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Abstract In this paper, the authors consider meromorphic solutions of nonhomogeneous
differential equation

I +af) + Palz, ) = u(z)e”,
where n is a positive integer, a is a nonzero constant, Py(z, f) is a differential polynomial in
f(2) of degree d with rational functions as its coefficients and d < n — 1, u(z) is a nonzero
rational function, v(z) is a nonconstant polynomial with v/(z) # (n+1)a, v'(z) # —na and

v'(2) # _mA? They prove that if it admits a meromorphic solution f(z) with finitely

many poles, then

flz) = s(z)ez(_ﬁ and Py(z, f) =0,
where s(z) is a rational function and s™[(n + 1)s’ + sv'] + (n + 1)as™™ = (n + Du.
Using this result, they also prove that if f(z) is a transcendental entire function, then
M (f" + af) + qgm(f) assumes every complex number « infinitely many times, except for
a possible value ¢, (0), where n, m are positive integers with n > m + 1 and ¢m (f) is a
polynomial in f(z) with degree m.

Keywords Non-linear differential equations, Differential polynomial, Meromorphic
functions, Entire functions, Nevanlinna theory, Normal family
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1 Introduction

In the following, let C denote the complex plane and f(z) be a meromorphic function on C.

Throughout this paper, we assume that the reader is familiar with the basic notions of Nevan-
linna value distribution theory (see [3—4, 17-18]), such as T'(r, f(z)), m(r, f(2)), N(r, f(2)), - - -

The term S(r, f(z)) always has the property that S(r, f(2)) = o{T(r, f(2))} as r — oo, possibly
outside an exceptional set of finite linear measure. Let f(z) and a(z) be meromorphic functions,
a(z) is said to be a small function of f(z) if and only if T'(r,a(2)) = S(r, f(z)). We use S(f)
to denote the family of all meromorphic functions a(z) satisfying T'(r,a(z)) = S(r, f(z)). For a

meromorphic function f(z), we define its order in terms of

——log T'(r, f(2))
plf(2)) = T A5 B
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If p(f(2)) < oo, then we say that f(z) is a meromorphic function of finite order. If p(f(z)) = oo,
then we say that f(z) is a meromorphic function of infinite order.

Let I be a finite set of multi-indices A = (ig, - ,4,) and let a differential polynomial

=S (@) f ()i (f)in (1.1)
Ael
be a polynomial of f(z) and its derivatives with degree d and meromorphic functions a(z)
as its coefficients. Standard notations to be used below are as follows. The degree |A| of a
single term in (1.1) will be defined by |A| =49 + 41 + - -+ + i,. In a natural way, the degree of
Py(z, f) will be defined by d = max |A|. Following the above, Py(z, f) is said to be a differential
polynomial in f(z) of degree d.
In 1964, a generalization of the theorem of Tumura-Clunie [1, 12] given by Hayman [3] states

the following theorem.

Theorem 1.1 Let n > 2 be an integer and P(z, f) be a differential polynomial in f(2) of

degree < n — 1. If a nonconstant meromorphic function f(z) satisfies

f"(2)+ Pz, f) = 9(2)

and N(r, f) + N (r, 5) S(r, f), then there is a small function a(z) of f(z) such that (f(z) —
a(z))" = g(2).

It has always been an interesting and quite difficult problem to prove the existence of the
entire or meromorphic solution of a given non-linear differential equation (see [6-10, 13-15, 19,

21]) in the past few decades.
In 2013, Zhang and Liao [22] proved the following result.

Theorem 1.2 If the algebraic differential equation P(z, f) = 0, where P(z, f) is a differ-
ential polynomial in f(z) with polynomial coefficients, has only one dominant term, then it has

no admissible transcendental meromorphic solutions satisfying N(r, f) = S(r, f).

In 2014, Liao and Ye [11] considered the meromorphic solutions of the algebraic differential
equation f"f + Qu(z, f) = u(z)e®) and obtained the following result.

Theorem 1.3 Let Qu(z, f) be a differential polynomial in f(z) of degree d with rational
function coefficients. Suppose that u(z) is a nonzero rational function and v(z) is a nonconstant

polynomial. If n > d+ 1 and the differential equation
I+ Qalz, ) = u(z)e”

admits a meromorphic solution f(z) with finitely many poles, then f(z) has the following form:

f(z)=s(z)en T and Qu(z, f) =0,

where s(z) is a rational function with s™((n+ 1)s’ +v's) = (n+ 1)u. In particular, if u(z) is a

polynomial, then s(z) is a polynomial, too.
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At the same time, Liao and Ye [11] obtained the following theorem.

Theorem 1.4 Let f(z) be a transcendental entire function, ¢um(f) = bm ™+ +b1f +bo
be a polynomial with degree m and n be a positive integer with n > m + 1. Then f'f™ + qm(f)
assumes every complex number o infinitely many times, except for a possible value by = ¢, (0).
On the other hand, if f'f™ + qm(f) assumes by = ¢, (0) finitely many times, then qm(f) = bo,

f and f' have only finitely many zeros.
In this paper, we change f™f’ in Theorem 1.3 to f™(f’+af) and prove the following result.

Theorem 1.5 Let n be a positive integer, a be a nonzero constant, and Py(z,f) be a
differential polynomial in f(z) of degree d with rational functions as its coefficients. Suppose
that u(z) is a nonzero rational function, v(z) is a nonconstant polynomial with v'(z) # (n+1)a,
v'(2) # —na and V'(z) # _(nt)? If n > d+1 and the differential equation

F(f 4 af) + Palz, f) = u(z)e’®

admits a meromorphic solution f(z) with finitely many poles, then f(z) has the following form:

f(z) =s(z)em and  FPy(z, f) =0,
where s(2) i a rational function and
s"(2)[(n 4+ 1)8'(2) + s(2)v' (2)] + (n + Das" T (2) = (n + Du(z).
In porticular, if u(2) is & polynomial, then s(z) is a polynomial, too.

2
Remark 1.1 In Theorem 1.5, the conditions v/(z) # —na and v'(z) # —@a are nec-
essary, we have the following three examples to show this. But we are not sure whether the

condition v’(z) # (n + 1)a is necessary or not.

Example 1.1 It is easy to check that f(z) = e2**1 4 1 satisfies the differential equation

P (2) +2f(2) +3F(2)f (2) — 2 = 26713,

In this differential equation, n = 3, a = 2 and Py(z, f) =3f(2)f'(z) =2, d=2 <n—1, but
v'(z) = —na = —6 and the solution f(z) is not the form in Theorem 1.5.

Example 1.2 It is easy to check that f(z) = e™* + 22 + 1 satisfies the differential equation
PR+ f(2) =222 + 1)z + 1) f(2) + (22 + 1)* (2 +1)* = (2 + 1)% .

In this differential equation, n = 2, a = 1 and Py(z, f) = —2(22+1)(2+1)2f(2)+(22+1)?(2+1)?,
d=1<n-1,but v(2) = —na = —2 and the solution f(z) is not the form in Theorem 1.5.

Example 1.3 It is easy to check that f(z) = 2¢~%**5 — 1 satisfies the differential equation
FHRF (2) + 4f(2) +2f(2) f*(2) = 5f(2) — 1 = —32e7 2L,

In this differential equation, n = 4, a = 4 and Py(z, f) = 2f'(2)f%(z) =5f(2) —1,d =3 <n—1,
but v'(z) = —@a = —25 and the solution f(z) is not the form in Theorem 1.5.
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With Theorem 1.5 in hand, we get the following result similar to Theorem 1.4.

Theorem 1.6 Let f(z) be a transcendental entire function, ¢m(f) = bm ™+ +b1f +bo
be a polynomial with degree m, n be a positive integer with n > m + 1 and a be a nonzero
constant. Then f™(f' + af) + qn(f) assumes every complex number « infinitely many times,
except for a possible value by = G, (0). Furthermore, if f"(f'+af)+qm(f) assumes by = ¢ (0)
finitely many times, then g, (f) = bo, [ and '+ af have only finitely many zeros.

2 Some Lemmas

To prove the theorems, we need the following lemmas.

Lemma 2.1 (see [4]) Let k > 1 be an integer and f(z) be a transcendental meromorphic

function, then

m(r, f;k()z()z)) =5(r, f(2)).

If f(2) is of finite order of growth, then

and if f(z) is of infinite order of growth, then

m(r f®(2)
T f(2)

outside of a possible exceptional set E of finite linear measure.

) = OllogrT(r. £)).

Lemma 2.2 (see [5]) Let Py(z, f) be a differential polynomial in f(z) of degree d with

small functions of f(2) as its coefficients. Then we have
m(r, Fa(z, f)) < dm(r, f) + S(r, f).

Lemma 2.3 (see [2, 16]) Let f(z) be a transcendental meromorphic function in the com-

plex plane and satisfy
[ (2)P(z f) = Q(z, f),

where P(z, f) and Q(z, f) are polynomials in f(z) and its derivatives with meromorphic coeffi-
cients, say {ax | A € I}, such that m(r,ax) = S(r, f) for all X € I. If the total degree of Q(z, f)

as a polynomial in f and its derivatives is at most n, then
m(r, P(z, f)) = O(logr),
if f(z) is of finite order, and
m(r, P(z, f)) = O(log rT'(r, f)),

outside of a possible exceptional set E of finite linear measure, if f(2) is of infinite order.
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Lemma 2.4 (see [17]) Let aj(z) (j = 1,2,---,n) be entire functions of finite order < p.
Let g;(z) be entire and gi(z) — g;(2) (j # k) be a transcendental entire function or polynomial

of degree greater than p. Then

n

Y a;(2)e%?) = ag(2)

j=1
holds only when
ap(z) =a1(z) = =an(z) =0.
Lemma 2.5 Letn be a positive integer, a be a nonzero constant and Py(z, f) be an algebraic
differential polynomial in f(z) of degree d < n—1 with small functions of f(z) as its coefficients.
If p(2) is a small function of f(z), a(z) is a nonconstant polynomial and f(z) is a meromorphic

solution of the equation
P+ af) + Pa(z, f) = p(z)e*®

and N(r,f) = S(r, f), then f(z) is a transcendental meromorphic function of finite order.

Proof Because f(z) is a meromorphic solution of the equation

U+ af) + Palz, f) = p(2)e™®),

f(2) must be transcendental.
Denote deg(a(z)) = m. By the first fundamental theorem, Lemmas 2.1-2.2 and N(r, f) =
S(r, f), we have

(n+nﬂnﬂ:T@jHU:1@3%ﬁ)+ﬂnﬁ

B 1 [ taf 1 [ t+af
‘m(“f"<ff+af> 7 )+N(“fn<f/+af> 7

) +56.1)
Sm(r,m) —I—m(r,? +N(r,m) —I—N(T,f?/) +8(r, f)
)

:TGFWFIES )+Nmﬁ+smﬁ

<T(r, f™"(f +af)) + N(T‘,
:nunﬂmf+aﬁ)+w(n

=, p(2)e™® — Pa(z, ) %) +S(r, f)

7)+50.0)
< T(r,p(2)e® ) +dT(r, f) +T(r, f) + S(r, f)
< Arm+(d+1)T(T‘,f)+S(7’,f)7

r’
< m(r,p(z)eo‘(z)) +m(r, Pi(z, f)) + N(

where A is a positive constant. Thus

(n—=d)T(r,f) < Ar™ 4+ S(r, f)

and f(z) is of finite order.
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Lemma 2.6 (see [11]) Let f(z) be a meromorphic function. If f(z) is of infinite order,
then there exists a sequence {zj} with k&ngozk = oo such that {f(zr + 2)}32, is not normal at
z=0.

Lemma 2.7 (see [20]) Let & be a family of meromorphic functions on D = {|z| < 1} and
a be a real number satisfying —1 < a < 1. Then F is not normal in D if and only if there
exist:

(1

) A number r, 0 <r <1,
(2) a sequence of points zi, |zx| < T,
)

(3) a positive sequence py, klim pr =0,
—00
(4) a sequence {f}nen C F such that pf fr(zi + prx) — g(x) spherically uniformly on

compact subsets of C, where g(x) is a nonconstant meromorphic function of order p(g(x)) < 2.

3 Proof of Theorem 1.5
Let f(z) be a meromorphic solution of
F(f' + af) + Pa(z, f) = u(z)e"® (3.1)

with finitely many poles. It follows from Lemma 2.5 that f(z) is a transcendental meromorphic
function of finite order. Denote F(z) = f™(2)(f'(2) + af(z)) and G(z) = Pu(z, f), then (3.1)

can be simplified to
F(z) + G(z) = u(z)e"®. (3.2)
By differentiating (3.2), we have
F'(2) 4+ G'(2) = (0'(2) + u(z)v'(2))e" ). (3.3)
It follows from (3.2)(3.3) that
u(2)F'(2) — (0 (2) + u(2)v' (2))F(2) + u(2)G'(2) — (W' (2) + u(2)0'(2))G(z) = 0. (3.4)

Next, we discuss the following two cases.
Case 1 If u(z)F'(z) — (v/(2) + u(2)v'(2))F(z) = 0, then

Fiz) _ ()

By integrating the above equation, we derive
F(z) = cu(z)e"®, (3.5)

where ¢ is a nonzero complex number. Substituting F(z) = f(2)(f'(z) + af(z)) into (3.5), we

obtain

M 2)(f(2) + af(2)) = cu(z)e’™.
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From this, f(z) has only finitely many zeros. Hence,
f(z) = s(2)e'), (3.6)

where s(z) is a rational function and ¢(z) is a nonconstant polynomial. Substituting (3.6) into
(3.1) and by Lemma 2.4, we get

and
§"(2)e™ @ (' (2) + s(2)t' (2) + as(2))e!® = u(z)ev ).

It follows from above that
(n+1Dt(z) =v(z), s"(2)(s'(2) +s(2)t'(2) +as(z)) = u(z),

that is,
s"(2)[(n 4+ 1)8'(2) + s(2)v' (2)] + (n + Das" T (2) = (n + Du(z).
It also implies that s(z) is a polynomial if u(z) is a polynomial.
Case 2 u(z)F'(z) — (v (2) + u(2)v'(2))F(z) £ 0. If f(2) has only finitely many zeros, then

by the similar argument in Case 1, we have

f(z) =s(z)entt and Py(z, f) =0,
where s(z) is a rational function and
s"(2)[(n +1)s'(2) + ()0 (2)] + (n + 1)as" " (2) = (n+ Du(2).

Now we assume that f(z) has infinitely many zeros. By substituting F(z) = f™(2)(f"(2)+af(z))
into (3.4), we obtain
G*(2) = [a(u'(2) + u(2)v'(2)) f2(2) + (' () + u(2)v'(2) = (n + Dau(2)) f(2) f'(2)

—nu(z)(f'(2))* = u(2) f(2) " ()" (2), (3.7)
where G*(z) = u(2)G'(z) — (v/(2) + u(2)v'(2))G(2) is a differential polynomial in f(z) of degree
d with rational functions as its coefficients. Denote

U(2) = a(W'(2) + u(2)v' () f* + (W' (2) + u(2)v'(2)
= (n+ Dau(2) f ' = nu(z)(f)? = ul=)f ", (3.8)
then (3.7) can be simplified to
@) (z) = G (2).

It follows from Lemma 2.3 and d < n — 1 that
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Since f(z) has finitely many poles, 1¥(z) is a rational function. First, we prove ¥(z) # 0. If
¥(z) =0, then (3.8) can be simplified to

a(u'(2) + u(2)v'(2)) f?
= [(n+ Dau(z) — (u'(2) + u(2)0" () +nuz)(f)? +ul2) f . (3.9)
Let zyp be a zero of f(z) with multiplicity m which is not a zero or pole of u(z), v(z) and
(n+ 1Dau(z) — (u'(2) + u(2)v'(2)), then it follows from (3.9) that f’(z9) = 0. Thus, z is a zero
of f(z) with multiplicity m > 2. By comparing the multiplicities at zo of both sides of (3.9), we
know that z is a zero of the left side of (3.9) with multiplicity 2m, and a zero of the right side

of (3.9) with multiplicity 2m — 1, which is a contradiction. Hence, t(z) # 0. By differentiating
(3.8), we derive

V' (2) = a(u(2) + u(2)v'(2)) 2 + 2a(u'(2) + u(2)v'(2)) + (u'(2) + u(2)v' ()
= (n+ Da' ()] '+ [(u'(2) + u(2)v'(2)) = (n + Dau(z) — nu'(2))(f')?
+[(w'(2) + u(2)v'(2)) = (n + Dau(z) — u'(2)1f 1"

— @n+ Du() f'f" —ulz)f . (3.10)
Multiplying (3.8) by ¢’(z) and (3.10) by t¥(z), and then subtracting the resulting equation
(Bi(2)f + Ba(2)f" + Bs(2) f" + Ba(2) f") f = (A1 (2) f" + A2(2) ") f, (3.11)

where

W' ()Y (),
) = (n+ aw (2)]¥(2)

Bi(z) = a(u/(2) + u(2)v'(2)) ¥ (2) — a(u'(2) + u(z
u(2)v'(2)) + (u'(2) + u(2)v' (2
) —

(2)0'(2)) = (n + Dau(2)]Y'(2),
Bs(2) = [(u'(2) + u(2)v'(2)) = (n + Dau(z) — u'(2)[(2) + u(2)¢' (),
Bu(2) = —u(2)(2),
A1(2) = [(n + Dau(z) + (n — D' (z) — w(2)v' (2)]$(2) — nu(z)y'(2),
Az(2) = 2n+ Du(2)¢(2)

Let 21 be a zero of f(z) which is not a zero or pole of u(z), v(z) and ¥ (z), then by (3.8), we
have (f'(z1))? = —nu(zzll)) # 0. Thus, z; is a simple zero of f(z). Meanwhile, z; is a zero of

A1(2)f'(2) + Aa(2) f"(2) from (3.11), that is
Ai(21)f'(z1) + Az2(21) [ (z1) = 0.

Because f(z) has finitely many poles,

A1 (2)f'(2) + A2(2) 1" (2)
f(z)

has only finitely many poles. By Lemma 2.1, we obtain

A1(2)f'(2) + A2(2) f"(2)
f(z)

a(z) = (3.12)

m(r,a(z)) = m(r,

) = O(logr).
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Therefore, a(z) is a rational function. (3.12) can be changed to

A1(2)[f'(2) + A2(2) " (2) — a(2) f(2) = 0. (3.13)

Next, we discuss two cases.
Case 2.1 If a(z) =0, then it follows from (3.13) and v'(z) # (n + 1)a that

f”(z):_Al(z): n Pz) n-1 u’(z)+ 1 V(z) - n—|—1a
1(2) As(z)  2n+14(z) 2n+1u(z) 2n+1 2n+1""

(3.14)

By integrating (3.14), we get

v(z)—(n+1l)az

f(z) = Bi(z)e 2, (3.15)

n 1
where 51(z) = ¢ (uff,%) 2n+1 (¢ is a nonzero complex number) is a rational function. Differ-

entiating (3.15), we derive

V)~ (n+ oy e

1) = (Bi2) + 4i() - ==

Substituting (3.15)—(3.16) into (3.8), we have
alu () + u(2) ()2 + (0 (2) + u(=) (2) = (0 + Dau(2))81(2) — u(z) (81 (2) + 81 2)

v'(2) — (n+1)a\] »@-(+az 2(v(z)—(n+1)az)
. %)}e it f — (nu(2)B3(2)e Zn+l +¥(z)) =0. (3.17)

(3.16)

Denote H(z) = ”('Z);(L%)az, then v'(z) — (n 4+ 1)a = (2n + 1)H'(2). Therefore, (3.17) can be

simplified to

aas(2) f2(2) + ar(2)e™P - f(2) = (nu(2) 57 (2)e* ") + 9 (2)) =

where

a1(z) = (W' (2) + (2n + Du(2)H'(2))B1(2) — u(2)(B1(2) + Bi(2)H'(2)),
az(z) = u'(2) +u(z)[(n+ 1)a+ (2n + 1)H'(2)].

Solving the above equation, we obtain

—a1(2)e"® + /a3 ()P + daaz(z) (nu(2) B ()" + $(2))

f(z) = 20a2(2) (3.18)
We denote
ai(2)e*™) + daas(2) (nu(2) 87 (2)e* ) + 4 (2))
= (a}(2) + 4nau(z)as(2) 87 (2))e* ) + daas(2)(2)
= A(2)e*") + B(2), (3.19)

where A(z) and B(z) are rational functions. If A(z) =0, then

a3(z) + dnau(z)az(2)Bi(2) =
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Substituting the expressions for a;(z) and az2(2) into the above equation, we get
(W' (2) + (2n + Du(2)H'())* + dnau(z)(v'(2) + u(2)((n + La

+ (20 + 1)H'(2)))183 (2) + u?(2) (B1(2) + Br(2)H' (2))?
= 2u(2)p1(2) (W (2) + (2n + Du(z) H'(2))(B1(2) + P1(2) H'(2)) = 0.

Since 1(z) # 0 and u(z) # 0, the above equation can be simplified to

UI(Z) 2 nu’(z) (4 n2(H'(2))2 nal(n a n (4 ﬁ{(z) 2
() gy ')+ 4n?(H'(2)” + dna((n + Da+ (20 + DH'(2)) + (51 5)
B e @B W)
RO S & WA R e
that is,
W) BN W)
(u(z) Bl(z)) +4 u(2) +dn(n+1)
W) B o N )
+4n(u(z) G TP+ @) JH'(2) = 0. (3.20)

If H(z) is a polynomial with degree > 2, then H’(z) is a nonconstant polynomial. This is
impossible, it follows from (3.20) that the left-hand side tends to infinity as z tends to infinity,
but the right-hand side is zero. Hence, H(z) is a linear polynomial and H'(z) is a nonzero
constant. It follows from (3.20) that the left-hand side tends to 4n(n + 1)a? + 4n?(H'(2))? +
4n(2n + 1)aH'(z) and the right-hand side is zero as z tends to infinity. If 4n(n + 1)a® +

n?(H'(2))? +4n(2n+1)aH'(z) = 0, then substituting H'(z2) = W into this equation,
we have

n(v'(2))? + (2n% + 2n + Dav'(2) + n(n + 1)%a® = 0. (3.21)

("+1)

It follows from (3.21) that v'(z) = —na or v/(2) = a, a contradiction. Therefore,

4n(n + 1)a® + 4n2(H'(2))? 4+ 4n(2n + 1)aH'(2) # 0,
which is a contradiction. Thus, A(z) # 0. If B(z) = 0, then

daaz(z)P(z) = 0.

v/ (2)=(n+1)a

Substituting the expression for az(z) and H'(z) = ST

into the above equation, we

obtain
dalu/(2) +u(2)((n + Da+ (2n + 1) H'(2)) ]9 (2) = 4a(u(2) + u(2)v'(2))1(2) = 0.

Because a # 0 and ¥(z) # 0, v/(z) + u(z)v'(2) = 0. By integrating this equation, we have
u(z) = coe¥®) (¢ is a nonzero complex number), which is a contradiction. Hence, B(z) # 0. We
can get that A(2)e?”(?) 4 B(2) has infinitely many zeros. Now we assume that A(z)e?”(?) + B(z)
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has no simple zeros. Let z; be a zero of A(2)e??(*) 4 B(z), then e?H(22) = —igzg. By

differentiating A(z)e?”(*) 4 B(z), we derive (A’(2) + 2A(2)H'(2))e**) + B'(z). Meanwhile,
/ ! 2H (z2) / _ ! ! B(z2) / o

(A'(z2) + 2A(22)H'(22))e + B'(z2) = (A'(22) + 2A(22)H' (22)) | — ) + B'(22) = 0.

The above equation can be changed to

_Al(z)
A(22)

B(ZQ) - 2B(ZQ)HI(22) + BI(ZQ) =0.

’Z((ZZ))B( ) —2B(z)H'(z) + B'(z2) is a rational function and not equal to zero. If — A((;))B( ) —

2B(z)H'(z) + B'(z) = 0, then B(z) = ¢3A(2)e*®) (¢3 is a nonzero complex number), which
is a contradiction. Thus, —5 & B(z) — 2B()H'(2) + B'(2) # 0 and it has only finitely many
zeros. This contradicts the fact that A(z)e*’(*) + B(z) has infinitely many zeros. Hence,
A(2)e*2) + B(z) has a simple zero z3 at least, and it is an algebraic branching point of
VA(2)e2H(2) 4 B(z). Furthermore, it follows from (3.18) that z3 is also an algebraic branching
point of f(z). It contradicts the fact that f(z) is a meromorphic function.

Case 2.2 If a(z) #Z 0, then we also have

Bi1(2)f(2) + Ba(2) ['(2) + Bs(2)"(2) + Ba(2) /" (2) (3.22)
f'(2) '

a(z) =
from (3.11)—(3.12). (3.22) can be changed to
By(2) 1" (2) + Bs(2)f"(2) + (Ba(2) — a(2)) f'(2) + B1(2) f (2) = 0. (3.23)
By differentiating (3.13), we derive
Az (2) " (2) + (A3(2) + A1 (2)) 7 (2) + (A1(2) — al(2)) f(2) — &/ (2) f(2) = 0. (3.24)
It follows from (3.23)—(3.24) and the expressions for As(z), B4(z) that
[(2n + 1)Bs(2) + Ay(2) + A1(2)]f"(2) + [(2n + 1)(B2(2) — a(2)) + A1 (2) — a(2)]f'(2)
+[(2n+1)Bi(2) — /()] f(2) = 0. (3.25)
By eliminating f”(z) from (3.13) and (3.25), we obtain
Q1(2)f'(2) + Q2(2)f(2) = 0, (3.26)
where
Q1(2) = [(2n + 1)(B2(2) — a(2)) + A1 (2) — a(2)]A2(2)
—[(2n + 1)Bs(2) + A5(2) + A1(2)]A1(2), (3.27)
Q2(2) = [(2n + 1)Bs(2) + AL(2) + A1(2)]a(z) + [(2n + 1)B1(2) — &/ (2)] Aa(2). (3.28)
We assume that Q1(z) = 0, then Q2(z) = 0. By (3.27)—(3.28), we have

(2n+1)(Ba(2) — afz)) + A1(2) —alz) _ (2n+1)Bs(z) + A5(2) + Ai(2)
Ai(2) Ay ()
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and

(2n+1)Bs(2) g f)x (=) + Ai(z) _ ol(2) - (fj(‘j DBi(z) (3.30)

Combining the expressions for A;(z), Az(z) and Bs(2), (3.29)—(3.30) can be changed to

)
2(2
(

a(2) By(z)  Al(z)  Ap(x)  n-1u(x)  n+l'(z)
B4 =G LG T B T a1 v0)
2n
+2n+1((n+1)a—v())

and

Bile) _o'(x) Aj(e) n—1w(z) ntly'(s) 20 gy, g,
(2n+1) 2 o) AE  miiue  miive torglntl) (2))-

Multiplying the above two equations, we get

(2n+2)(2n + 1)?15’23
By(2)  A(z) Ah(z) n—-14(2) n+1(2)
[(271—1— 1)A1(Z) Ax(2) - As(2) Cn+1 u(z) o+ 1 ¥(2)
2n , o/ (2) 5z) n—=14d(2)
+ o -((n+Da—v (2))} - [a(z) B Az(z) T2+ 1ulz)
n+1 ¢ (z) 2n ,
“anrTue T e Ve vE)] (3.31)

It follows from the expressions for A;(z), Bi(z) and Bs(z) that

Bi(z) a(u 4+ uwv")p — alu’ + ')’
Ai(z)  [(n+ Dau+nu' — (o +w')]p — nua)’
(v’ +uv’)’ (l%

w +uv’

/ w/
(n+Dagrm tngiy — L —notaw
(u+u'u) aw_’
— e (3.32)
S I
(n+1)a u,+,—|—n g 1—n—— T

and

By(z)  [a(u +w') + (v +uwv') — (n+ 1av']Y — [(v +uwv’) — (n + 1)au]y’

Aq(z) [(n 4+ Dau + nu' — (v + wv")]p — nut)!

20+ ) — (4 ot — L+ (04 Dot

u +u'u’

Y’
(7’L+1) u+uv’ +nu +uv’ —1-n u’fuv’?

2a + WA (4 1)a— - —w—/+(n+1)a_/1@%/

/4 ’ P u ’
- v *;, - vt P (3.33)
w1 1Y
(n+1) u+ /+nu7’+,u/ 1 nuT/+U/1/)

If v(2) is a linear polynomial, then v'(z) is a nonzero constant. Because v'(z) # (n + 1)a, by

(3.32)-(3.33), we have 518 — 0 and 22 ; - (Wf;_l as z tends to infinity. Meanwhile, it
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follows from (3.31) that the left-hand side tends to zero and the right-hand side tends to

22n+1)a 2n
(tla 4 2n41

((n+1)a—2") + [ ((n—f—l)a—v’)r.

2n+1

Now we assume that

ﬁi)? %QZ (0 + Da —') + {27121 —((n+1)a — v')} oo, (3.34)
then
W (2) = (n+1)a)® = —wav’(z). (3.35)
It follows from (3.35) that
n(v'(2))? + (2n* + 2n + Dav'(2) + n(n + 1)%a® = 0. (3.36)
By (3.36), we get v'(z) = —na or v'(z) = ("'H) a. This contradicts the condition of the
theorem. Hence, %ffﬁ)tl)? 5o ((n+1)a— U/)+[2n+1 ((n+1)a—v")]? # 0, which is a contradiction.

Ifv(z)isa polynomlal with degree > 2, then v/(z) is a nonconstant polynomial. By (3.32) and

(3.33), we have BlEZ; — 0 and B2 Z; — —2a as z tends to infinity. Meanwhile, it follows from
(3.31) that the left-hand side tends to zero and the right-hand side tends to infinity, this is
impossible.
This shows that Q1(z) Z 0. By (3.26), we have
f'(z) _ _@a(2)
fz)  @Quz)

Since f((z) has only simple poles, Q2§Z§ also has only simple poles. Thus, f(z) = s(z)et(z),

where s(z) is a rational function and #(z) is a polynomial. Substituting the expression for f(z)

into (3.1), we obtain

s™(2)e™ (s (2) + s(2)t(2))e" + as(2)e! D] + Palz, f) = u(2)e"), (3.37)

where Py(z, f) = E qi(2)e"®) | ¢;(2) (i = 0,1,---,d) are rational functions. By (3.37) and
Lemma 2.4, we get Pd( L )=0, (n+1)t(z) =v(z) and s™(z)[(n 4+ 1)s'(2) + s(2)v'(2)] + (n +
1)as™1(z) = (n + 1)u(2). In particular, s(z) is a polynomial if u(z) is a polynomial.

This completes the proof of Theorem 1.5.

4 Proof of Theorem 1.6

We prove Theorem 1.6 by contradiction.

Suppose that f™*(f'+af)+qm(f) assumes a complex number oy # by = ¢, (0) finitely many
times. We discuss the following two cases.

Case 1 If f(z) is of finite order, then f(z) is an entire function solution of the following

differential equation:

Fr)F(2) + af (2) + an(f(2) — a1 = a(2)e” ),
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where a(z) and ((z) are polynomials. Hence, it follows from Theorem 1.5 that

f(z) =~(z)em™ T and  gm(f(2)) — 1 =0,

where y(z) is a polynomial, and from which Lemma 2.4 implies ¢, (0) — oy = by — a3 = 0. This
is a contradiction.

Case 2 If f(z) is of infinite order, then it follows from Lemma 2.6 that there exists a
sequence {zp} with k&ngozk = oo such that {gr(z) = f(zr + 2)}32; is not normal at z = 0.
Thus, by Lemma 2.7, there exists a sequence of complex points {wy}72; with |wg| < 1 and a

positive sequence of pj with klim pr = 0 such that
— 00

1 1
hi(2) = pp " ge(wi + prz) = pp " f(wk + 26 + prz) — g(2)

spherically uniformly on compact subsets of C, where ¢(z) is a nonconstant entire function of
order p(g(z)) < 2. Hence,

Fi(2) = " (wr, + 2k + pr2) (f (Wi + 2k + pr2) + af (wy, + 25 + pr2)) + @ (f(wr + 21+ pr2))
_m_ _1
= hip(2) (R, (2) + aprh(2)) + bmpy " R (2) + -+ bapy ™ hi(2) + bo

converges to ¢"(2)g’(z) + bo spherically uniformly on compact subsets of C. Next, we consider
two cases.
Case 2.1 We assume yjp is a zero of g"(z)¢'(z) + bp — 1. By Hurwitz’s theorem, there are

a sequence of complex numbers {yx} and a sufficiently large integer N such that
Fk(yk) —oa; =0, k>N and lim Yk = Yo.
k—o0

Therefore
[ (@) (f' (k) + af (xr)) + gm(f(zr)) — 1 =0,

where xp = wi + 2z + pryr. Because |wi| < 1, lim 2z, = 0o, lim pr = 0 and lim yx = yo, we
k—o0 k—oco k—o0

can choose subsequences {zi, }, {wg, } and {pg, } such that
1
|2k, — 21;| >3 (ki # kj),  |wg,| <1 and |pp,yr,| < 3

Hence, x, = wg, + 2k, + pr,yk; (1 = 1,2,--+) are distinct zeros of f™(2)(f'(z) + af(z)) +
Gm(f(z)) — 1. This is a contradiction.
Case 2.2 If g"(2)g'(z) + by — a1 does not have a zero, then g(z) is a transcendental entire

function. Since p(g(z)) < 2, g(z) is a solution of the differential equation
9" (2)'(2) +bo — a1 = e,

where u(z) is a polynomial. From Theorem 1.3 (see [11]), we have by — oy = 0, which is a
contradiction. Thus, f™(2)(f'(z) + af(2)) + gm(f(2)) takes every complex number « infinitely
many times, except for a possible value by = ¢,,,(0).
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Furthermore, if f"(2)(f'(2) + af(2)) + ¢n(f(2)) assumes by = ¢,,,(0) finitely many times,
then

@) (f'(2) + af(2) + am(f(2) — am(0)
= FR" 1) (2) + af(2) + b f™ 1 (2) + -+ by

has only finitely many zeros. Hence, f(z) and f*~1(2)(f'(2) + af(2)) + b f™ 1(2) + -+ + by
have only finitely many zeros. That is, f"~1(2)(f(2) + af(2)) + by f™ 1(2) + -+ + by takes
the value 0 finitely many times. By similar arguments as we have done with f(2)(f/(z) +
af(z)) + gm(f(2)) assumes o = 0 finitely many times above and we got by = a. Thus, from
X2 (f(2) +af(2) +bmf™ 1 (2) + - - -+ by takes the value 0 finitely many times that b; = 0.
Next, by f2(2)(f"2(2)(f'(2)+af(2)) +bmf™ %+ -+by) has only finitely many zeros, we have
by = 0. Continuing the arguments, we can get by = by = -+ = b, = 0. Hence, ¢, (f(2)) = bo
and f™(2)(f'(z) + af(z)) has only finitely many zeros, so f(z) and f’(z) + af(z) also have only
finitely many zeros.
This completes the proof of Theorem 1.6.

Finally, it follows from the proof of Theorem 1.6 that the following corollary holds.

Corollary 4.1 Let % be a family of holomorphic functions in a domain D, Gu,(f) = by f™+
-+ b1 f + by be a polynomial with degree m, n be positive integer with n > m+ 1 and a be a
nonzero constant. If f*(f" + af) + qm(f) dose not assume a complex number o # ¢, (0) for

every function f € ., then .F is a normal family in the domain D.
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