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Abstract In this paper, the authors consider meromorphic solutions of nonhomogeneous
differential equation

f
n(f ′ + af) + Pd(z, f) = u(z)ev(z),

where n is a positive integer, a is a nonzero constant, Pd(z, f) is a differential polynomial in
f(z) of degree d with rational functions as its coefficients and d ≤ n− 1, u(z) is a nonzero
rational function, v(z) is a nonconstant polynomial with v′(z) 6= (n+1)a, v′(z) 6= −na and

v′(z) 6= −
(n+1)2

n
a. They prove that if it admits a meromorphic solution f(z) with finitely

many poles, then

f(z) = s(z)e
v(z)
n+1 and Pd(z, f) ≡ 0,

where s(z) is a rational function and sn[(n + 1)s′ + sv′] + (n + 1)asn+1 = (n + 1)u.
Using this result, they also prove that if f(z) is a transcendental entire function, then
fn(f ′ + af) + qm(f) assumes every complex number α infinitely many times, except for
a possible value qm(0), where n, m are positive integers with n ≥ m + 1 and qm(f) is a
polynomial in f(z) with degree m.
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1 Introduction

In the following, let C denote the complex plane and f(z) be a meromorphic function on C.

Throughout this paper, we assume that the reader is familiar with the basic notions of Nevan-

linna value distribution theory (see [3–4, 17–18]), such as T (r, f(z)), m(r, f(z)), N(r, f(z)), · · · .

The term S(r, f(z)) always has the property that S(r, f(z)) = o{T (r, f(z))} as r → ∞, possibly

outside an exceptional set of finite linear measure. Let f(z) and a(z) be meromorphic functions,

a(z) is said to be a small function of f(z) if and only if T (r, a(z)) = S(r, f(z)). We use S(f)

to denote the family of all meromorphic functions a(z) satisfying T (r, a(z)) = S(r, f(z)). For a

meromorphic function f(z), we define its order in terms of

ρ(f(z)) = lim
r→∞

logT (r, f(z))

log r
.
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If ρ(f(z)) <∞, then we say that f(z) is a meromorphic function of finite order. If ρ(f(z)) = ∞,

then we say that f(z) is a meromorphic function of infinite order.

Let I be a finite set of multi-indices λ = (i0, · · · , in) and let a differential polynomial

Pd(z, f) =
∑

λ∈I

aλ(z)f
i0(f ′)i1 · · · (f (n))in (1.1)

be a polynomial of f(z) and its derivatives with degree d and meromorphic functions aλ(z)

as its coefficients. Standard notations to be used below are as follows. The degree |λ| of a

single term in (1.1) will be defined by |λ| = i0 + i1 + · · ·+ in. In a natural way, the degree of

Pd(z, f) will be defined by d = max
λ∈I

|λ|. Following the above, Pd(z, f) is said to be a differential

polynomial in f(z) of degree d.

In 1964, a generalization of the theorem of Tumura-Clunie [1, 12] given by Hayman [3] states

the following theorem.

Theorem 1.1 Let n ≥ 2 be an integer and P (z, f) be a differential polynomial in f(z) of

degree ≤ n− 1. If a nonconstant meromorphic function f(z) satisfies

fn(z) + P (z, f) = g(z)

and N(r, f) +N
(

r, 1
g

)

= S(r, f), then there is a small function a(z) of f(z) such that (f(z)−

a(z))n = g(z).

It has always been an interesting and quite difficult problem to prove the existence of the

entire or meromorphic solution of a given non-linear differential equation (see [6–10, 13–15, 19,

21]) in the past few decades.

In 2013, Zhang and Liao [22] proved the following result.

Theorem 1.2 If the algebraic differential equation P (z, f) = 0, where P (z, f) is a differ-

ential polynomial in f(z) with polynomial coefficients, has only one dominant term, then it has

no admissible transcendental meromorphic solutions satisfying N(r, f) = S(r, f).

In 2014, Liao and Ye [11] considered the meromorphic solutions of the algebraic differential

equation fnf ′ +Qd(z, f) = u(z)ev(z) and obtained the following result.

Theorem 1.3 Let Qd(z, f) be a differential polynomial in f(z) of degree d with rational

function coefficients. Suppose that u(z) is a nonzero rational function and v(z) is a nonconstant

polynomial. If n ≥ d+ 1 and the differential equation

fnf ′ +Qd(z, f) = u(z)ev(z)

admits a meromorphic solution f(z) with finitely many poles, then f(z) has the following form:

f(z) = s(z)e
v(z)
n+1 and Qd(z, f) ≡ 0,

where s(z) is a rational function with sn((n+ 1)s′ + v′s) = (n+ 1)u. In particular, if u(z) is a

polynomial, then s(z) is a polynomial, too.
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At the same time, Liao and Ye [11] obtained the following theorem.

Theorem 1.4 Let f(z) be a transcendental entire function, qm(f) = bmf
m+ · · ·+ b1f + b0

be a polynomial with degree m and n be a positive integer with n ≥ m+ 1. Then f ′fn + qm(f)

assumes every complex number α infinitely many times, except for a possible value b0 = qm(0).

On the other hand, if f ′fn + qm(f) assumes b0 = qm(0) finitely many times, then qm(f) ≡ b0,

f and f ′ have only finitely many zeros.

In this paper, we change fnf ′ in Theorem 1.3 to fn(f ′+af) and prove the following result.

Theorem 1.5 Let n be a positive integer, a be a nonzero constant, and Pd(z, f) be a

differential polynomial in f(z) of degree d with rational functions as its coefficients. Suppose

that u(z) is a nonzero rational function, v(z) is a nonconstant polynomial with v′(z) 6= (n+1)a,

v′(z) 6= −na and v′(z) 6= − (n+1)2

n
a. If n ≥ d+ 1 and the differential equation

fn(f ′ + af) + Pd(z, f) = u(z)ev(z)

admits a meromorphic solution f(z) with finitely many poles, then f(z) has the following form :

f(z) = s(z)e
v(z)
n+1 and Pd(z, f) ≡ 0,

where s(z) is a rational function and

sn(z)[(n+ 1)s′(z) + s(z)v′(z)] + (n+ 1)asn+1(z) = (n+ 1)u(z).

In particular, if u(z) is a polynomial, then s(z) is a polynomial, too.

Remark 1.1 In Theorem 1.5, the conditions v′(z) 6= −na and v′(z) 6= − (n+1)2

n
a are nec-

essary, we have the following three examples to show this. But we are not sure whether the

condition v′(z) 6= (n+ 1)a is necessary or not.

Example 1.1 It is easy to check that f(z) = e−2z+1 + 1 satisfies the differential equation

f3(z)(f ′(z) + 2f(z)) + 3f(z)f ′(z)− 2 = 2e−6z+3.

In this differential equation, n = 3, a = 2 and Pd(z, f) = 3f(z)f ′(z)− 2, d = 2 ≤ n− 1, but

v′(z) = −na = −6 and the solution f(z) is not the form in Theorem 1.5.

Example 1.2 It is easy to check that f(z) = e−z + z2+1 satisfies the differential equation

f2(z)(f ′(z) + f(z))− 2(z2 + 1)(z + 1)2f(z) + (z2 + 1)2(z + 1)2 = (z + 1)2e−2z.

In this differential equation, n = 2, a = 1 and Pd(z, f) = −2(z2+1)(z+1)2f(z)+(z2+1)2(z+1)2,

d = 1 ≤ n− 1, but v′(z) = −na = −2 and the solution f(z) is not the form in Theorem 1.5.

Example 1.3 It is easy to check that f(z) = 2e−5z+ 1
5 − 1 satisfies the differential equation

f4(z)(f ′(z) + 4f(z)) + 2f ′(z)f2(z)− 5f(z)− 1 = −32e−25z+1.

In this differential equation, n = 4, a = 4 and Pd(z, f) = 2f ′(z)f2(z)−5f(z)−1, d = 3 ≤ n−1,

but v′(z) = − (n+1)2

n
a = −25 and the solution f(z) is not the form in Theorem 1.5.
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With Theorem 1.5 in hand, we get the following result similar to Theorem 1.4.

Theorem 1.6 Let f(z) be a transcendental entire function, qm(f) = bmf
m+ · · ·+ b1f + b0

be a polynomial with degree m, n be a positive integer with n ≥ m + 1 and a be a nonzero

constant. Then fn(f ′ + af) + qm(f) assumes every complex number α infinitely many times,

except for a possible value b0 = qm(0). Furthermore, if fn(f ′+af)+qm(f) assumes b0 = qm(0)

finitely many times, then qm(f) ≡ b0, f and f ′ + af have only finitely many zeros.

2 Some Lemmas

To prove the theorems, we need the following lemmas.

Lemma 2.1 (see [4]) Let k ≥ 1 be an integer and f(z) be a transcendental meromorphic

function, then

m
(

r,
f (k)(z)

f(z)

)

= S(r, f(z)).

If f(z) is of finite order of growth, then

m
(

r,
f (k)(z)

f(z)

)

= O(log r),

and if f(z) is of infinite order of growth, then

m
(

r,
f (k)(z)

f(z)

)

= O(log rT (r, f)),

outside of a possible exceptional set E of finite linear measure.

Lemma 2.2 (see [5]) Let Pd(z, f) be a differential polynomial in f(z) of degree d with

small functions of f(z) as its coefficients. Then we have

m(r, Pd(z, f)) ≤ dm(r, f) + S(r, f).

Lemma 2.3 (see [2, 16]) Let f(z) be a transcendental meromorphic function in the com-

plex plane and satisfy

fn(z)P (z, f) = Q(z, f),

where P (z, f) and Q(z, f) are polynomials in f(z) and its derivatives with meromorphic coeffi-

cients, say {aλ | λ ∈ I}, such that m(r, aλ) = S(r, f) for all λ ∈ I. If the total degree of Q(z, f)

as a polynomial in f and its derivatives is at most n, then

m(r, P (z, f)) = O(log r),

if f(z) is of finite order, and

m(r, P (z, f)) = O(log rT (r, f)),

outside of a possible exceptional set E of finite linear measure, if f(z) is of infinite order.
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Lemma 2.4 (see [17]) Let aj(z) (j = 1, 2, · · · , n) be entire functions of finite order ≤ ρ.

Let gj(z) be entire and gk(z)− gj(z) (j 6= k) be a transcendental entire function or polynomial

of degree greater than ρ. Then
n
∑

j=1

aj(z)e
gj(z) = a0(z)

holds only when

a0(z) = a1(z) = · · · = an(z) ≡ 0.

Lemma 2.5 Let n be a positive integer, a be a nonzero constant and Pd(z, f) be an algebraic

differential polynomial in f(z) of degree d ≤ n−1 with small functions of f(z) as its coefficients.

If p(z) is a small function of f(z), α(z) is a nonconstant polynomial and f(z) is a meromorphic

solution of the equation

fn(f ′ + af) + Pd(z, f) = p(z)eα(z)

and N(r, f) = S(r, f), then f(z) is a transcendental meromorphic function of finite order.

Proof Because f(z) is a meromorphic solution of the equation

fn(f ′ + af) + Pd(z, f) = p(z)eα(z),

f(z) must be transcendental.

Denote deg(α(z)) = m. By the first fundamental theorem, Lemmas 2.1–2.2 and N(r, f) =

S(r, f), we have

(n+ 1)T (r, f) = T (r, fn+1) = T
(

r,
1

fn+1

)

+ S(r, f)

= m
(

r,
1

fn(f ′ + af)
·
f ′ + af

f

)

+N
(

r,
1

fn(f ′ + af)
·
f ′ + af

f

)

+ S(r, f)

≤ m
(

r,
1

fn(f ′ + af)

)

+m
(

r,
f ′

f

)

+N
(

r,
1

fn(f ′ + af)

)

+N
(

r,
f ′

f

)

+ S(r, f)

= T
(

r,
1

fn(f ′ + af)

)

+N
(

r,
1

f

)

+N(r, f) + S(r, f)

≤ T (r, fn(f ′ + af)) +N
(

r,
1

f

)

+ S(r, f)

= m(r, fn(f ′ + af)) +N
(

r,
1

f

)

+ S(r, f)

= m(r, p(z)eα(z) − Pd(z, f)) +N
(

r,
1

f

)

+ S(r, f)

≤ m(r, p(z)eα(z)) +m(r, Pd(z, f)) +N
(

r,
1

f

)

+ S(r, f)

≤ T (r, p(z)eα(z)) + dT (r, f) + T (r, f) + S(r, f)

≤ Arm + (d+ 1)T (r, f) + S(r, f),

where A is a positive constant. Thus

(n− d)T (r, f) ≤ Arm + S(r, f)

and f(z) is of finite order.
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Lemma 2.6 (see [11]) Let f(z) be a meromorphic function. If f(z) is of infinite order,

then there exists a sequence {zk} with lim
k→∞

zk = ∞ such that {f(zk + z)}∞k=1 is not normal at

z = 0.

Lemma 2.7 (see [20]) Let F be a family of meromorphic functions on D = {|z| < 1} and

α be a real number satisfying −1 < α < 1. Then F is not normal in D if and only if there

exist :

(1) A number r, 0 < r < 1,

(2) a sequence of points zk, |zk| < r,

(3) a positive sequence ρk, lim
k→∞

ρk = 0,

(4) a sequence {f}n∈N ⊂ F such that ραkfk(zk + ρkx) → g(x) spherically uniformly on

compact subsets of C, where g(x) is a nonconstant meromorphic function of order ρ(g(x)) ≤ 2.

3 Proof of Theorem 1.5

Let f(z) be a meromorphic solution of

fn(f ′ + af) + Pd(z, f) = u(z)ev(z) (3.1)

with finitely many poles. It follows from Lemma 2.5 that f(z) is a transcendental meromorphic

function of finite order. Denote F (z) = fn(z)(f ′(z) + af(z)) and G(z) = Pd(z, f), then (3.1)

can be simplified to

F (z) +G(z) = u(z)ev(z). (3.2)

By differentiating (3.2), we have

F ′(z) +G′(z) = (u′(z) + u(z)v′(z))ev(z). (3.3)

It follows from (3.2)–(3.3) that

u(z)F ′(z)− (u′(z) + u(z)v′(z))F (z) + u(z)G′(z)− (u′(z) + u(z)v′(z))G(z) = 0. (3.4)

Next, we discuss the following two cases.

Case 1 If u(z)F ′(z)− (u′(z) + u(z)v′(z))F (z) ≡ 0, then

F ′(z)

F (z)
=
u′(z)

u(z)
+ v′(z).

By integrating the above equation, we derive

F (z) = cu(z)ev(z), (3.5)

where c is a nonzero complex number. Substituting F (z) = fn(z)(f ′(z) + af(z)) into (3.5), we

obtain

fn(z)(f ′(z) + af(z)) = cu(z)ev(z).
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From this, f(z) has only finitely many zeros. Hence,

f(z) = s(z)et(z), (3.6)

where s(z) is a rational function and t(z) is a nonconstant polynomial. Substituting (3.6) into

(3.1) and by Lemma 2.4, we get

Pd(z, f) ≡ 0

and

sn(z)ent(z)(s′(z) + s(z)t′(z) + as(z))et(z) = u(z)ev(z).

It follows from above that

(n+ 1)t(z) = v(z), sn(z)(s′(z) + s(z)t′(z) + as(z)) = u(z),

that is,

sn(z)[(n+ 1)s′(z) + s(z)v′(z)] + (n+ 1)asn+1(z) = (n+ 1)u(z).

It also implies that s(z) is a polynomial if u(z) is a polynomial.

Case 2 u(z)F ′(z)− (u′(z) + u(z)v′(z))F (z) 6≡ 0. If f(z) has only finitely many zeros, then

by the similar argument in Case 1, we have

f(z) = s(z)e
v(z)
n+1 and Pd(z, f) ≡ 0,

where s(z) is a rational function and

sn(z)[(n+ 1)s′(z) + s(z)v′(z)] + (n+ 1)asn+1(z) = (n+ 1)u(z).

Now we assume that f(z) has infinitely many zeros. By substituting F (z) = fn(z)(f ′(z)+af(z))

into (3.4), we obtain

G∗(z) = [a(u′(z) + u(z)v′(z))f2(z) + (u′(z) + u(z)v′(z)− (n+ 1)au(z))f(z)f ′(z)

− nu(z)(f ′(z))2 − u(z)f(z)f ′′(z)]fn−1(z), (3.7)

where G∗(z) = u(z)G′(z)− (u′(z)+u(z)v′(z))G(z) is a differential polynomial in f(z) of degree

d with rational functions as its coefficients. Denote

ψ(z) = a(u′(z) + u(z)v′(z))f2 + (u′(z) + u(z)v′(z)

− (n+ 1)au(z))ff ′ − nu(z)(f ′)2 − u(z)ff ′′, (3.8)

then (3.7) can be simplified to

fn−1(z)ψ(z) = G∗(z).

It follows from Lemma 2.3 and d ≤ n− 1 that

m(r, ψ(z)) = S(r, f).
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Since f(z) has finitely many poles, ψ(z) is a rational function. First, we prove ψ(z) 6≡ 0. If

ψ(z) ≡ 0, then (3.8) can be simplified to

a(u′(z) + u(z)v′(z))f2

= [(n+ 1)au(z)− (u′(z) + u(z)v′(z))]ff ′ + nu(z)(f ′)2 + u(z)ff ′′. (3.9)

Let z0 be a zero of f(z) with multiplicity m which is not a zero or pole of u(z), v(z) and

(n+1)au(z)− (u′(z) + u(z)v′(z)), then it follows from (3.9) that f ′(z0) = 0. Thus, z0 is a zero

of f(z) with multiplicity m ≥ 2. By comparing the multiplicities at z0 of both sides of (3.9), we

know that z0 is a zero of the left side of (3.9) with multiplicity 2m, and a zero of the right side

of (3.9) with multiplicity 2m− 1, which is a contradiction. Hence, ψ(z) 6≡ 0. By differentiating

(3.8), we derive

ψ′(z) = a(u′(z) + u(z)v′(z))′f2 + [2a(u′(z) + u(z)v′(z)) + (u′(z) + u(z)v′(z))′

− (n+ 1)au′(z)]ff ′ + [(u′(z) + u(z)v′(z))− (n+ 1)au(z)− nu′(z)](f ′)2

+ [(u′(z) + u(z)v′(z))− (n+ 1)au(z)− u′(z)]ff ′′

− (2n+ 1)u(z)f ′f ′′ − u(z)ff ′′′. (3.10)

Multiplying (3.8) by ψ′(z) and (3.10) by ψ(z), and then subtracting the resulting equation

(B1(z)f +B2(z)f
′ +B3(z)f

′′ +B4(z)f
′′′)f = (A1(z)f

′ +A2(z)f
′′)f ′, (3.11)

where

B1(z) = a(u′(z) + u(z)v′(z))′ψ(z)− a(u′(z) + u(z)v′(z))ψ′(z),

B2(z) = [2a(u′(z) + u(z)v′(z)) + (u′(z) + u(z)v′(z))′ − (n+ 1)au′(z)]ψ(z)

− [(u′(z) + u(z)v′(z))− (n+ 1)au(z)]ψ′(z),

B3(z) = [(u′(z) + u(z)v′(z))− (n+ 1)au(z)− u′(z)]ψ(z) + u(z)ψ′(z),

B4(z) = −u(z)ψ(z),

A1(z) = [(n+ 1)au(z) + (n− 1)u′(z)− u(z)v′(z)]ψ(z)− nu(z)ψ′(z),

A2(z) = (2n+ 1)u(z)ψ(z).

Let z1 be a zero of f(z) which is not a zero or pole of u(z), v(z) and ψ(z), then by (3.8), we

have (f ′(z1))
2 = − ψ(z1)

nu(z1)
6= 0. Thus, z1 is a simple zero of f(z). Meanwhile, z1 is a zero of

A1(z)f
′(z) +A2(z)f

′′(z) from (3.11), that is

A1(z1)f
′(z1) +A2(z1)f

′′(z1) = 0.

Because f(z) has finitely many poles,

α(z) =
A1(z)f

′(z) +A2(z)f
′′(z)

f(z)
(3.12)

has only finitely many poles. By Lemma 2.1, we obtain

m(r, α(z)) = m
(

r,
A1(z)f

′(z) +A2(z)f
′′(z)

f(z)

)

= O(log r).
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Therefore, α(z) is a rational function. (3.12) can be changed to

A1(z)f
′(z) +A2(z)f

′′(z)− α(z)f(z) = 0. (3.13)

Next, we discuss two cases.

Case 2.1 If α(z) ≡ 0, then it follows from (3.13) and v′(z) 6= (n+ 1)a that

f ′′(z)

f ′(z)
= −

A1(z)

A2(z)
=

n

2n+ 1

ψ′(z)

ψ(z)
−

n− 1

2n+ 1

u′(z)

u(z)
+

1

2n+ 1
v′(z)−

n+ 1

2n+ 1
a. (3.14)

By integrating (3.14), we get

f ′(z) = β1(z)e
v(z)−(n+1)az

2n+1 , (3.15)

where β1(z) = c1
(

ψn(z)
un−1(z)

)
1

2n+1 (c1 is a nonzero complex number) is a rational function. Differ-

entiating (3.15), we derive

f ′′(z) =
(

β′

1(z) + β1(z) ·
v′(z)− (n+ 1)a

2n+ 1

)

e
v(z)−(n+1)az

2n+1 . (3.16)

Substituting (3.15)–(3.16) into (3.8), we have

a(u′(z) + u(z)v′(z))f2 +
[

(u′(z) + u(z)v′(z)− (n+ 1)au(z))β1(z)− u(z)
(

β′

1(z) + β1(z)

·
v′(z)− (n+ 1)a

2n+ 1

)]

e
v(z)−(n+1)az

2n+1 · f − (nu(z)β2
1(z)e

2(v(z)−(n+1)az)
2n+1 + ψ(z)) = 0. (3.17)

Denote H(z) = v(z)−(n+1)az
2n+1 , then v′(z)− (n + 1)a = (2n+ 1)H ′(z). Therefore, (3.17) can be

simplified to

aa2(z)f
2(z) + a1(z)e

H(z) · f(z)− (nu(z)β2
1(z)e

2H(z) + ψ(z)) = 0,

where

a1(z) = (u′(z) + (2n+ 1)u(z)H ′(z))β1(z)− u(z)(β′

1(z) + β1(z)H
′(z)),

a2(z) = u′(z) + u(z)[(n+ 1)a+ (2n+ 1)H ′(z)].

Solving the above equation, we obtain

f(z) =
−a1(z)e

H(z) +
√

a21(z)e
2H(z) + 4aa2(z)(nu(z)β2

1(z)e
2H(z) + ψ(z))

2aa2(z)
. (3.18)

We denote

a21(z)e
2H(z) + 4aa2(z)(nu(z)β

2
1(z)e

2H(z) + ψ(z))

= (a21(z) + 4nau(z)a2(z)β
2
1(z))e

2H(z) + 4aa2(z)ψ(z)

= A(z)e2H(z) +B(z), (3.19)

where A(z) and B(z) are rational functions. If A(z) ≡ 0, then

a21(z) + 4nau(z)a2(z)β
2
1(z) ≡ 0.
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Substituting the expressions for a1(z) and a2(z) into the above equation, we get

[(u′(z) + (2n+ 1)u(z)H ′(z))2 + 4nau(z)(u′(z) + u(z)((n+ 1)a

+ (2n+ 1)H ′(z)))]β2
1(z) + u2(z)(β′

1(z) + β1(z)H
′(z))2

− 2u(z)β1(z)(u
′(z) + (2n+ 1)u(z)H ′(z))(β′

1(z) + β1(z)H
′(z)) = 0.

Since β1(z) 6= 0 and u(z) 6= 0, the above equation can be simplified to

(u′(z)

u(z)

)2

+ 4n
u′(z)

u(z)
H ′(z) + 4n2(H ′(z))2 + 4na((n+ 1)a+ (2n+ 1)H ′(z)) +

(β′

1(z)

β1(z)

)2

− 4n
β′

1(z)

β1(z)
H ′(z)− 2

u′(z)

u(z)

β′

1(z)

β1(z)
+ 4na

u′(z)

u(z)
= 0,

that is,

(u′(z)

u(z)
−
β′

1(z)

β1(z)

)2

+ 4na
u′(z)

u(z)
+ 4n(n+ 1)a2

+ 4n
(u′(z)

u(z)
−
β′

1(z)

β1(z)
+ nH ′(z) + (2n+ 1)a

)

H ′(z) = 0. (3.20)

If H(z) is a polynomial with degree > 2, then H ′(z) is a nonconstant polynomial. This is

impossible, it follows from (3.20) that the left-hand side tends to infinity as z tends to infinity,

but the right-hand side is zero. Hence, H(z) is a linear polynomial and H ′(z) is a nonzero

constant. It follows from (3.20) that the left-hand side tends to 4n(n + 1)a2 + 4n2(H ′(z))2 +

4n(2n + 1)aH ′(z) and the right-hand side is zero as z tends to infinity. If 4n(n + 1)a2 +

4n2(H ′(z))2+4n(2n+1)aH ′(z) = 0, then substituting H ′(z) = v′(z)−(n+1)a
2n+1 into this equation,

we have

n(v′(z))2 + (2n2 + 2n+ 1)av′(z) + n(n+ 1)2a2 = 0. (3.21)

It follows from (3.21) that v′(z) = −na or v′(z) = − (n+1)2

n
a, a contradiction. Therefore,

4n(n+ 1)a2 + 4n2(H ′(z))2 + 4n(2n+ 1)aH ′(z) 6= 0,

which is a contradiction. Thus, A(z) 6≡ 0. If B(z) ≡ 0, then

4aa2(z)ψ(z) ≡ 0.

Substituting the expression for a2(z) and H ′(z) = v′(z)−(n+1)a
2n+1 into the above equation, we

obtain

4a[u′(z) + u(z)((n+ 1)a+ (2n+ 1)H ′(z))]ψ(z) = 4a(u′(z) + u(z)v′(z))ψ(z) ≡ 0.

Because a 6= 0 and ψ(z) 6≡ 0, u′(z) + u(z)v′(z) ≡ 0. By integrating this equation, we have

u(z) = c2e
v(z) (c2 is a nonzero complex number), which is a contradiction. Hence, B(z) 6≡ 0. We

can get that A(z)e2H(z)+B(z) has infinitely many zeros. Now we assume that A(z)e2H(z)+B(z)
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has no simple zeros. Let z2 be a zero of A(z)e2H(z) + B(z), then e2H(z2) = −B(z2)
A(z2)

. By

differentiating A(z)e2H(z) +B(z), we derive (A′(z) + 2A(z)H ′(z))e2H(z) +B′(z). Meanwhile,

(A′(z2) + 2A(z2)H
′(z2))e

2H(z2) +B′(z2) = (A′(z2) + 2A(z2)H
′(z2))

(

−
B(z2)

A(z2)

)

+B′(z2) = 0.

The above equation can be changed to

−
A′(z2)

A(z2)
B(z2)− 2B(z2)H

′(z2) +B′(z2) = 0.

−A′(z)
A(z) B(z)− 2B(z)H ′(z)+B′(z) is a rational function and not equal to zero. If −A′(z)

A(z) B(z)−

2B(z)H ′(z) + B′(z) ≡ 0, then B(z) = c3A(z)e
2H(z) (c3 is a nonzero complex number), which

is a contradiction. Thus, −A′(z)
A(z) B(z)− 2B(z)H ′(z) + B′(z) 6≡ 0 and it has only finitely many

zeros. This contradicts the fact that A(z)e2H(z) + B(z) has infinitely many zeros. Hence,

A(z)e2H(z) + B(z) has a simple zero z3 at least, and it is an algebraic branching point of
√

A(z)e2H(z) +B(z). Furthermore, it follows from (3.18) that z3 is also an algebraic branching

point of f(z). It contradicts the fact that f(z) is a meromorphic function.

Case 2.2 If α(z) 6≡ 0, then we also have

α(z) =
B1(z)f(z) +B2(z)f

′(z) +B3(z)f
′′(z) +B4(z)f

′′′(z)

f ′(z)
(3.22)

from (3.11)–(3.12). (3.22) can be changed to

B4(z)f
′′′(z) +B3(z)f

′′(z) + (B2(z)− α(z))f ′(z) +B1(z)f(z) = 0. (3.23)

By differentiating (3.13), we derive

A2(z)f
′′′(z) + (A′

2(z) +A1(z))f
′′(z) + (A′

1(z)− α(z))f ′(z)− α′(z)f(z) = 0. (3.24)

It follows from (3.23)–(3.24) and the expressions for A2(z), B4(z) that

[(2n+ 1)B3(z) +A′

2(z) +A1(z)]f
′′(z) + [(2n+ 1)(B2(z)− α(z)) +A′

1(z)− α(z)]f ′(z)

+ [(2n+ 1)B1(z)− α′(z)]f(z) = 0. (3.25)

By eliminating f ′′(z) from (3.13) and (3.25), we obtain

Q1(z)f
′(z) +Q2(z)f(z) = 0, (3.26)

where

Q1(z) = [(2n+ 1)(B2(z)− α(z)) +A′

1(z)− α(z)]A2(z)

− [(2n+ 1)B3(z) +A′

2(z) +A1(z)]A1(z), (3.27)

Q2(z) = [(2n+ 1)B3(z) +A′

2(z) +A1(z)]α(z) + [(2n+ 1)B1(z)− α′(z)]A2(z). (3.28)

We assume that Q1(z) ≡ 0, then Q2(z) ≡ 0. By (3.27)–(3.28), we have

(2n+ 1)(B2(z)− α(z)) +A′

1(z)− α(z)

A1(z)
=

(2n+ 1)B3(z) +A′

2(z) +A1(z)

A2(z)
(3.29)
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and

(2n+ 1)B3(z) + A′

2(z) +A1(z)

A2(z)
=
α′(z)− (2n+ 1)B1(z)

α(z)
. (3.30)

Combining the expressions for A1(z), A2(z) and B3(z), (3.29)–(3.30) can be changed to

(2n+ 2)
α(z)

A1(z)
= (2n+ 1)

B2(z)

A1(z)
+
A′

1(z)

A1(z)
−
A′

2(z)

A2(z)
−

n− 1

2n+ 1

u′(z)

u(z)
−

n+ 1

2n+ 1

ψ′(z)

ψ(z)

+
2n

2n+ 1
((n+ 1)a− v′(z))

and

(2n+ 1)
B1(z)

α(z)
=
α′(z)

α(z)
−
A′

2(z)

A2(z)
−

n− 1

2n+ 1

u′(z)

u(z)
−

n+ 1

2n+ 1

ψ′(z)

ψ(z)
+

2n

2n+ 1
((n+ 1)a− v′(z)).

Multiplying the above two equations, we get

(2n+ 2)(2n+ 1)
B1(z)

A1(z)

=
[

(2n+ 1)
B2(z)

A1(z)
+
A′

1(z)

A1(z)
−
A′

2(z)

A2(z)
−

n− 1

2n+ 1

u′(z)

u(z)
−

n+ 1

2n+ 1

ψ′(z)

ψ(z)

+
2n

2n+ 1
((n+ 1)a− v′(z))

]

·
[α′(z)

α(z)
−
A′

2(z)

A2(z)
−

n− 1

2n+ 1

u′(z)

u(z)

−
n+ 1

2n+ 1

ψ′(z)

ψ(z)
+

2n

2n+ 1
((n+ 1)a− v′(z))

]

. (3.31)

It follows from the expressions for A1(z), B1(z) and B2(z) that

B1(z)

A1(z)
=

a(u′ + uv′)′ψ − a(u′ + uv′)ψ′

[(n+ 1)au+ nu′ − (u′ + uv′)]ψ − nuψ′

=
a
(u′+uv′)′

u′+uv′ − aψ
′

ψ

(n+ 1)a u
u′+uv′ + n u′

u′+uv′ − 1− n u
u′+uv′

ψ′

ψ

=
a
(u′+uv′)′

u′+uv′ − aψ
′

ψ

(n+ 1)a 1
u′

u
+v′

+ n
u′

u
u′

u
+v′

− 1− n 1
u′

u
+v′

ψ′

ψ

(3.32)

and

B2(z)

A1(z)
=

[2a(u′ + uv′) + (u′ + uv′)′ − (n+ 1)au′]ψ − [(u′ + uv′)− (n+ 1)au]ψ′

[(n+ 1)au+ nu′ − (u′ + uv′)]ψ − nuψ′

=
2a+ (u′+uv′)′

u′+uv′ − (n+ 1)a u′

u′+uv′ −
ψ′

ψ
+ (n+ 1)a u

u′+uv′
ψ′

ψ

(n+ 1)a u
u′+uv′ + n u′

u′+uv′ − 1− n u
u′+uv′

ψ′

ψ

=
2a+ (u′+uv′)′

u′+uv′ − (n+ 1)a
u′

u
u′

u
+v′

− ψ′

ψ
+ (n+ 1)a 1

u′

u
+v′

ψ′

ψ

(n+ 1)a 1
u′

u
+v′

+ n
u′

u
u′

u
+v′

− 1− n 1
u′

u
+v′

ψ′

ψ

. (3.33)

If v(z) is a linear polynomial, then v′(z) is a nonzero constant. Because v′(z) 6= (n + 1)a, by

(3.32)–(3.33), we have B1(z)
A1(z)

→ 0 and B2(z)
A1(z)

→ 2a
(n+1)a

v′
−1

as z tends to infinity. Meanwhile, it
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follows from (3.31) that the left-hand side tends to zero and the right-hand side tends to

2(2n+ 1)a
(n+1)a
v′

− 1

2n

2n+ 1
((n+ 1)a− v′) +

[ 2n

2n+ 1
((n+ 1)a− v′)

]2

.

Now we assume that

2(2n+ 1)a
(n+1)a
v′

− 1

2n

2n+ 1
((n+ 1)a− v′) +

[ 2n

2n+ 1
((n+ 1)a− v′)

]2

= 0, (3.34)

then

(v′(z)− (n+ 1)a)2 = −
(2n+ 1)2

n
av′(z). (3.35)

It follows from (3.35) that

n(v′(z))2 + (2n2 + 2n+ 1)av′(z) + n(n+ 1)2a2 = 0. (3.36)

By (3.36), we get v′(z) = −na or v′(z) = − (n+1)2

n
a. This contradicts the condition of the

theorem. Hence, 2(2n+1)a
(n+1)a

v′
−1

2n
2n+1 ((n+1)a−v′)+[ 2n

2n+1 ((n+1)a−v′)]2 6= 0, which is a contradiction.

If v(z) is a polynomial with degree ≥ 2, then v′(z) is a nonconstant polynomial. By (3.32) and

(3.33), we have B1(z)
A1(z)

→ 0 and B2(z)
A1(z)

→ −2a as z tends to infinity. Meanwhile, it follows from

(3.31) that the left-hand side tends to zero and the right-hand side tends to infinity, this is

impossible.

This shows that Q1(z) 6≡ 0. By (3.26), we have

f ′(z)

f(z)
= −

Q2(z)

Q1(z)
.

Since f ′(z)
f(z) has only simple poles, Q2(z)

Q1(z)
also has only simple poles. Thus, f(z) = s(z)et(z),

where s(z) is a rational function and t(z) is a polynomial. Substituting the expression for f(z)

into (3.1), we obtain

sn(z)ent(z)[(s′(z) + s(z)t′(z))et(z) + as(z)et(z)] + Pd(z, f) = u(z)ev(z), (3.37)

where Pd(z, f) =
d
∑

i=0

qi(z)e
it(z), qi(z) (i = 0, 1, · · · , d) are rational functions. By (3.37) and

Lemma 2.4, we get Pd(z, f) ≡ 0, (n + 1)t(z) = v(z) and sn(z)[(n+ 1)s′(z) + s(z)v′(z)] + (n+

1)asn+1(z) = (n+ 1)u(z). In particular, s(z) is a polynomial if u(z) is a polynomial.

This completes the proof of Theorem 1.5.

4 Proof of Theorem 1.6

We prove Theorem 1.6 by contradiction.

Suppose that fn(f ′+af)+qm(f) assumes a complex number α1 6= b0 = qm(0) finitely many

times. We discuss the following two cases.

Case 1 If f(z) is of finite order, then f(z) is an entire function solution of the following

differential equation:

fn(z)(f ′(z) + af(z)) + qm(f(z))− α1 = α(z)eβ(z),
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where α(z) and β(z) are polynomials. Hence, it follows from Theorem 1.5 that

f(z) = γ(z)e
β(z)
n+1 and qm(f(z))− α1 ≡ 0,

where γ(z) is a polynomial, and from which Lemma 2.4 implies qm(0)−α1 = b0−α1 = 0. This

is a contradiction.

Case 2 If f(z) is of infinite order, then it follows from Lemma 2.6 that there exists a

sequence {zk} with lim
k→∞

zk = ∞ such that {gk(z) = f(zk + z)}∞k=1 is not normal at z = 0.

Thus, by Lemma 2.7, there exists a sequence of complex points {wk}
∞

k=1 with |wk| < 1 and a

positive sequence of ρk with lim
k→∞

ρk = 0 such that

hk(z) = ρ
−

1
n+1

k gk(wk + ρkz) = ρ
−

1
n+1

k f(wk + zk + ρkz) → g(z)

spherically uniformly on compact subsets of C, where g(z) is a nonconstant entire function of

order ρ(g(z)) ≤ 2. Hence,

Fk(z) = fn(wk + zk + ρkz)(f
′(wk + zk + ρkz) + af(wk + zk + ρkz)) + qm(f(wk + zk + ρkz))

= hnk (z)(h
′

k(z) + aρkh(z)) + bmρ
m

n+1

k hmk (z) + · · ·+ b1ρ
1

n+1

k hk(z) + b0

converges to gn(z)g′(z) + b0 spherically uniformly on compact subsets of C. Next, we consider

two cases.

Case 2.1 We assume y0 is a zero of gn(z)g′(z) + b0 −α1. By Hurwitz’s theorem, there are

a sequence of complex numbers {yk} and a sufficiently large integer N such that

Fk(yk)− α1 = 0, k ≥ N and lim
k→∞

yk = y0.

Therefore

fn(xk)(f
′(xk) + af(xk)) + qm(f(xk))− α1 = 0,

where xk = wk + zk + ρkyk. Because |wk| < 1, lim
k→∞

zk = ∞, lim
k→∞

ρk = 0 and lim
k→∞

yk = y0, we

can choose subsequences {zki}, {wki} and {ρki} such that

|zki − zkj | > 3 (ki 6= kj), |wki | < 1 and |ρkiyki | <
1

2
.

Hence, xki = wki + zki + ρkiyki (i = 1, 2, · · · ) are distinct zeros of fn(z)(f ′(z) + af(z)) +

qm(f(z))− α1. This is a contradiction.

Case 2.2 If gn(z)g′(z) + b0 − α1 does not have a zero, then g(z) is a transcendental entire

function. Since ρ(g(z)) ≤ 2, g(z) is a solution of the differential equation

gn(z)g′(z) + b0 − α1 = eµ(z),

where µ(z) is a polynomial. From Theorem 1.3 (see [11]), we have b0 − α1 = 0, which is a

contradiction. Thus, fn(z)(f ′(z) + af(z)) + qm(f(z)) takes every complex number α infinitely

many times, except for a possible value b0 = qm(0).
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Furthermore, if fn(z)(f ′(z) + af(z)) + qm(f(z)) assumes b0 = qm(0) finitely many times,

then

fn(z)(f ′(z) + af(z)) + qm(f(z))− qm(0)

= f(z)[fn−1(z)(f ′(z) + af(z)) + bmf
m−1(z) + · · ·+ b1]

has only finitely many zeros. Hence, f(z) and fn−1(z)(f ′(z) + af(z)) + bmf
m−1(z) + · · ·+ b1

have only finitely many zeros. That is, fn−1(z)(f ′(z) + af(z)) + bmf
m−1(z) + · · · + b1 takes

the value 0 finitely many times. By similar arguments as we have done with fn(z)(f ′(z) +

af(z)) + qm(f(z)) assumes α = 0 finitely many times above and we got b0 = α. Thus, from

fn−1(z)(f ′(z)+af(z))+bmf
m−1(z)+ · · ·+b1 takes the value 0 finitely many times that b1 = 0.

Next, by f2(z)(fn−2(z)(f ′(z)+af(z))+bmf
m−2+· · ·+b2) has only finitely many zeros, we have

b2 = 0. Continuing the arguments, we can get b1 = b2 = · · · = bm = 0. Hence, qm(f(z)) ≡ b0

and fn(z)(f ′(z)+ af(z)) has only finitely many zeros, so f(z) and f ′(z)+ af(z) also have only

finitely many zeros.

This completes the proof of Theorem 1.6.

Finally, it follows from the proof of Theorem 1.6 that the following corollary holds.

Corollary 4.1 Let F be a family of holomorphic functions in a domain D, qm(f) = bmf
m+

· · ·+ b1f + b0 be a polynomial with degree m, n be positive integer with n ≥ m+ 1 and a be a

nonzero constant. If fn(f ′ + af) + qm(f) dose not assume a complex number α 6= qm(0) for

every function f ∈ F , then F is a normal family in the domain D.
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