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Some Soliton Structures on the Cotangent Bundle with
Respect to the Modified Riemannian Extension
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Abstract Let (M, J, g) be an anti-Kéhler manifold of dimension n = 2k with an almost
complex structure J and a pseudo-Riemannian metric g and let 7" M be its cotangent bun-
dle with modified Riemannian extension metric gv,¢. The modified Riemannian extension
metric gv,¢ is obtained by deformation in the horizontal part of the Riemannian extension
known in the literature by means of the twin Norden metric G. The paper aims first to
examine the curvature properties of the cotangent bundle T*M with modified Riemanni-
an extension metric gv,¢ and second to study some geometric solitons on the cotangent
bundle T M according to the modified Riemannian extension metric gv,c.
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1 Introduction

Let M be an n-dimensional Riemannian manifold and let T*M be its cotangent bundle
with a torsion-free affine connection V. Patterson and Walker [16] introduced the notion of
Riemannian extensions and they showed how to construct a pseudo-Riemannian metric gv
on the 2n-dimensional cotangent bundle of any n-dimensional differentiable manifold with a
torsion-free connection V. Afifi [1] studied the local properties of the Riemannian extension of
connected affine spaces. Riemannian extensions were also studied by Garcia-Rio et al. [8]. They
established the following very nice characterization: (T*M, gv ) satisfies the Osserman condition
if and only if (M, V) is an affine Osserman space. Since Riemannian extensions provide a link
between affine and pseudo-Riemannian geometries, some properties of the affine connection V
can be investigated by means of corresponding properties of the Riemannian extension gv. The
different properties of the Riemannian extension gy were studied by some authors (see [2-3,
7, 14-15, 19-22]). Later, in [4-5], the authors considered the deformations of the Riemannian
extension gy on the cotangent bundle 7*M; the first one is given by gy . = gv + 7*c for
a symmetric (0,2)-tensor field ¢; the second one is defined by gv e r.s = gv + 7*c + 1T 0 1S
for a symmetric (0,2) -tensor field ¢ and (1, 1)-tensor fields T, S. The authors referred to

the deformation metrics as modified Riemannian extensions. In [9], the authors studied some
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properties of the modified Riemannian extension gy . = gv + 7*c.
Let J be an almost complex structure on a smooth manifold, i.e., J?> = —id. Then the pair
(M, J) is called a 2n-dimensional almost complex manifold. If the pseudo-Riemannian metric

g of neutral signature (n,n) satisfies
g(JX,JY)=g(X,Y)
or equivalent to this equation
g(JX,Y)=g(X,JY) (purity condition)

for any vector fields X,Y on M, then this metric is referred to as a Norden (also known as
anti-Hermitian) metric (see [3]). The 2n-dimensional manifold M equipped with an almost
complex structure and an anti-Hermitian metric ¢ is referred to as an almost anti-Hermitian
manifold or an almost Norden manifold. It is also defined as an anti-Kéhler or a Kéhler-
Norden if the almost complex structure J is parallel with regard to the Levi-Civita connection
V (VJ = 0). It is well known that the condition VJ = 0 is equivalent to the holomorphicity
of the Norden metric g, that is, ®;9 = 0, where (®,9)(X,Y,Z) = (Lyxg — LxG)(Y, Z).
G(Y,Z)=(go J)(Y,Z) = g(JY, Z) is the twin Norden metric (see [17]). Tt is a remarkable fact
that (M, J,g) is Kéhler-Norden if and only if (M, J, G) is Kéhler-Norden. This is of special
significance for Kéhler-Norden metrics since in such case g and G share the same Levi-Civita
connection (Vg = VG = 0) (see [18]).

Salimov and Cakan considered, on the cotangent bundle 7% M, a special type of the modified
Riemannian extension given in [18]. They constructed this metric on the cotangent bundle
over a Kéhler-Norden manifold (M, J,g) using the twin Norden metric G and studied some
properties. This metric is of the form: gv ¢ = gv +7*G, where V is the Levi-Civita connection
of g. In this paper, we shall consider the special type of the modified Riemannian extension:
gv,c = gv + m*G. In Section 1, we introduce essential notions, definitions, and preliminary
results concerning the deformed Riemannian extension, which serve as a foundation for the
subsequent analysis. Section 2 is devoted to the study of various soliton structures, including
Ricci solitons, generalized Ricci-Yamabe solitons, generalized gradient Ricci-Yamabe solitons,
as well as Riemannian and gradient Riemannian solitons.

Throughout this paper, all manifolds, tensor fields and connections are always assumed to
be differentiable of class C*°. Also, we denote by 37 (M) the set of all tensor fields of type (p, )
on M, and by SP(T*M) the corresponding set on the cotangent bundle 7M. The Einstein

summation convention is used, the range of the indices i, j, s being always {1,2,---  n}.

1.1 The cotangent bundle

Let M be an n-dimensional differentiable manifold with a torsion-free affine connection
V, T*M be its cotangent bundle and m be the natural projection T*M — M. A system of

local coordinates (U,z%), i = 1,---,n in M induces on T*M a system of local coordinates
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(r=Y(U), 2, Tt = pi),i=n+i=n+1,---,2n, where 7t = p; are components of covectors p in
each cotangent space T M, z € U with respect to the natural coframe {dz*}.

Let X = X'0; and w = w;dz’ be the local expressions in U of a vector field X and covector
(1-form) field w on M, respectively. Then, the vertical lift Vw of w, the horizontal lift #X and
the complete lift “X of X are given, with respect to the induced coordinates, by

Vw = w;;, (1.1)
HX = X'0; + pul '}, X7 05 (1.2)
and
X = X'0; — pp0; X"0,
where 0; = %, o7 = % and Ffj are the coefficients of a symmetric (torsion-free) affine

connection V in M.
The Lie bracket operation of vertical and horizontal vector fields on T M are given by the

formulas

[HX,HY] = H[Xv Y] + V(p © R(Xv Y))a
FxVw] = V(Vxw), (1.3)
[V0,Yw] =0

for any X,Y € S{(M) and 0,w € SY(M), where R is the Riemannian curvature tensor of the
symmetric affine connection V defined by R(X,Y) = [Vx,Vy] — V[x y] (for details, see [23]).

1.2 Expressions in the adapted frame

We will use the adapted frame that simplifies our tensor calculations in the cotangent bundle
T*M. With the symmetric affine connection V in M, we can introduce the adapted frame on
each induced coordinate neighbourhood 7=(U) of T*M. In each local chart U C M , if we
write X(;) = %, 0U) =da?, j=1,---,n, then from (1.1)~(1.2), we can see that these vector

fields have, respectively, the local expressions

X () = 0j + paT},; 05,
Vi) — 0>
with respect to the natural frame {9, 6;} These 2n-vector fields are linearly independent and

they generate the horizontal distribution of V and the vertical distribution of 7" M, respectively.
The set {#X(;),Y00} is called the frame adapted to V in 7~ *(U) C T*M. By putting

E; = "X,
J (-J) (1.4)

B = Vo,

we can write the adapted frame as {E.} = {E}, E5}. Using (1.1)-(1.2) and (1.4), we have

VUJ = LUjEF (15)
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and
HX = X7 F, (1.6)

with respect to the adapted frame {E,} (for details, see [23]). By straightforward calculations,

we have the lemma below.

Lemma 1.1 The Lie brackets of the adapted frame of T*M satisfy the following identities

[Ei, Ej] = ps R B,
[Ei, B5] = -1, B,
[E_'a E;] = 07

K2

where RF;; denotes the components of the curvature tensor of the symmetric affine connection

V in M (see [23]).

1.3 The modified Riemannian extension on the cotangent bundle

Let (M, J,g) be an almost anti-Hermitian manifold of dimension n = 2k. G(X,Y) =
g(JX,Y) is the twin Norden metric, which is locally expressed as G;; = gthJh. The modified
Riemannian extension, denoted by gv g, is a pseudo-Riemannian metric of neutral signature
(n,n) on the cotangent bundle, given by gy.¢ = gv + ¥ G*. The pseudo-Riemannian metric

gv,c has the components

Gij — 2psT5; 55)

(gv.c)rr) = < 5 0

with respect to the induced coordinates (x?, p;), where I'?; are the coeflicients of the Levi-Civita

connection V (see [5]). Here, YG* has the form

o-(% 9)

The modified Riemannian extension and its inverse have the following components with

respect to the adapted frame {E, }, respectively,
~ Gy o
((9v.c)r1) = ;
5;- 0

and

(Go.0)") = (; _‘;) . 17

We will now compute the Levi-Civita connection V of the modified Riemannian extension

gv,c- The coefficients of the Levi-Civita connection V can be determined by

VB = 59 5(77795,8 + 18G~ve — 775976) + 5(976 + Q'yﬂ + Qﬂfy)?
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where

0% = 50550,
Qjﬁl = Ps ;iha
o = -0 = -T%,
and it will be used as v = 4,7, 8 =14,i, a = h,h, e =k, k and § = m, .

For the Levi-Civita connection V of the modified Riemannian extension gv,a, we give the

following proposition.

Proposition 1.1 (see [18]) Let (M, J, g) be an anti-Kdhler manifold and (T*M, gv.c) be
its cotangent bundle with the modified Riemannian extension. The Levi-Civita connection v of

the modified Riemannian extension gv.c on T*M is locally given by

Vg Ej =T By + po R, By,
Vi, B; = -T, Er,

Ve E; =0,

Vi E; =0,

where R is the Riemannian curvature tensor of g.

The Riemannian curvature tensor is obtained by
R 5 = EsISg — EyI55 + 5.1 5 — I 155 — Q5,125

Here, we use the following notation: v = 5,5, 8 = 4,i, & = h,h, ¢ = k,k and § = m,m. In
the subsequent proposition, we present the components of the Riemannian curvature tensor

associated with the modified Riemannian extension gv .

Proposition 1.2 Let (M, J, g) be an anti-Kdhler manifold and (T*M, gv.c) be its cotangent
bundle with the modified Riemannian extension. Then, the corresponding Riemannian curvature

tensor R is locally given by

thgk = R?jkv
Sh S S 1 m m
thjk =ps(ViRp; — ViRp,) — §(Rijkah + R Grm),
Dh _ pk
Rij% - Rjihv
~ ,
Rijk = Ripis
ph i
ik = kg

and other components are zero (see also [9]).

We now examine the Ricci and scalar curvature tensors. Utilizing Proposition 1.2 and

performing the standard calculations, we obtain the following result.
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Proposition 1.3 Let (M, J,g) be an anti-Kdhler manifold and (T*M,gv,c) be its cotan-
gent bundle with the deformed Riemannian extension. Then, the corresponding Ricci curvature

tensor is given by

R ' (1.8)

Using (1.7)—(1.8), we calculate

7= (3v.c)*" Rap = (Gv.c) " Rji, + (Gv.c) " Ry,
+(Gv.e) R+ (Gv.0)" Ry
=0.

Hence, we have the following result.

Proposition 1.4 Let (M, J, g) be an anti-Kdhler manifold and (T*M, gv ) be its cotangent
bundle with the modified Riemannian extension. Then, the corresponding scalar curvature T is

ZETO0.

2 Soliton Structures on the Cotangent Bundle with the Modified
Riemannian Extension

Before examining the soliton structures, we first present the Lie derivative of the modified
Riemannian extension gv.¢ = gv + " G*, as well as the Hessian operator of the smooth function
V' f on T*M with respect to gy.g. These concepts will be utilized in the subsequent study of
soliton structures. Let L5 denote the Lie derivative with respect to a vector field X. A vector
field X , expressed in components as (v”, ’Uﬁ), is characterized as fibre-preserving if and only if

the functions v” depend exclusively on the base coordinates (z").

Proposition 2.1 Let X be a fibre-preserving vector field of T* M with components (v", ’Uﬁ).

Then, the Lie derivatives of the adapted frame and dual basis are given as follows

() LgE; = —(E*)E, — (v*psRS,, + EwF — o"T% ) Ex,
(i) LgB; = —(uT%, + BF)Er,

(iii) Lgda" = (Epo)da™,

(iv) Lgdpn = [vopsRE,,, — v°T8, + (Epob)ok]dz™

+ [T + (Emv®) 0¥ 6pm,
where p, = dpp, — psI'§,da’.
Now, let us give the following lemma which are needed later on.

Proposition 2.2 The Lie derivative of gv.c = gv +"G* with respect to the fibre-preserving

vector field X is given as follows

L5 (Gv.c) = [LxGij + 20°psRS,; — 20°T%, + 2(Ep)|dz’ da?
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+2[V? + E;v;]da:i(Spj,

where L (gv,c) and LxG denote the components of the Lie derivative gv.c = gv + VG* and

the twin Norden metric G, respectively.

For any smooth function f on M, the vertical lift Vf of f to T*M is defined by Vf = for.
To introduce our main notion, we denote as usually the Hessian operator of the vertical lift Vf

of any smooth function f on M with respect to the modified Riemannian extension gy g, by
(Hessgo o Vf)(X,Y) = XYV — (VxY)f, VXY € SH(T*M)
or in local coordinates the above expression can be expressed as
(62 Vf)ﬁ'v = 930y Vf - f%'yai Vf
for vy = 3,7 and 8 =1, 1.

Proposition 2.3 Let f be a smooth function on an anti-Kdihler manifold (M, J,g). Then,
the Hessian (with respect to the modified Riemannian extension gv.a) of its vertical lift is

expressed by

() (V2f)i; = 0:0;f —TE0f = 8,0, f — TE.0uf = (V2 f)is,
(i) (V2f)g =005 —Thonf =0,
(iif) (V2f)s; = &0, f —TE0uf =0,
(iv) (V2f)g = 005 —TLouf =0.

2.1 Ricci solitons with respect to the modified Riemannian extension

The notion of Ricci flow was introduced by Hamilton [11] and is given by the evolution

equation
0
il — _9Ri
~-9(t) = ~2Ric(),

where Ric denotes the Ricci tensor associated with the metric g(¢). A Ricci soliton is defined as
a self-similar solution to this flow. Ricci solitons play a fundamental role in geometric analysis,
particularly due to their crucial contribution to the resolution of the Poincaré conjecture. Let
M be a smooth manifold of dimension n > 2. In the sense of Hamilton’s definition, a Ricci
soliton on M is a triple (g, X, \), where ¢ is a pseudo-Riemannian metric on M, Ric is the
corresponding Ricci tensor, X is a vector field on M, and A € R is a constant, such that the

following equation is satisfied
) 1
Ric + §Lxg = Ay, (2.1)

where Ly is the Lie derivative along X. The Ricci soliton is said to be either shrinking, steady,

or expanding, according as \ is negative, zero, or positive, respectively.
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Theorem 2.1 Let (M, J,g) be an anti-Kdhler manifold of dimension n > 2 and gv,c =
gv + VG* be the modified Riemannian extension metric on the cotangent bundle T*M. The

quadruple (T*M, gv ., )~(, M) is a Ricci soliton if and only if the following conditions are satisfied
(i) X =(v"v") = (v, psAf + By),
(i) A= %(ElvZ + 0T, + AY),
(ili) AGi; =2R;; + %LVGU + V;B;,

(iv) vORS,; + VA3 =0,

iaj

where X = v'E, + v*Eg is a fibre-preserving vector field on T*M, X\ € R, B = (B;) and
A= (A") are (0,1) and (1,1) tensor fields on M, respectively.

Proof We will show that the existence of the scalar X. If the expression of L ;(gv,¢) in

Proposition 2.2 is used in (2.1), we have
2R;; + %[LVGU» + 20 p, RS, — 20°T + 2(Ep?)] = AGyj (2.2)
and
Ep? +v°T,; + Bxv' = A, (2.3)
Applying Er to both sides of (2.3), we obtain
EpB-v' =0, o' =p,A; + B;. (2.4)
Substituting (2.4) into (2.3), we get
Ejv) + 0T, + Al = A6
and contracting with the last equation by 5;'-, we have
A= %(Eivi + 0T, 4+ AY).
Substituting (2.4) into (2.2), we find
A\Gij = 2R;; + %LVGU + VB’ (2.5)
and
V'R, + ViA; = 0.

Conversely, by a routine calculation, the sufficiency of the theorem can be easily checked

under conditions (i)—(iv).

As concerning Theorem 2.1, we have the following conclusion.
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Corollary 2.1 Let (M, J,g) be an anti-Kahler manifold of dimension n > 2, gv,.c =
gv + VG* be the modified Riemannian extension metric on the cotangent bundle T*M and
the quadruple (T*M, §v,g,)?, A) be a Ricci soliton. Then, the quadruple (M,G,V,\) is a Ricci
soliton if and only if

Ri; +V;B; =0,
where B = B; € SY(M).

Proof Let the triplets (§v7g,)~(, A) and (G, V, \) be Ricci soliton structures. From (2.5),
we get

Ri; +V;B; =0.
Conversely, if R;; + V;B; =0, from (2.5) we have
1
Rij + §LvGij = )\Gij,
which means that (M, G, V, ) is a Ricci soliton. So the proof is completed.

Let X be a vector field on T* M with components (v%, v%) with respect to the adapted frame.
Then X is a vertical vector field on T*M if and only if v* = 0. In the case, the vector field X in

Theorem 2.1 reduces X = (v*,v%) = (0, psAS + B;). Hence, we obtain the following conclusion.
Corollary 2.2 Let (M, J,g) be an anti-Kdhler manifold of dimension n > 2 and gv.g =

gv + YG* be the modified Riemannian extension metric on the cotangent bundle T*M. The
quadruple (T*M, gv ., )?, A) is a Ricci soliton if and only if the following conditions are satisfied

(1) )’Z = (,Ua’vﬁ) = (OvaAf + BZ)?

1 .
() A=-af
1
(iii) )\Gij = 2Rij + §Lsz‘j + V;Bj,
(iv) V45 =0,

where X = v E, + v By is a vertical vector field on T*M, X € R, B = (B;) and A = (A") are
(0,1) and (1,1) tensor fields on M, respectively.

2.2 Generalized Ricci-Yamabe and generalized gradient Ricci-Yamabe solitons with
respect to the modified Riemannian extension

A Yamabe soliton constitutes a special solution to the Yamabe flow, a geometric evolution

equation introduced by Hamilton [11]. The Yamabe flow is described by the following equation

Sralt) = ~S()g(0),

where g(t) is a one-parameter family of metrics on a (pseudo-)Riemannian manifold and S(t)

its scalar curvature with respect to g(t).
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Let (M, g) be a complete (pseudo-)Riemannian manifold. The (pseudo-)Riemannian metric
g is said to admit a Yamabe soliton structure if it satisfies the equation

1
slvy= (r—=Ng,

where A € R, r denotes the scalar curvature of M, and V is a smooth vector field on M,
referred to as the soliton vector field. When the soliton vector field V is the gradient of a
smooth function f: M — R, the soliton is called a gradient Yamabe soliton, in which case the
defining equation reduces to

V2 =(r—Ng.

where V2 f denotes the Hessian of f. In 2018, Chen and Deshmukh [6] introduced the concept
of a quasi-Yamabe soliton, which extends the classical Yamabe soliton framework and is defined

on a (pseudo-)Riemannian manifold as follow
(Lyg)(X,Y) =2(A = r)g(X,Y) + 9VH(X)VH(Y), (2.6)

where V# is the dual 1-form of V, A is a constant and ~ is a smooth function. If V is the
gradient of a smooth function f, then the soliton is referred to as a quasi-Yamabe gradient

soliton, and (2.6) simplifies to
Vif = =r)g+ndf ®df, (2.7)

where V2f is the Hessian of a smooth function f.
In 2019, Giiler and Crasmareanu [10] introduced the notion of Ricci-Yamabe flow on a
(pseudo-)Riemannian manifold (M, g) by considering a scalar combination of the Ricci flow

and Yamabe flow as

%(t) + 2aRic(t) + Br(t)g(t) = 0, (2.8)

where g, Ric, r are the (pseudo-)Riemannian metric, Ricei tensor and scalar curvature, respec-
tively. Also «, 8 are two constants. The sign of o and 3 can be chosen arbitrarily. This freedom
of choice is very useful in differential geometry and theory of relativity.

We now intend to extend these notions to a more generalized version as follows.

Definition 2.1 A (pseudo-)Riemannian manifold (M,g) of dimension n > 2 is said to
admit a generalized Ricci- Yamabe soliton (g,V, \, o, 8,7) if

Lyg + 2aRic = (2\ — Br)g + 29 V* @ V#, (2.9)

where X\, a, 3,7 € R, and V# denotes the 1-form dual to the vector field V. If the vector field V
is the gradient of a smooth function f on M, then the structure is referred to as a generalized

gradient Ricci-Yamabe soliton, and (2.9) accordingly takes the form

V2f + aRic = ()\— %6r>g+”ydf®df. (2.10)
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The generalized (gradient) Ricci-Yamabe soliton is said to be expanding, steady or shrinking
according as A < 0, A\ =0 or A > 0, respectively. The above concept encompasses a broad class
of soliton-type equations. In fact, a generalized Ricci-Yamabe soliton is said to be a

* proper Ricci-Yamabe soliton if v = 0 and « # 0, 1;

* Ricci soliton if a =1, 8=~ =0;

* Yamabe soliton if a=~v=0, §=2;

* Quasi-Yamabe soliton if o =0 and 8 = 2;

* Einstein soliton if =1, 8= —1 and v = 0;

* p-Einstein soliton if « =1, § = —2p and v = 0.

Theorem 2.2 Let (M, J,g) be an anti-Kdhler manifold of dimension n > 2 and gv,¢ =
gv + YG* be the modified Riemannian extension metric on the cotangent bundle T*M. The
quadruple (T*M,§,“V,)\) is a generalized Ricci-Yamabe soliton if and only if the following
conditions are satisfied

i) V= (%0 = (v° —psVav®),
(i) A= lvi(psvivs — Gaiv®),
n
1
(iii) LvGij = 2/\Gij + §6tGij + 2’7GaiijUa’Ub,

(iv) V,;V;v° =v"R;, . + 7(Gaiv*V;v° + ijvbvivs),

iaj

(V) Vivsvjvt = O,

where the potential vector field is the complete lift V of a vector field V on M to the cotangent
bundle T* M .

Proof We will show the existence of the scalar A\. Because of scalar curvature of the

modified Riemannian extension is zero, from (2.8) we get
4aR;; = —0,Gij. (2.11)
If the expression of Ly (gv,.c) in Proposition 2.2 and (2.11) are used in (2.9), we have
LyGij + 20"ps Ry + 20T + 2(Eiv?) — 0,Gyj = 220Gy + 27VF @ V# (2.12)
and
B! +0°T), + (B5v') = 208] + 29V# @ V¥, (2.13)

where the potential vector field “V and its dual 1-form are expressed as follows
Cy = (U_> - ( ! ) (2.14)
o™ —ps Vv

Vj# = Vlﬁlj = Uigij + viﬁgj = Gijvi — psvivszslj = Gijvi —psV;v°,

and
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VJ—_# = Vlﬁg = viﬁﬁ + vzﬁa =0’ =7,

from which

(V#) = <G”'Ui _Psvjvs> . (2.15)
Y
If (2.14)—(2.15) are substituted into (2.13), we get
Eq? + 0T, + Ej(—p,Viv*) = 203 + 29V @ VF,
from which
0= 2/\(5g + 29(Gv® — ps Vvl
Contracting with 5;- both sides of the last equation, we have
A= %(psvivs — Gaiv?).

If (2.14)—(2.15) are placed in (2.12), we find

1
LVGij + 2’UapsR$ .+ QPSVG’USF% — 2Ei(psvjv5) — §8tGij

iaj
=2)\Gyj + 2’7VZ—# & Vj#,
from which

LyGi; = —2pS[U“Rfaj + Vool — E;(Vjv®)]
+ %atGij + 20Gyj + 27G i Gpjv™v®
— 29ps(Gaiv*Vjv® + ijvbvivs)
+ 29pspi Viv® Vot

From the above equation, we have

A:

3=

(psvivs - Gaiva)7
1
LyGij—2XGij — EatGij — 27G i Gpjv™v® = 0,
VRS, ;= ViV jv® +7(GaivVjv° + Gy’ Viv®) = 0
and

V' Vo' = 0.

If the above calculations are followed in reverse, the sufficiency of the theorem can be easily

proved.
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Theorem 2.3 Let (M, J,g) be an anti-Kdhler manifold of dimension n > 2 and gv,¢ =
gv + YG* be the modified Riemannian extension metric on the cotangent bundle T*M. The
quadruple (T*M,gv.c, A) s a generalized gradient Ricci-Yamabe soliton if and only if the fol-

lowing condition are satisfied
A= %[Giﬂ'(vz’f)ij +2G" R;j — G0, f 9; ).
Proof If the expression of V2f in Proposition 2.3 is used in (2.10), we have
(V21)ij +2Rij = AGij + 70, f 0; .
Contracting with G* both sides of the last equation, we have
A= %[G”(VQ £)ij +2GY R;; — vG 0, f 0; f),
which completes the proof.

2.3 Riemannian and gradient Riemannian solitons with respect to the modified
Riemannian extension
As a natural generalization of Ricci flow, the concept of Riemannian flow is defined by the
equation %G(t) = —2Rg(t), where R is the Riemannian curvature tensor and A denotes the
Kulkarni-Nomizu product. For C, D € 39(M), the Kulkarni-Nomizu product is given by

(CAD)W,X,Y,Z)=C(W,Z)D(X,Y) + C(X,Y)D(W, Z)
— C(W,Y)D(X,Z) — C(X, Z)D(W,Y),

or locally
CAND= Cilek + CjkDil — Ciijl — leDik-

In a manner similar to Ricci solitons, the concept of a Riemannian soliton was introduced by
Hirica and Udriste [12]. A Riemannian metric g on a smooth manifold M is called a Riemannian

soliton if there exists a differentiable vector field X and a real constant A such that
. 1
Rlc—l—)\K—FEg/\LXg:O,

where Lx denotes the Lie derivative along X, A is a constant, and Ric is the Ricci tensor of g.
The vector field X is known as the potential of the soliton. A Riemannian soliton is classified as
shrinking when A\ < 0, steady when A = 0, and expanding when A > 0. If X is the gradient of a
smooth function f on M, the concept described above is referred to as a gradient Riemannian

soliton. In this case, the equation can be rewritten as
R+ MK +gAV?f=0,

where f is a smooth potential function on M, and V2 f represents the Hessian of f. Additionally,

R = R;j; denotes the Riemannian curvature tensor, and K = Kijn = g A g = gixgji — GitGjk-
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Theorem 2.4 Let (M, J,g) be an anti-Kdhler manifold of dimension n > 2 and gv,c =
gv + VG* be the modified Riemannian extension metric on the cotangent bundle T*M. The
quadruple (T*M, §,X’,)\) is a Riemannian soliton if and only if the following conditions are
satisfied

() X =@hol) = (o), pA + B,

(i) A= —Gﬂ (LxGa+ 2 R+ 2V;B,),
n—1

(iii) s+ VAT =0,

where X = v*E, + v"Ex is a fibre-preserving vector field on T*M, X\ € R, B = (B;) and
A = (A") are the (0,1) and (1,1) tensor fields on M, respectively.

Proof We begin by stating that only the following equations will be explicitly computed

. ~ ~ 1 -
(i) Rijm + AKiju + §(Qv,c)ij N(Lggv.c)e =0,

.. 1 ~
(ii) Rukz + )‘szkl + Q(QV,G)gj A (L)zgv,c)kl =0,
1 ~
(iii) Rzgkl +AK; ikl T Q(QV,G)EJ' NL59v.6)u =0,

—_

(iv) ﬁfjkl + )‘I?Tjkl + (gv,c)rj A (L)zgv)c)kl =0.

N |

As all other components lead to analogous results, it suffices to restrict our attention to these
four equations.

Since K = Kryxr = gv.a Ngv.c = (9v.¢)ik(Gv.c)sr — (9v.a)rip(9v.c) K, the Kulkarni-
Nomizu products that we will use in our proof are as follows

Kiju = GirnGyi — GG, K,z = =07 Gy — 65 G, K1 = 0}, ok,
Kz = 061G — 0iGi, Kipg = 04Ga — 081Gy, Kz = 0501,
f(ﬁkz = 5szik - 5£Gu, f(ijzl —0; 557 f{ijkz = —5i5§,

and other components are zero. From

_ _ 1 _

Riji + AKiji + §(QV,G)ij AN(Lggv.a)m =0,
we have

1
0= ps(Vinkj — V,Rj;) + §(R;?kal — R?;lem) + MGiGji — GuGur)

1 - . - -
+ §[Giz(L)}gv,G)jk +Gip(Lggv.a)a — Gi(Lggv.a)i — Gu(Lggv,a)ik)-

Contracting with G* both sides of the above equation, we get

psGij(viRlskj - Vijsm) =0.
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From

1 _
Ry + /\Kmkz + Q(QV,G);J- AN(Lggv.a)m =0,

we have

1. - . -
0= 5[(gv,c)zz(L;}gv,G)jk + (9v.c)jx(Lz9v.c)y
— (9v.¢)u(Lggv.a)i — (9v.a)i(L9v.6))

+ Rjy; + AN0,.Gj — 6, Gie).

Contracting with §% in the last equation and after then again contracting with n(n 1)GJ in
the resulting equation, we get
1 . 1
A=——G'Rj+—G" Vvl + E; 2.16
T 4 5O (L + 5 (V' + B (2.16)
From
~ ~ 1._ ~
R + AGhj + 595 N (L9 =0,
we have
i 1 ~ ~ ~
A340; + 5 [=9a(Lx9)j0 — 9;1(Lz 9] =0
and contracting with 5?5{ in the above equation, we have
1 -
A= — (V! + Bph. (2.17)
n
If E; is applied to both sides in (2.17), we obtain
ol = p,AS + B, (2.18)

If (2.18) is substituted into (2.16)—(2.17) and also the equality of (2.16)—(2.17) is used, the

following equation is obtained

) 1
n_lGﬂR L+ GJ( Xg)jl—§(vlvl+A§). (2.19)

From Proposition 2.2, we get
%(vwl + Al = n—GﬂR T GJ LxGji + GI'vps R,
— GIWTTY + GIY B, (2.20)
Substituting (2.18) into (2.20), we find
1 l l il 1
SV + A =& ( Lx G+ —= R+ Vsz)
+ psGTH (VO RS, + vjAf),
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from which we can write
V'R, + VA =0 (2.21)
and
, 2

Gt (LXGjl + mRﬂ + QVjBl) = Vlvl + A%. (2.22)

When (2.17) and (2.22) are evaluated together, we can write the following equation
1 2
A= -G (LXGﬂ +— R+ 2val).

It is seen that the last equation

~ ~ 1
RTjkl + AGﬁkl + 5

97 N (Lxg)u =0
is easily provided with the obtained findings which completes the proof of the necessity of the
theorem.

The sufficiency of the theorem can be easily proved by following the above calculations in

reverse.

Theorem 2.5 Let (M, J,g) be an anti-Kdihler manifold of dimension n > 2 and gv.c =
gv + VG* be the modified Riemannian extension metric on the cotangent bundle T*M. The
quadruple (T*M, gv c, \) is a gradient Riemannian soliton structure if and only if the following
conditions are satisfied

(i) A= #ijR‘k
n(n —1) 7
(i) (V) =0,
where V2 f is the Hessian operator.

Proof Let us define g;5 A (62 f) k1 as the Kulkarni-Nomizu product that will be used in
our proof, which is given as follows

@) G A (V2P = Ga(V2 )ik + Gix (V2 P — Giu(V2 )t — G (V2 f i,
(if) NV = (V2 F)j — 0L(V2 )i,
(iil) Gz A (V2 = 8LV )i — 8 (V2 f )ik,
(V) Gig A (V2 f)g = S5 (V2)a = 0 (V2 f)a,
(V) Gig A (V2 F)ig = SHV2 )k — 65(V2 f k.

All other components of these Kulkarni-Nomizu products are zero. From
Rijig + AGiji + Gij A (V2 =
we have

0=ps(ViRj,; — ViRj,)
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1 m m 2
+ §(Rijkal = R Grm) + Ga(V=f)jk

+ Gin(V? i — G (V2 )i — GV ik
+ /\(Giijl — Gilij)-
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If the last equation is contracted by G7* and after then the obtaining expression is again

contracted by G7, the following result is obtained
0 =p.G*GI(ViR}y; — Vi Riy)
—GI'Rji + Mn(n —1)
= 2(n = 1)G(V* f)z,

from which we get

1 , 2
A= 2D 1)GJlel - EGﬂ(VQf)jl.

From
Eijki + )‘éijld + 35 ANV ) =0,
we have
Rijic+ MO G — 8Gk) + 0192 ) = (Y fig = 0

and multiplying the last equation by d7, we get

1
(V2F)ik = MGy = — R
If (2.23) is placed in (2.24), the following equation is
1 ) 2 . 1
2 R il = il 2 ) R >
(V=£)ik n(n—l)G Ry + nG (V)| Gk n_lRJk.

When it is multiplied both sides of the above equation by G7*, we get
(V2£)jr = 0.

Substituting (2.25) into (2.23), we find

1 .
A= ———G'R.
n(n—1) R

(2.23)

(2.24)

(2.25)

Since the same results are obtained from other components, it is not included in the proof of

the theorem.

Conversely, by a routine calculation, we can obtain the sufficient condition of the theorem.

So the proof is completed.
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