. In the sense of Hamilton’s definition, a Ricci

soliton on M is a triple (g,X, λ), where g is a pseudo-Riemannian metric on M , Ric is the

corresponding Ricci tensor, X is a vector field on M , and λ ∈ R is a constant, such that the

following equation is satisfied

Ric +
1

2
LXg = λg, (2.1)

where LX is the Lie derivative along X . The Ricci soliton is said to be either shrinking, steady,

or expanding, according as λ is negative, zero, or positive, respectively.
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Theorem 2.1 Let (M,J, g) be an anti-Kähler manifold of dimension n > 2 and g̃∇,G =

g̃∇ + V G∗ be the modified Riemannian extension metric on the cotangent bundle T ∗M . The

quadruple (T ∗M, g̃∇,G, X̃, λ) is a Ricci soliton if and only if the following conditions are satisfied

(i) X̃ = (va, va) = (va, psA
s
i +Bi),

(ii) λ =
1

n
(Eiv

i + vaΓi
ai +Ai

i),

(iii) λGij = 2Rij +
1

2
LV Gij +∇iBj ,

(iv) vaRs
iaj +∇iA

s
j = 0,

where X̃ = vaEa + vaEa is a fibre-preserving vector field on T ∗M, λ ∈ R, B = (Bi) and

A = (Ah
s ) are (0, 1) and (1, 1) tensor fields on M , respectively.

Proof We will show that the existence of the scalar λ. If the expression of L
X̃
(g̃∇,G) in

Proposition 2.2 is used in (2.1), we have

2Rij +
1

2
[LV Gij + 2vapsR

s
iaj − 2vaΓa

ij + 2(Eiv
j)] = λGij (2.2)

and

Eiv
j + vaΓj

ai + Ejv
i = λδ

j
i . (2.3)

Applying Ek to both sides of (2.3), we obtain

EkEjv
i = 0, vi = psA

s
i +Bi. (2.4)

Substituting (2.4) into (2.3), we get

Eiv
j + vaΓj

ai +Ai
i = λδ

j
i

and contracting with the last equation by δij , we have

λ =
1

n
(Eiv

i + vaΓi
ai +Ai

i).

Substituting (2.4) into (2.2), we find

λGij = 2Rij +
1

2
LV Gij +∇iB

j (2.5)

and

vaRs
iaj +∇iA

s
j = 0.

Conversely, by a routine calculation, the sufficiency of the theorem can be easily checked

under conditions (i)–(iv).

As concerning Theorem 2.1, we have the following conclusion.
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Corollary 2.1 Let (M,J, g) be an anti-Kähler manifold of dimension n > 2, g̃∇,G =

g̃∇ + VG∗ be the modified Riemannian extension metric on the cotangent bundle T ∗M and

the quadruple (T ∗M, g̃∇,G, X̃, λ) be a Ricci soliton. Then, the quadruple (M,G, V, λ) is a Ricci

soliton if and only if

Rij +∇iBj = 0,

where B = Bj ∈ ℑ0
1(M).

Proof Let the triplets (g̃∇,G, X̃, λ) and (G, V, λ) be Ricci soliton structures. From (2.5),

we get

Rij +∇iBj = 0.

Conversely, if Rij +∇iBj = 0, from (2.5) we have

Rij +
1

2
LV Gij = λGij ,

which means that (M,G, V, λ) is a Ricci soliton. So the proof is completed.

Let X̃ be a vector field on T ∗M with components (va, va) with respect to the adapted frame.

Then X̃ is a vertical vector field on T ∗M if and only if va = 0. In the case, the vector field X̃ in

Theorem 2.1 reduces X̃ = (va, va) = (0, psA
s
i +Bi). Hence, we obtain the following conclusion.

Corollary 2.2 Let (M,J, g) be an anti-Kähler manifold of dimension n > 2 and g̃∇,G =

g̃∇ + VG∗ be the modified Riemannian extension metric on the cotangent bundle T ∗M . The

quadruple (T ∗M, g̃∇,G, X̃, λ) is a Ricci soliton if and only if the following conditions are satisfied

(i) X̃ = (va, va) = (0, psA
s
i +Bi),

(ii) λ =
1

n
Ai

i,

(iii) λGij = 2Rij +
1

2
LV Gij +∇iBj ,

(iv) ∇iA
s
j = 0,

where X̃ = vaEa + vaEa is a vertical vector field on T ∗M, λ ∈ R, B = (Bi) and A = (Ah
s ) are

(0, 1) and (1, 1) tensor fields on M , respectively.

2.2 Generalized Ricci-Yamabe and generalized gradient Ricci-Yamabe solitons with

respect to the modified Riemannian extension

A Yamabe soliton constitutes a special solution to the Yamabe flow, a geometric evolution

equation introduced by Hamilton [11]. The Yamabe flow is described by the following equation

∂

∂t
g(t) = −S(t)g(t),

where g(t) is a one-parameter family of metrics on a (pseudo-)Riemannian manifold and S(t)

its scalar curvature with respect to g(t).
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Let (M, g) be a complete (pseudo-)Riemannian manifold. The (pseudo-)Riemannian metric

g is said to admit a Yamabe soliton structure if it satisfies the equation

1

2
LV g = (r − λ)g,

where λ ∈ R, r denotes the scalar curvature of M , and V is a smooth vector field on M ,

referred to as the soliton vector field. When the soliton vector field V is the gradient of a

smooth function f : M → R, the soliton is called a gradient Yamabe soliton, in which case the

defining equation reduces to

∇2f = (r − λ)g,

where ∇2f denotes the Hessian of f . In 2018, Chen and Deshmukh [6] introduced the concept

of a quasi-Yamabe soliton, which extends the classical Yamabe soliton framework and is defined

on a (pseudo-)Riemannian manifold as follow

(LV g)(X,Y ) = 2(λ− r)g(X,Y ) + 2γV #(X)V #(Y ), (2.6)

where V # is the dual 1-form of V, λ is a constant and γ is a smooth function. If V is the

gradient of a smooth function f , then the soliton is referred to as a quasi-Yamabe gradient

soliton, and (2.6) simplifies to

∇2f = (λ− r)g + γdf ⊗ df, (2.7)

where ∇2f is the Hessian of a smooth function f .

In 2019, Güler and Crasmareanu [10] introduced the notion of Ricci-Yamabe flow on a

(pseudo-)Riemannian manifold (M, g) by considering a scalar combination of the Ricci flow

and Yamabe flow as

∂g

∂t
(t) + 2αRic(t) + βr(t)g(t) = 0, (2.8)

where g,Ric, r are the (pseudo-)Riemannian metric, Ricci tensor and scalar curvature, respec-

tively. Also α, β are two constants. The sign of α and β can be chosen arbitrarily. This freedom

of choice is very useful in differential geometry and theory of relativity.

We now intend to extend these notions to a more generalized version as follows.

Definition 2.1 A (pseudo-)Riemannian manifold (M, g) of dimension n > 2 is said to

admit a generalized Ricci-Yamabe soliton (g, V, λ, α, β, γ) if

LV g + 2αRic = (2λ− βr)g + 2γV # ⊗ V #, (2.9)

where λ, α, β, γ ∈ R, and V # denotes the 1-form dual to the vector field V . If the vector field V

is the gradient of a smooth function f on M , then the structure is referred to as a generalized

gradient Ricci-Yamabe soliton, and (2.9) accordingly takes the form

∇2f + αRic =
(
λ−

1

2
βr
)
g + γdf ⊗ df. (2.10)
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The generalized (gradient) Ricci-Yamabe soliton is said to be expanding, steady or shrinking

according as λ < 0, λ = 0 or λ > 0, respectively. The above concept encompasses a broad class

of soliton-type equations. In fact, a generalized Ricci-Yamabe soliton is said to be a

* proper Ricci-Yamabe soliton if γ = 0 and α 6= 0, 1;

* Ricci soliton if α = 1, β = γ = 0;

* Yamabe soliton if α = γ = 0, β = 2;

* Quasi-Yamabe soliton if α = 0 and β = 2;

* Einstein soliton if α = 1, β = −1 and γ = 0;

* ρ-Einstein soliton if α = 1, β = −2ρ and γ = 0.

Theorem 2.2 Let (M,J, g) be an anti-Kähler manifold of dimension n > 2 and g̃∇,G =

g̃∇ + VG∗ be the modified Riemannian extension metric on the cotangent bundle T ∗M . The

quadruple (T ∗M, g̃,CV, λ) is a generalized Ricci-Yamabe soliton if and only if the following

conditions are satisfied

(i) CV = (va, va) = (va,−ps∇av
s),

(ii) λ =
γ

n
vi(ps∇iv

s −Gaiv
a),

(iii) LV Gij = 2λGij +
1

2
∂tGij + 2γGaiGbjv

avb,

(iv) ∇i∇jv
s = vaRs

iaj + γ(Gaiv
a∇jv

s +Gbjv
b∇iv

s),

(v) ∇iv
s∇jv

t = 0,

where the potential vector field is the complete lift CV of a vector field V on M to the cotangent

bundle T ∗M .

Proof We will show the existence of the scalar λ. Because of scalar curvature of the

modified Riemannian extension is zero, from (2.8) we get

4αRij = −∂tGij . (2.11)

If the expression of LV (g̃∇,G) in Proposition 2.2 and (2.11) are used in (2.9), we have

LV Gij + 2vapsR
s

iaj + 2vaΓa
ij + 2(Eiv

j)− ∂tGij = 2λGij + 2γV # ⊗ V # (2.12)

and

Eiv
j + vaΓj

ai + (Ejv
i) = 2λδji + 2γV # ⊗ V #, (2.13)

where the potential vector field CV and its dual 1-form are expressed as follows

CV =

(
vm

vm

)
=

(
vm

−ps∇mvs

)
(2.14)

and

V
#
j = V I g̃Ij = vig̃ij + vig̃ij = Gijv

i − ps∇iv
sδ

j
i = Gijv

i − ps∇jv
s,



852 A. Gezer and L. Bilen

V
#

j
= V I g̃Ij = vig̃ij + vig̃ij = viδ

j
i = vj ,

from which

(V #) =

(
Gijv

i − ps∇jv
s

vj

)
. (2.15)

If (2.14)–(2.15) are substituted into (2.13), we get

Eiv
j + vaΓj

ai + Ej(−ps∇iv
s) = 2λδji + 2γV #

i ⊗ V
#

j
,

from which

0 = 2λδji + 2γ(Gaiv
a − ps∇iv

s)vj .

Contracting with δij both sides of the last equation, we have

λ =
γ

n
(ps∇iv

s −Gaiv
a).

If (2.14)–(2.15) are placed in (2.12), we find

LV Gij + 2vapsR
s
iaj + 2ps∇av

sΓa
ij − 2Ei(ps∇jv

s)−
1

2
∂tGij

= 2λGij + 2γV #
i ⊗ V

#
j ,

from which

LV Gij = −2ps[v
aRs

iaj +∇av
sΓa

ij − Ei(∇jv
s)]

+
1

2
∂tGij + 2λGij + 2γGaiGbjv

avb

− 2γps(Gaiv
a∇jv

s +Gbjv
b∇iv

s)

+ 2γpspt∇iv
s∇jv

t.

From the above equation, we have

λ =
γ

n
(ps∇iv

s −Gaiv
a),

LV Gij−2λGij −
1

2
∂tGij − 2γGaiGbjv

avb = 0,

vaRs
iaj−∇i∇jv

s + γ(Gaiv
a∇jv

s +Gbjv
b∇iv

s) = 0

and

∇iv
s∇jv

t = 0.

If the above calculations are followed in reverse, the sufficiency of the theorem can be easily

proved.
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Theorem 2.3 Let (M,J, g) be an anti-Kähler manifold of dimension n > 2 and g̃∇,G =

g̃∇ + VG∗ be the modified Riemannian extension metric on the cotangent bundle T ∗M . The

quadruple (T ∗M, g̃∇,G, λ) is a generalized gradient Ricci-Yamabe soliton if and only if the fol-

lowing condition are satisfied

λ =
1

n
[Gij(∇2f)ij + 2GijRij − γGij∂if ∂jf ].

Proof If the expression of ∇̃2f in Proposition 2.3 is used in (2.10), we have

(∇2f)ij + 2Rij = λGij + γ∂if ∂jf.

Contracting with Gij both sides of the last equation, we have

λ =
1

n
[Gij(∇2f)ij + 2GijRij − γGij∂if ∂jf ],

which completes the proof.

2.3 Riemannian and gradient Riemannian solitons with respect to the modified

Riemannian extension

As a natural generalization of Ricci flow, the concept of Riemannian flow is defined by the

equation ∂
∂t
G(t) = −2Rg(t), where R is the Riemannian curvature tensor and ∧ denotes the

Kulkarni-Nomizu product. For C,D ∈ ℑ0
2(M), the Kulkarni-Nomizu product is given by

(C ∧D)(W,X, Y, Z) = C(W,Z)D(X,Y ) + C(X,Y )D(W,Z)

− C(W,Y )D(X,Z)− C(X,Z)D(W,Y ),

or locally

C ∧D = CilDjk + CjkDil − CikDjl − CjlDik.

In a manner similar to Ricci solitons, the concept of a Riemannian soliton was introduced by

Hirica and Udriste [12]. A Riemannian metric g on a smooth manifoldM is called a Riemannian

soliton if there exists a differentiable vector field X and a real constant λ such that

Ric + λK +
1

2
g ∧ LXg = 0,

where LX denotes the Lie derivative along X , λ is a constant, and Ric is the Ricci tensor of g.

The vector field X is known as the potential of the soliton. A Riemannian soliton is classified as

shrinking when λ < 0, steady when λ = 0, and expanding when λ > 0. If X is the gradient of a

smooth function f on M , the concept described above is referred to as a gradient Riemannian

soliton. In this case, the equation can be rewritten as

R + λK + g ∧ ∇2f = 0,

where f is a smooth potential function onM , and∇2f represents the Hessian of f . Additionally,

R = Rijkl denotes the Riemannian curvature tensor, and K = Kijkl = g ∧ g = gikgjl − gilgjk.
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Theorem 2.4 Let (M,J, g) be an anti-Kähler manifold of dimension n > 2 and g̃∇,G =

g̃∇ + V G∗ be the modified Riemannian extension metric on the cotangent bundle T ∗M . The

quadruple (T ∗M, g̃, X̃, λ) is a Riemannian soliton if and only if the following conditions are

satisfied

(i) X̃ = (vl, vl) = (vl, psA
s
l +Bl),

(ii) λ =
1

n
Gjl
(
LXGjl +

2

n− 1
Rjl + 2∇jBl

)
,

(iii) vaRs
jαl +∇jA

s
l = 0,

where X̃ = vaEa + vaEa is a fibre-preserving vector field on T ∗M, λ ∈ R, B = (Bi) and

A = (Ah
s ) are the (0, 1) and (1, 1) tensor fields on M , respectively.

Proof We begin by stating that only the following equations will be explicitly computed

(i) R̃ijkl + λK̃ijkl +
1

2
( g̃∇,G)ij ∧ (L

X̃
g̃∇,G)kl = 0,

(ii) R̃ijkl + λK̃ijkl +
1

2
( g̃∇,G)ij ∧ (L

X̃
g̃∇,G)kl = 0,

(iii) R̃ijkl + λK̃ijkl +
1

2
( g̃∇,G)ij ∧ (L

X̃
g̃∇,G)kl = 0,

(iv) R̃ijkl + λK̃ijkl +
1

2
( g̃∇,G)ij ∧ (L

X̃
g̃∇,G)kl = 0.

As all other components lead to analogous results, it suffices to restrict our attention to these

four equations.

Since K̃ = K̃IJKL = g̃∇,G ∧ g̃∇,G = (g̃∇,G)IK(g̃∇,G)JL − (g̃∇,G)IL(g̃∇,G)JK , the Kulkarni-

Nomizu products that we will use in our proof are as follows

K̃ijkl = GikGjl −GilGjk, K̃ijkl = δki Gjl − δkjGil, K̃ijkl = δikδ
l
j ,

K̃ijkl = δikGjl − δilGjk, K̃ijkl = δljGik − δliGjk, K̃ijkl = δki δ
j
l ,

K̃ijkl = δ
j
lGik − δ

j
kGil, K̃ijkl = −δilδ

k
j , K̃ijkl = −δ

j
kδ

l
i,

and other components are zero. From

R̃ijkl + λK̃ijkl +
1

2
(g̃∇,G)ij ∧ (L

X̃
g̃∇,G)kl = 0,

we have

0 = ps(∇iR
s
lkj −∇jR

s
lki) +

1

2
(Rm

ijkGml −Rm
ijlGkm) + λ(GikGjl −GilGlk)

+
1

2
[Gil(LX̃

g̃∇,G)jk +Gjk(LX̃
g̃∇,G)il −Gik(LX̃

g̃∇,G)jl −Gjl(LX̃
g̃∇,G)ik].

Contracting with Gij both sides of the above equation, we get

psG
ij(∇iR

s
lkj −∇jR

s
lki) = 0.
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From

R̃ijkl + λK̃ijkl +
1

2
(g̃∇,G)ij ∧ (L

X̃
g̃∇,G)kl = 0,

we have

0 =
1

2
[(g̃∇,G)il(LX̃

g̃∇,G)jk + (g̃∇,G)jk(LX̃
g̃∇,G)il

− (g̃∇,G)ik(LX̃
g̃∇,G)jl − (g̃∇,G)jl(LX̃

g̃∇,G)ik]

+Ri
lkj + λ(δikGjl − δilGjk).

Contracting with δki in the last equation and after then again contracting with 1
n(n−1)G

jl in

the resulting equation, we get

λ =
1

n(n− 1)
GjlRjl +

1

2n
Gjl(L

X̃
g̃)jl +

1

2n
(∇iv

i + Eiv
i). (2.16)

From

R̃ijkl + λG̃ijkl +
1

2
g̃ij ∧ (L

X̃
g̃)kl = 0,

we have

λδikδ
l
j +

1

2
[−g̃ik(LX̃

g̃)jl − g̃jl(LX̃
g̃)ik] = 0

and contracting with δki δ
j
l in the above equation, we have

λ =
1

n
(∇lv

l + Elv
l). (2.17)

If Eh is applied to both sides in (2.17), we obtain

vl = psA
s
l +Bl. (2.18)

If (2.18) is substituted into (2.16)–(2.17) and also the equality of (2.16)–(2.17) is used, the

following equation is obtained

1

n− 1
GjlRjl +

1

2
Gjl(L

X̃
g̃)jl =

1

2
(∇lv

l +Al
l). (2.19)

From Proposition 2.2, we get

1

2
(∇lv

l +Al
l) =

1

n− 1
GjlRjl +

1

2
GjlLXGjl +GjlvapsR

s
jal

−GjlvaΓa
jl +Gjl(Ejv

l). (2.20)

Substituting (2.18) into (2.20), we find

1

2
(∇lv

l +Al
l) = Gjl

(1
2
LXGjl +

1

n− 1
Rjl +∇jBl

)

+ psG
jl(vaRs

jal +∇jA
s
l ),
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from which we can write

vaRs
jal +∇jA

s
l = 0 (2.21)

and

Gjl
(
LXGjl +

2

n− 1
Rjl + 2∇jBl

)
= ∇lv

l +Al
l. (2.22)

When (2.17) and (2.22) are evaluated together, we can write the following equation

λ =
1

n
Gjl
(
LXGjl +

2

n− 1
Rjl + 2∇jBl

)
.

It is seen that the last equation

R̃ijkl + λG̃ijkl +
1

2
g̃ij ∧ (LX g̃)kl = 0

is easily provided with the obtained findings which completes the proof of the necessity of the

theorem.

The sufficiency of the theorem can be easily proved by following the above calculations in

reverse.

Theorem 2.5 Let (M,J, g) be an anti-Kähler manifold of dimension n > 2 and g̃∇,G =

g̃∇ + V G∗ be the modified Riemannian extension metric on the cotangent bundle T ∗M . The

quadruple (T ∗M, g̃∇,G, λ) is a gradient Riemannian soliton structure if and only if the following

conditions are satisfied

(i) λ =
1

n(n− 1)
GjkRjk,

(ii) (∇2f)jk = 0,

where ∇2f is the Hessian operator.

Proof Let us define g̃IJ ∧ (∇̃2f)KL as the Kulkarni-Nomizu product that will be used in

our proof, which is given as follows

(i) g̃ij ∧ (∇̃2f)kl = Gil(∇
2f)jk +Gjk(∇

2f)il −Gik(∇
2f)jl −Gjl(∇

2f)ik,

(ii) g̃ij ∧ (∇̃2f)kl = δil(∇
2f)jk − δik(∇

2f)jl,

(iii) g̃ij ∧ (∇̃2f)kl = δ
j
k(∇

2f)il − δ
j
l (∇

2f)ik,

(iv) g̃ij ∧ (∇̃2f)kl = δkj (∇
2f)il − δki (∇

2f)jl,

(v) g̃ij ∧ (∇̃2f)kl = δli(∇
2f)jk − δlj(∇

2f)ik.

All other components of these Kulkarni-Nomizu products are zero. From

R̃ijkl + λG̃ijkl + g̃ij ∧ (∇̃2f)kl = 0,

we have

0 = ps(∇iR
s
lkj −∇jR

s
lki)
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+
1

2
(Rm

ijkGml −Rm
ijlGkm) +Gil(∇

2f)jk

+Gjk(∇
2f)il −Gik(∇

2f)jl −Gjl(∇
2f)ik

+ λ(GikGjl −GilGjk).

If the last equation is contracted by Gjk and after then the obtaining expression is again

contracted by Gjl, the following result is obtained

0 = psG
ikGjl(∇iR

s
lkj −∇jR

s
lki)

−GjlRjl + λn(n− 1)

− 2(n− 1)Gjl(∇2f)jl,

from which we get

λ =
1

n(n− 1)
GjlRjl +

2

n
Gjl(∇2f)jl. (2.23)

From

R̃ijkl + λG̃ijkl + g̃ij ∧ (∇̃2f)kl = 0,

we have

Rl
ijk + λ(δljGik − δliGjk) + δli(∇

2f)jk − δlj(∇
2f)ik = 0

and multiplying the last equation by δil , we get

(∇2f)jk = λGjl −
1

n− 1
Rjk. (2.24)

If (2.23) is placed in (2.24), the following equation is

(∇2f)jk =
[ 1

n(n− 1)
GilRil +

2

n
Gil(∇2f)il

]
Gjk −

1

n− 1
Rjk.

When it is multiplied both sides of the above equation by Gjk, we get

(∇2f)jk = 0. (2.25)

Substituting (2.25) into (2.23), we find

λ =
1

n(n− 1)
GjlRjl.

Since the same results are obtained from other components, it is not included in the proof of

the theorem.

Conversely, by a routine calculation, we can obtain the sufficient condition of the theorem.

So the proof is completed.
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