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Probabilistic Interpretation for a System of Quasilinear
Parabolic Partial Differential-Algebraic
Equations: The Classical Solution*
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Abstract In the present paper, by introducing a family of coupled forward-backward
stochastic differential equations (FBSDEs for short), a probabilistic interpretation for a
system consisting of m second order quasilinear (and possibly degenerate) parabolic partial
differential equations and (m x d) algebraic equations is given in the sense of the classical
solution. For solving the problem, an LP-estimate (p > 2) for coupled FBSDEs on large
time durations in the monotonicity framework is established, and a new method to analyze
the regularity of solutions to FBSDEs is introduced. The new method avoids the use
of Kolmogorov’s continuity theorem and only employs L?-estimates and L*-estimates to
obtain the desired regularity.
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1 Introduction

It is classical that a system of first order semilinear partial differential equations (PDEs for
short) can be solved via the method of characteristic curves (see Courant and Hilbert [4]). The
well known Feynman-Kac formula provides a probabilistic interpretation for a kind of linear
second order PDEs of elliptic or parabolic types. With the help of the theory of backward
stochastic differential equations (BSDEs for short), researchers have given probabilistic inter-
pretations for some semilinear second order PDESs, see Peng [23], Pardoux and Peng [19], Barles,
Buckdahn and Pardoux [2], Darling and Pardoux [5], Pardoux, Pradeilles and Rao [20], Pardoux
[18], Kobylanski [11], Zhang and Zhao [33], Pardoux and Régcanu [21], and so on. Along this
line, the next natural problem arises: Which kind of PDEs’ probabilistic interpretation should

be given by the coupled forward-backward stochastic differential equations (FBSDEs for short)
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and in what sense (see Peng [24])7 Until now, there have been a few results on this problem.
Pardoux and Tang [22] introduced a kind of coupled FBSDEs and provided a probabilistic
interpretation for quasilinear parabolic PDEs in the sense of the viscosity solution. Recently,
Feng, Wang and Zhao [8] studied the probabilistic interpretation for a system of quasilinear
parabolic and elliptic PDEs in the senses of both classical solutions and Sobolev space weak
solutions.

We notice that, in [8, 22], the authors considered the case o in FBSDEs (1.2) does not
depend on the variable z. If o depends on z, the corresponding quasilinear PDE should be
combined with some algebraic equations to form a system. We call it a system of partial
differential-algebraic equations (PDAEs for short). Wu and Yu [27] introduced a system of
second order quasilinear (and possibly degenerate) parabolic PDAEs, and the issue of a proba-
bilistic interpretation for it was studied in the sense of the viscosity solution. It should also be
noticed that, due to the nature of the viscosity solution, the dimension of PDEs in the system
was restricted to be 1 in [27]. In the present paper, we continue to investigate the probabilistic
interpretation for the PDAE system with multidimensional PDEs in the sense of the classical
solution.

Precisely, the following PDAE system will be considered in this paper:

Ou(t,x) + (Lu)(t, x,u(t,x),v(t, x)) + g(t, z,u(t, x),v(t,z)) =0,
(t,x) € [0,T] x R™,
(1.1)
v(t,z) = Vu(t,z)o(t, z,u(t,z),v(t,x)), (t,x)€0,T] xR",

uw(T,z) = ®(x), =R,

where (u,v) is a pair of unknown functions. In (1.1), u = (u',u?,--- ,u™)T takes values in R™
and its gradient is denoted by
vl oxr1  Oxo oxy,
Vu = — Oxr1  Oxo o0z, 7
Vu™ ou™  ou™ ou™
0x1 0xo 0z,
Lu = (Lu', Lu?, -+, Lu™)" and L is an infinitesimal operator defined by
1 « T 0%¢ - L)
(L)t 2,y,2) = 5 i;((m it 2.y, 2) g (h ) + ;bi(t,x,y,z) 90, )

for any smooth function ¢. Besides the PDAE system (1.1), we shall also introduce a family of
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coupled FBSDEs parameterized by the initial pairs (¢,z) € [0,7] x R™ as follows:
dX5" = b(s,047)ds + o(s,0L")dW,, s € [t,T],
— AV} = g(s,00%)ds — ZL*dW,, s € [t,T], (1.2)
)

where we denote ©%% = (X% Y® Z6%) for simplicity. By FBSDEs (1.2), under suitable

conditions, we shall define a pair of functions taking values in R™ and R™*?, respectively:
u(t,z) ==Y"", w(t,z) = 2%, (t,z) € [0,T] x R". (1.3)

The main result of this paper (see Theorem 4.1) is that under certain assumptions (u, v) defined
by (1.3) is the unique classical solution to the PDAE system (1.1).

There exist three fundamental methods to investigate coupled FBSDESs on arbitrarily large
time intervals: The method of contraction mapping (see Pardoux and Tang [22]), the four-step
scheme approach (see Ma, Protter and Yong [15]) and the method of continuation (see Hu
and Peng [10], Yong [30] and Peng and Wu [25]). Some recent developments on FBSDEs can
be found in Yong [31] and Ma, Wu, Zhang and Zhang [16]. Compared with the other two
methods, the third method has the advantage of dealing with the case: o depends on Z. As we
mentioned before, in this case, some algebraic equations will be involved into the corresponding
probabilistic interpretation problem, which is just the feature of this paper. Moreover, the third
method is also good at dealing with possibly degenerate diffusion coefficients o. Due to these
reasons, in this paper, we shall work in the related monotonicity framework (see Assumption
(H3) in the next section) which is required by the method of continuation. Especially, we shall
start with a standard result (see Lemma 2.2) on FBSDEs in this framework.

As an elementary analysis tool, the LP-theory (including LP-solutions and the related LP-
estimates) (p > 2) of FBSDEs will play a key role in the analysis of the probabilistic interpreta-
tion. In the literature, when p = 2, the L2-theory of FBSDEs within monotonicity framework is
standard (see Lemma 2.2). In comparison, when p > 2, the results are rare. For the LP-results
on small intervals, one can refer to Delarue [6], Li and Wei [12-13] and Xie and Yu [28]. On
large intervals, Ma, Wu, Zhang and Zhang [16] provided an LP-result for 1-dimensional FBS-
DEs. Feng, Wang and Zhao [8] established an LP-result when both b and o are independent of
z. Recently, Hu, Ji and Xue [9] gave another LP-result. In these results, the Lipschitz constants
of both b and o with respect to z are assumed to be very small.

In the present paper, we shall establish an LP-result on a large time interval in the mono-
tonicity framework (see Theorem 2.1). When they researched the L?-theory of FBSDEs in [6,
14, 16], the authors used the following idea: “Splicing” a sequence of results on small intervals
yields a corresponding result on a large interval. In this paper, we shall adopt this idea to
investigate the LP-theory with p > 2. In detail, we shall first establish LP-results on small inter-

vals. Then by the classical standard L2-theory, we “splice” them to obtain a desired LP-result
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on a large interval. However, due to the high degree of coupling of FBSDEs, even on small
intervals, the LP-result needs some additional assumptions (see Assumption (H2)?). It is clear
that this LP-result has a wide range of potential applications. For example, besides the issue of
the probability interpretation, the LP-theory is also necessary in the study of general maximum
principle for controlled coupled FBSDEs (see [9]). The LP-result with p > 2 can be regarded as
a contribution of this paper.

Regularity analysis for the solutions to FBSDEs (1.2) is an important part of the probabilis-
tic interpretation of the PDAE system (1.1). The classical method makes use of Kolmogorov’s
continuity theorem as well as LP-estimates (for all p > 2) (see [8, 19]). For the case of the cou-
pled FBSDEs in the monotonicity framework studied in this paper, the classical method will still
work due to the establishment of the LP-theory. However, as we mentioned in the above para-
graph, some additional assumptions must be imposed to ensure the feasibility of LP-estimates.
Moreover, we notice that, with different p > 2, Assumption (H2)"? (depending on p) is in fact a
series of assumptions. In order to weaken assumptions, we introduce a new method to analyze
regularity in this paper. The new method employs Lebesgue’s dominated convergence theorem
to prove the desired convergence many times, instead of the use of Kolmogorov’s continuity
theorem, then only L2?-estimates and L*-estimates are involved in our analysis (see Theorem
3.1). The new method can also be applied to other probability interpretation problems, and
can be regarded as another contribution of this paper.

The rest of this paper is organized as follows. In Section 2, we establish an LP-result for
coupled FBSDEs in the monotonicity framework. We also recall some elementary properties
of the function u from [27]. Section 3 is devoted to the regularity analysis for the solutions
to FBSDEs (1.2) including the Malliavin’s differentiability of ©%% = (X%# Y% 7Z4%) and the
second-order continuous differentiability of u with respect to z. In Section 4, we prove that
the function u is continuous differentiable with respect to ¢, and (u,v) is the unique classical
solution to the PDAE system (1.1).

2 LP-theory in Monotonicity Framework

In this paper, we work with a finite time horizon T' > 0, a d-dimensional standard Brownian
motion (Ws)seqo, 17, @ completed probability space (2, F,P), and a filtration F = (F)seo,7]
which is a natural one generated by the progressively measurable processes on ) x [0,T]. For
simplicity, we omit all dependence in w of any random variable or stochastic process in the
notations.

We denote by R* the k-dimensional Euclidean space with the inner product (resp. norm)
(-, -) (resp. | -|), R**! the collection of (k x ) matrices with the inner product (resp. norm)
(z, Z) = tr (227) (vesp. |z| = \/tr (227)) for any 2z, Z € R¥*!, where the superscript T denotes

the transpose of vectors or matrices. For any p,q € [1,00) and any given F-stopping time 7,
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we introduce some Banach (or Hilbert, in case of L% (Q;R¥) or L (7, T; R¥)) spaces of random
variables or stochastic processes as follows:

(1) L% (% R*¥) is the space of R¥-valued F,-measurable random variables ¢ such that

”fHL’}T(Q;R’“) = (E[|§|p])% < 00.

(2) LE(; C([,T); R¥)) is the space of RF-valued F-progressively measurable processes ¢
such that for almost all w € Q, s — ¢(s,w) is continuous and

1
HQOHLIF’(Q;C([ﬂT]%Rk)) = (E[ sup |¢s|p})P < o0.
se[r,T)

(3) LE(; L7, T;R*)) is the space of R*-valued F-progressively measurable processes ¢

such that T p__ 1
el 2 (osnagrrmey) = (E[(/ stlqu) qbp < 0.

When p = g, we denote LE(7,T;R*) := LE(Q; LP(7, T; RY)).

Moreover, the following Banach spaces are also introduced:

(1) ME(r, T;Rtmtmxdy = LR(Q; O([r, T];R™)) x LE(Q; C([r, T);R™)) x LE(Q; L (7, T;
R™*4)). For any © = (X,Y, Z) € ME (7, T;R*+m+mxd) "itg norm is given by

T D 1
101lasz 7 sy = {E[ sup |X,7 + sup Vil + ( / 1Z2as) " |}
se[r,T) selr,T) T

(2) ME(r, T;R™Ftnxdy o= LE(Q; LY (7, T;R™)) x LE(Q; LY(7, T;R™)) x LE(Q; L2(7, T}
R"*4)). For any v = (g,b,0) € ME(r, T; RmFTn+nxd) 'its norm is given by
2 1

laiginmmnsnsey = L8[ [ loas)”+ ([ wdas) + ([ touras) ).

In the case without causing confusion, we sometimes omit the value spaces in the notations for

simplicity. For example, ME (7, T; R"T™m+mxd) i5 sometimes abbreviated as ME(r,T).
2.1 LP-results for coupled FBSDESs

Let us have two mappings: @ : Q x R” — R™ and v = (g,b,0) where
g:Qx[0,T] x R" x R™ x R™*% — R™
b:Qx[0,7] x R" x R™ x R™*? 5 R",
o:Qx[0,T] x R® x R™ x R™*¢ — R™*4,
We assume that, for any 0 = (x,y, z) € R**™+m>d the random variable ®(x) and the stochas-
tic process y(-,0) = (g(-,0),b(-,0),0(-,0)) are Fp-measurable and F-progressively measurable,
respectively. Moreover, we assume the following Lipschitz condition.

(H1) @ and ~v are uniformly Lipschitz continuous with respect to = and 6, respectively.

For convenience, the Lipschitz constant of ® with respect to z is denoted by L, the Lipschitz
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constant of o with respect to z is denoted by L., and the other Lipschitz constants are denoted
by L.
Let 7 € [0, 7] be an F-stopping time and ¢ € L% (2;R"). We introduce a coupled FBSDE

as follows:
dXT¢ =b(s,07%)ds + o(5,07%)dW,, s € [r,T],

—dY[¢ = g(s,07%)ds — Z7dW,, s € [r,T), (2.1)
X7 =¢, Yt =a(X70),
in which we denote ©™¢ = (X™¢, Y7¢ Z7¢). The special case (1.2) we are most interested in
is that the initial pair (7, () is deterministic, i.e., 7=t € [0,7] and { =z € R".

It is known that, due to the nature of the equation, only with the uniform Lipschitz condition
(H1) for the coefficients (®, ), FBSDE (2.1) does not necessarily have an adapted solution on a
large enough duration (a counterexample can be found in Antonelli [1]). Next, we shall provide
some preliminary results for FBSDEs on small durations. For this aim, let us introduce two
constants and an assumption.

Let p > 2 be given. By the theories of stochastic differential equations (SDEs for short) and
backward stochastic differential equations (BSDEs for short), there exist a pair of constants
Crp = Cp(p,T,L) > 0 (see [32, Theorems 3.3.1 and 3.4.3]) and Cp = Cp(p,T,L) > 0 (see
[32, Theorems 4.3.1 and 4.4.4]) such that, for any z € R", any £ € Lz (€;R™), any standard
LP-generator (by,00) of SDE! with Lipschitz constant L, and any standard LP-generator go of
BSDE? with Lipschitz constant L, the following estimates

]Eft{ sup |Xs|p} < CF]EE{|:1C|” + (/tT |bo(s,0)|ds)p + (/t

set,T]

T

oo (s, 0)|2ds) : } (2.2)

E7 [ sup [¥i[? + (/tT|Zs|2ds)%] < CoER{je + (/tT l90(s.0.0)1ds) "} (2.3)

s€t,T]
hold for all ¢ € [0,T], where E”*[-] = E[-|F;] denotes the conditional expectation operator with
respect to F;, and X € LE(Q; C([0,T];R™)) is the unique solution to the following SDE:
dXs = bo(s, Xs)ds + oo(s, Xs)dW,, s€[0,T7,
{Xo =z
and (Y, Z) € LE(; C([0,T]; R™)) x LE(S; L2(0, T; R™*4)) is the unique solution to the following
BSDE:

(2.4)

—dY; = go(s,Ys, Zs)ds — Z,dW,, s €(0,T],
(2.5)

Yy = £

LA standard LP-generator of SDE (on the interval [0,T]) is a pair of mappings bo : Q x [0,T] x R* — R"®
and op : Q x [0,T] x R? — R?*? gatisfying the following three conditions: (i) For any = € R™, the stochastic
processes bo(-,z) and (-, ) are F-progressively measurable; (i) bo(-,0) € LE(Q; L1(0,T;R™)) and o0(-,0) €
LE(Q; L2(0, T; R™*®)); (iii) by and oq are uniformly Lipschitz continuous with respect to .

2Similarly, a standard LP-generator of BSDE (on the interval [0, 7]) is a mapping go : Q2x[0, T]xR™ xR™* 94
R™ satisfying the following three conditions: (i) For any (y,z) € R™ x R™* 4 the stochastic process go(-,, z) is
F-progressively measurable; (ii) go(+,0,0) € L%(Q; LY(0,T;R™)); (iii) go is uniformly Lipschitz continuous with
respect to (y, z).
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(H2)'? For the given p > 2, the inequality Cr(p,T,L) - Cp(p,T,L) - L? - L? < 1 holds.

Remark 2.1 The values of the constants Cp(p,T,L) > 0 and Cg(p,T,L) > 0 can be
obtained by the theories of SDEs and BSDEs. More accurate estimation techniques of SDEs
and BSDEs will lead to smaller values of Cr and Cz. Obviously, there are two special cases
covered by Assumption (H2)"?. One of them is L, = 0, i.e., o is independent of z, and the other
one is L, =0, i.e., ® degenerates to be an Fpr-measurable random variable.

Let p>2and 0 <t <t <T.Let W:LE (R")— L% (QR™) be an operator satisfying

the following condition: There exists a constant L, > 0 such that
U[¢] ~ U[E)| < Lol¢ — &, Pas, VEEeLl (R, (2.6)

We notice that (2.6) can be regarded as a counterpart of Lipschitz continuity for functions in
the operator case. Let ¢ € Ll}t (Q;R™). We consider the following FBSDE:
dXs = b(s,05)ds + o (s,0,)dWs, s € [t, 1],
—dY, = g(s,04)ds — ZdW,, s € [t, 1], (2.7)
Xt:<7 }/t’ :\Il[Xt’]a
where © = (XY, 7).

Lemma 2.1 Letp>2 and 0 < t <t <T. Let v satisfy Assumption (HL) and ¥ satisfy
(2.6). Let Assumption (H2) hold. Let ¢ € L% (;R"), W[0] € LY (R™) and 7(-,0) €
ME(t, ¢y Rm+ntnxd) - Then, there exist a constant § = §(p,T, L, Ly, L.) > 0 depending on p,
T and the Lipschitz constants L, L., L., such that when the length of time duration t' —t < 6,
FBSDE (2.7) with (¥,7,() admits a unique solution © = (X,Y,Z) € ME(t,t/;RrTmimxd),
Moreover, the following LP-estimate holds:

t’ P
57 sup [P+ s i ([ 12s) ]
] t

se(t,t’] sE[t,t’
< CLET[[¢[? + [[0]|” + I(t, /s p)), (2.8)
where ép = ép(p7 T,L,L,,L,) >0 is a constant and

t’ P
2

I(t, ¢ p) = (/tt |g(s,0)|ds)p+(/tt,|b(s,0)|ds)p+(/t o(5,0)%ds) ", (29)

Proof For any (y,z) € LE(;C([t,t';R™)) x LE(; L2(t,t;R™*4)), we introduce the
following decoupled FBSDE:
dX, = b(s, Xs,ys, 25)ds + o (s, Xs, ys, 25)dWs, s € [t, 1],
—dY, = g(s, X, Ys, Zs)ds — Z,dW,, s € [t, 1], (2.10)
Xe=( Yy =V[Xy],
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which admits a unique solution (X,Y,Z) € ME(t,¢/; RvTmTm*d) by the classical theories of
SDEs and BSDEs. We define a mapping from LE(Q; C([t, #']; R™)) x LE(Q; L2(t,t'; R™* %)) into
itself:

T (y,2)— (Y, 2). (2.11)

Next, we shall prove that 7 is contractive when the time duration is small enough. Let
(yi, 2%) € LE(Q; C([t, t');R™)) x LE(Q; L2(¢t,¢/; R™*?)) (i = 1,2) be given. Let (X!, Y, Z%) €
MPE(t,t/;RmHm*d) he the corresponding solution to FBSDE (2.10). We denote

g=y' —y?, F=2'-22 X=X'-X% Y=Y'-VY? Z=2'-27%

By the standard LP-estimate for SDEs (see [32, Theorem 3.4.3]), we have

t/

~ P

E[ sup |Xs|p] < CFE{(/ |b(s,X52,y;,zsl) —b(s,Xf,yf,zEﬂds)
sE[t,t'] t

t 3
+(/ |U(57Xs27yiﬂz;)_0(87X527y§723)|2d8)2}
t

t P
S CFE{C(p7T7LaLZ7€1752)(t/_t)%[ sup |§S|p+ (/ |/Z\S|2d8)2:|
sE[t,t] t

’

+(1+sz)(1+gl)€Lg(/tt |28|2ds)%}, (2.12)

where €1 > 0 and g2 > 0 are two arbitrary positive numbers while C(p,T, L, L.,e1,€2) > 0
is a constant which depends on p, T', L, L., €1 and €2. On the other hand, by the standard
LP-estimate for BSDEs (see [3, 10, 32, Theorem 4.4.4]), we also have

t’ P
B sup 7.0+ ([ 1Z.Pas)”]
sE[t,t] t

t/
p
< CuB{Jued) - wpep + ([ 1o, X5 Y2, 22) - g(s, X2, Y2 22)as) )
t

< CplLP + LP(t — t)P]E[ sup |X’S|P] (2.13)
sEt,t']

Substituting (2.12) into (2.13), we have

t’ P
E[ sup |Ys|p+(/ Z.Pas)’]
t

se(t,t’]

t P
<B{C(p,T, L, Lo, Le,en, )t — )% | sup [5uf? + ( / Z:f2as) "]
sE[t,t] t

/

t P
+CBCFLg(1+52)(1+51)%L§(/ |35|2ds)2}. (2.14)

t

Due to Assumption (H2)'?, we can select small enough constants e; > 0 and €3 > 0 such that

CpCrLP(1 +e3)(1 +¢e1)2 L2 < 1. Then, we select a constant § = 6(p, T, L, L, L.) > 0 such
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that when ¢/ — ¢ < 4,
5 P g 5
B sup W+ ([ 1Z.Pa8)"] < o[ swp [+ ([ EPas) . (2.15)
set,t’] t set,t’] t
where p € (0,1) is a constant. In other words, the mapping 7 is contractive. Therefore it
admits a unique fixed point denoted by (Y, Z), which together with the unique solution X to

the following SDE:
X, :g+/ b(r,XT,YT,ZT)dr—i—/ o(r, X0, Y Z)AWs, s € [t,] (2.16)
t t

is just the unique solution to FBSDE (2.7).

The classical LP-estimates for SDEs and BSDEs work again to obtain the estimate (2.8).
Since the detailed proof is similar to the above one, we would like to omit it.

In order to ensure the solvability of FBSDE (2.1), we would like to give below a kind of
monotonicity condition for the coefficients (®,~), which was introduced by Hu and Peng [10]

and Peng and Wu [25]. Let G be a given (m x n) full-rank matrix. We denote
A(t,0) = (=GTg(t,0), Gb(t,0), Go(t,0)), (t,0) c[0,T]x RrEmImxd

(H3) There exist three nonnegative constants 1, 82 and pp satisfying the following two
conditions: (i) $1 > 0, u1 > 0 in the case of m > n, or B2 > 0 in the case of n > m; (ii) for
each 0 = (z,y, 2), 0 = (7,7, %),

(@(z) = (7), G(z —7T)) 2 u|G(z —T)|%,
(A(t,0) = At,0), 0 —0) < = B1|G(z —T)]* = B2(IGT (y = 7)|* + |G (2 = 2)|?).

With the monotonicity condition (H3), we can get the L2-results of FBSDEs. Similar to
the symbol I(¢,T;p) in (2.9), we set

7,73 p) = (/tT l9(5,8.) ~7(s.B)Jds)” + (/tT (5, 8.) — B(s,8,)[ds)"

([ 1otsB0 ot BPas)” (2.17)

Lemma 2.2 Suppose the coefficients (D, ) satisfy Assumptions (H1) and (H3). Let ®(0) €
L%, (% R™) and y(-,0) € Mg(0, T;R™ T +n%d) - Then, for any initial pair (t,¢) € [0,T] x
L% (9 R™), FBSDE (2.1) with (®,v,(¢) admits a unique solution

@t,C — (XLC’)/LC’ Zt,C) c MH?(t,T;RnJ’_mJ’_de).
Moreover, the following L?-estimate holds:

T
B[ sup [XSP+ sup (VISP [ 120Pal]
selt,T) s€(t,T) t

< B[P + |9(0) + I(t, T 2)], (2.18)
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where Cy = Cy(T,L, Ly, L,) > 0 is a constant. Furthermore, let (®,5,() be another set of
coefficients satisfying (H1), where ®(0) € L% (;R™), F(-,0) € ME(t, T;R™ T Txd) and ¢ €
L% (4 R™). Let © = (X,Y,Z) € MZ(t, T;R™™+mxd) pe g solution to FBSDE (2.1) with
(®,7%,C). Then

T
B7 | sup XX sup VIC-ToP o [ |26 - 2R
set,T] set,T] t

< CoET|¢ = CP + |9(X 1) — D(X7)|? + 1(t,T;2)), (2.19)

-~

where 1(t,T;2) is defined by (2.17).

By now, the results in Lemma 2.2 are standard. Specifically, the unique solvability for
FBSDE (2.1) can be found in Peng and Wu [25, Theorem 2.6], and the pair of L?-estimates are
from Yong [30] (see also Wu [26]).

With the help of Lemma 2.2, for any ¢ € [0, T], we define an operator u(t, []) : L%, (€ R™) —
L% (9 R™) as follows:

Wb, [C]) = YES, ¢ e I3 (R™). (2.20)

A couple of immediate consequences of (2.18)—(2.19) are obtained:

{(1) Ju(t, [DI* < Co{C” + B [|0(0)* + (¢, T 2)]},
(if) Ju(t, [¢]) = u(t, [(])] < V/Cal¢ —Cl,

where the constant Cs is the same one given in (2.18).

(2.21)

Moreover, in order to use Lemma 2.1, we need a stronger condition (H2)? to replace (H2)'?.
(H2)? For the given p > 2, the inequality Cr(p, T, L)-Cg(p,T,L)- 02% -LP < 1 holds where
Cy=Cy(T,L,L,,L,) >0 is given in (2.18) of Lemma 2.2.

Remark 2.2 Historically, for the LP-estimates of coupled FBSDEs on small durations,
Delarue [6] for the first time obtained a result when o is independent of z. In 2014, Li and Wei
[12-13] established LP-estimates when the Lipschitz constant of o with respect to z is small
enough. In 2020, Xie and Yu [28] gave the LP-estimates of FBSDEs (1.2) on small durations as
®(-) is linear. To our knowledge, even on small intervals, the LP-estimates can only be obtained

in the case of
the Lipschitz constant of o(-,-) with respect to z is small enough, (2.22)

or the terminal conditions are linear. Moreover, being “small enough” in (2.22) does not obtain
a quantitative characterization. Clearly, condition (2.22) is a special case of (H2)?.

On large time durations, in 2015, Ma et al. [16] firstly provided an LP-estimate for 1-
dimensional FBSDEs. Some other restrictive assumptions were also required. In 2018, Hu

et al. [9] gave an LP-result when the Lipschitz constants of both b and o with respect to (y, 2)



Probabilistic Interpretation for Partial Differential-Algebraic Equations 885

are very small. In 2018, Feng et al. [8] established an LP-result when both b and o are inde-
pendent of z. In 2023, Xie and Yu [29] also established an LP-result for the linear FBSDEs,
without condition (2.22). So far, in the case of nonlinearity, (2.22) cannot be overcome.

Even more frustrating is that we cannot determine the necessity of condition (H2)P for
LP-estimates. Therefore, we propose a further work: Without using condition (H2)P, prove
the LP-estimates of FBSDEs. Alternatively, provide an example to illustrate the necessity of

condition (H2)P. Note: This further work is proposed by the referee.
Now, with the help of u(-,[-]) as well as Lemma 2.1, we obtain the following theorem.

Theorem 2.1 Let p > 2 and the coefficients (®,~) satisfy Assumptions (H1), (H2)P and
(H3). Let ®(0) € L% (% R™) and 4(-,0) € ME(0, T;R™FF7x4) - Then, for any initial pair
(t,¢) €[0,T] x L% (4 R™), FBSDE (2.1) with (®,7,() admits a unique solution

@1&,( _ (Xt.,q’Yt.g’Zt,C) c M]Fg(t’T;Rn+m+mxd).
Moreover, the following LP-estimate holds:

T P
E]:t|: sup |X§;C|p + sup |}/St;C|P + (/ |Z§;C|2d8) 2:|
s€t,T] set,T] t

< GEZ[[CP + |@(0) P + I(t, T; p)], (2.23)

where Cp, = Cp(p, T, L, Ly, L) > 0 is a constant and I(t,T;p) is defined by (2.9). Furthermore,
let (®,7%,() be another set of coefficients satisfying (H1), where ®(0) € L (R™), 7(-,0) €
ME(t, T; RmFtnxd) and ¢ e L (Q;R™). Let © = (X,Y,Z) € ME(t, T; R +mxd) pe
solution to FBSDE (2.1) with (®,7,(). Then

T P
7 [ sup [XEC— R+ sup [V - T+ ( / 706~ Z,2as) " |
s€[t,T) sE[t,T) t

< CEZ[|¢ — (PP + |@(X 1) — B(X 1) [P + 1(t,T; p)], (2.24)

~

where I(t,T;p) is defined by (2.17).

Proof Let p > 2. By Lemma 2.1, the existence and uniqueness of the LP-solution and
LP-estimate hold true on small durations. For the given large duration [t,T], we split it with
points t =ty < t; < --- <ty =T, and let the mesh size of the partition

max (¢t — 1) <6
OSkSN—l( k+1 k)— ’

where the constant § is given in Lemma 2.1. On the one hand, from the viewpoint of Lemma

2.2, on each small duration [ty,try1] with k= 0,1,2,---, N — 1, the L2-solution ©%¢ satisfies
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the following FBSDE (notice the definition of u(-,[-])):
dX, =0b(s,05)ds + 0(s,05)dW(s), s € [tg,tk+1],
—dY; = g(s,05)ds — Z;,dWs, s € [tg, trt1], (2.25)
Xo = X055 Y, = ultie, (Ko,

where © = (X,Y, Z). On the other hand, we change our viewpoint from Lemma 2.2 to Lemma

2.1, and reanalyze the sequence of FBSDEs (2.25). In fact, firstly on [to,¢1], we notice that
Xttf =(e Lz}to (€;R™). Moreover, from (2.21)(i) and Holder’s inequality,

lu(ts, [0])” < (Co{ BT [|@(0)[% + I(t1, T52)]})*
< KEZa [|0(0)P + I(t1,T52)*]
< KEZ1 [|@(0)[P + I(t1,T;p)]. (2.26)

Then
Eflu(ty, [0])["] < KE[|®(0)[" + I(t,T;p)] < oc.

With the help of (2.21)(ii), we know that the restriction u(t1, [-])|Lz;t1 (o;rn) is an operator from
L%, (%R") into LY, (%R™). Then by Lemma 2.1, {O7¢, s € [to,t1]} belongs exactly to
MPE(to, t1; RrTm+mxd)  This procedure can be carried out for k = 1,2,---, N —1 one by one to
yield {©7¢, s € [t,T]} belongs exactly to ME(t, T; R"T™m+Tmxd) We have proved the existence
and uniqueness of the LP-solution for FBSDE (2.1) on the whole duration [¢,T].
We turn to prove the LP-estimate (2.23). For any kK =0,1,2,--- ;N — 1, by (2.8), we have
B s XPr s Vs ( [ " zas) )

sE€[tk trt1] SE[tk,th41] ty

< GEPH | X0, [P + u(ter, [ODIP + I(trs trer; p)]. (2.27)

Similar to (2.26),
[u(tirr, [P < KE™ 41 [|@(0)P + I(tes1, T; p))-

Substituting it into (2.27) leads to

tht1 P
o T A / 1Z.Pas)” |

sE€[tk trt1] SE[tk,th41] ty

< KEP[| Xy, [P+ [@(0)[P + I(t, T p))- (2.28)

We notice that the first item E”¢[|X;, |P] on the right hand side of the above inequality depends
on E7*[| Xy, ,|?], and then depends on E7¢[|X;, ,|P],--- ,E7*[| Xy, |P] = |¢|P, in the following

sense:
E7 | Xy, [F] S E7*| sup X[

SE[tk—1,tk]
< KEP[| X, [P+ |®(0)P + I(t,T;p)]

< KEP[| X4, ,|P +|®(0)P + I(t,T;p)]
< oo S KET|CP + |®(0)|P + I(t,T;p)).-
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Therefore, (2.28) is reduced to

te41 2
o T A / Z.Pas)” |

s€[tg,trta] s€[tg,trt] tr

< KEH[C[P + |®(0)[” + (¢, T;p)). (2.29)

By summing up the above inequalities with & from 0 to N —1, we obtain the desired LP-estimate
(2.23) on the large duration [t,T].
The other LP-estimate (2.24) can be regarded as a consequence of the first LP-estimate

(2.23). In detail, we denote ( =( —(,0=0-0=(X-X,Y -Y,Z—Z) and

f(s,x,y,z):f(s,x—i—Xs,y—i—Ys,z—i—Z) ?( Xs, 75)7 SE[t,T]

with f =g¢,b,0. Then 0= ( 17 2) satisfies the following FBSDE
X, Y,

AX, = b(s, X, Yy, Zo)ds + 5(s, Xs, Vs, Z)AWs, s € [t, 1],
—dY, = (s, Xy, Vs, Zs)ds — Z,dW,, s € [t,T], (2.30)
Xi=C( Yr=3%(Xr).

Clearly, (@ﬁ, Z) satisfies all conditions in Theorem 2.1. Hence, the application of estimate

(2.23) to the above FBSDE yields (2.24). We complete the proof.

2.2 Function u and its elementary properties
In this paper, we shall use the following smoothness assumption.

(H4) @ and + are deterministic functions. Moreover, v is continuous with respect to ¢. For
any t € [0,T], (®(-),7(t,-)) are of class C? and all the partial derivatives of order less than or
equal to 2 are bounded on [0, 7] x R™ x R™ x R™*4,

Obviously, (H4) implies (H1) and the boundedness of (-,0). Under Assumption (H4),
the triple of solutions to FBSDE (1.2) is independent of the past information F;, i.e., 4% =
(Xte yhe, Z8*) is F'-adapted, where F* = (F!)sep,r is the natural filtration generated by
(Ws— Wt)se[t,T] and augmented by all P-null sets. In particular, th is deterministic. Now, we
recall the operator u(-,[-]) which is defined by (2.20). Obviously, in the Markovian framework
(1),

u(t,z) :=Y"", (t,z) €[0,T] x R® (2.31)

provides a function from [0,7] x R™ to R™. Now, let us recall a result from [27, Lemma 2.4 or

Proposition 2.6].

Proposition 2.1 Let Assumptions (H3) and (H4) hold. Then,

u(t,$) =u(t,[()) =Y, for any (t,¢) € [0,T] x L% (% R™). (2.32)
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This result means that the value of the composite function is equal to the value of the operator.
For the convenience of notation, we shall define ©L% for all (s,t) € [0,7]? by setting
(Xbr yhe zte) = (XP" v}" 0) for s < t. The following corollary shows the continuity

of the function w. It can be regarded as an improved version of [27, Proposition 2.5].
Corollary 2.1 Let Assumptions (H3) and (H4) hold. Then there exists a constant C > 0
such that, for any (t,z), (t',2") € [0,T] x R™,
|et — ot H?w;(o,T) <C{lz—2"P+ A+ |z + |2/ -t} (2.33)
Consequently, the function u is Lipschitz continuous in x uniformly for any given t € [0,T],
and is %—Hé’lder continuous in t for any given x € R™.

Proof Without loss of generality, we assume that ¢ < ¢/. By the L?-estimate, we have
t’ . 2
t, tx' 12 /12 / !
104 = 6" 3 zm) < Ca{le — a1 + (/t lg(s,2, Y, 0)ds)

t, ’ ’ 2 tl ’ ’
+ (/ b(s, 2, V)™ 7O)|ds) —|—/ lo(s,a’, Yo" ,O)|2ds}.
t t
With the help of Assumption (H4) and (2.21)(i), we obtain (2.33) and finish the proof.

At the end of this section, we recall a definition and a property of the function u from [27,
Remark 2.9 and Proposition 2.8]. They will be used to deal with the algebraic equation in the
PDAE system (1.1).

Definition 2.1 Let G € R™*™ be a matriz, v > 0 be a constant and f : R™ — R™ be a
function. If

(f(z) — f(@), Gz — 7)) > vz —T|* for any x,T € R", (2.34)

then we call f G-monotonic with v. Moreover, when v > 0, we also call f strictly G-monotonic

with v.

Proposition 2.2 Let Assumptions (H3) and (H4) hold. Then, there exists a constantv > 0
such that for any t € [0,T), the function u(t,-) defined by (2.31) is G-monotonic with v, where
the matriz G is the same one appearing in Assumption (H3). Moreover, when 31 > 0, py > 0,

B2 >0 and m > n in Assumption (H3), the constant v is strictly greater than 0.

3 Regularity of Solutions to FBSDEs

The following lemma is helpful for our analysis below.

Lemma 3.1 For anyt € [0,T], assume that (®(-),v(t,-)) are of class C*. Then the follow-
ing two statements are equivalent.

(i) (®,v) satisfies the monotonicity assumption (H3).
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(ii) For any 0y = (z0, Y0, 20) € R™ x R™ x R™*4 denote

P(x) := d—(b(xo)x,

dx
]?(t, 6‘) = Vf(t, 6‘0)6‘ = %(t, HO)x + Z_z(t’ 90)3/ +

of
ox 0z

(ta 90)27

where f = g,b,o. Then (9,7) = (®,7,b,5) satisfies the monotonicity condition (H3) with the

same constants By, B2 and pi1.

Proof We only prove the part about ® and ®. The same technique can also be used to
prove the other part about v and 7.
We first prove that Statement (i) implies Statement (ii). Let us begin with the following

inequality: For any zy and Ty,
(®(Zo) — D(x0), G(To — w0)) > p1|G(To — x0) .
Now, for any vector K € R™ and any real number § > 0, we select Ty = ¢ + 0K, then
5{®(20 + 0K) — ®(x0), GK) > 6% |GK|*.

By the smoothness condition of ®, by Lagrange’s differential mean value theorem, for each

0 > 0, there exists an « € (0, 1) depending on J, such that
d® 5
<a(xo + KK, GK> > 1 |GK 2.

Letting § — 07, we get

do
For any x,T € R", replacing K in the above inequality with = — 7, we obtain
do
(S @)@ -2, Ga—7)) > m|Gl -,

which is the monotonicity of 3.
Next we shall employ a framework of reduction to absurdity to prove that Statement (ii)
also implies Statement (i). Assuming that the monotonicity condition of ® does not hold, i.e.,

there exist x, ¥ € R™ such that
(®(z) — ®(T), Gz —7)) < w1|G(x —T)|*

Lagrange’s differential mean value theorem works again to yield that there exists an o € (0, 1)
such that

(G@+ate - 7). G- D)) < |Gl -7

Clearly, the above inequality shows that when zy = T + a(z — Z), the monotonicity condition

of function ® does not hold at z and Z, which contradicts Statement (ii).
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3.1 Malliavin derivative of solutions to FBSDEs

First of all, we recall some notions about Malliavin derivatives on Wiener space from Nualart
[17] and El Karoui, Peng and Quenez [7].

(1) Let Cf(RP;RY) denote the set of functions of class C* from R? into RY whose partial
derivatives of order less than or equal to k are bounded.

(2) Let S denote the set of random variables £ of the form § = <p( (hl), -, W(R*)), where
p € C°(RM;R), Al,.-- | h* € L2(0, T;RY) and W (k') = [ (h

(3) For any £ € S, its Malliavin derivative is defined by the followmg d-dimensional process

k
Z 8—“0 L W(R)R, o€ 0,T).

The ith component of D,¢ is denoted by Dgﬁ, i=1,2,---,d. The (1,2)-norm of ¢ is defined

by ., )
l€lo,a = {E[lg? + [ IDgPac]}

It is known that the operator D has a closed extension to the space D; », which is the closure
of § with respect to the norm | - [|p, ,.

(4) Let IL§ (0, T; R™) be the set of R™-valued F-progressively measurable processes {¢(t,w), t €
[0,T]; w e Q} satisfying

(i) for a.e. t € [0,TY, ¢(t,-) € (D1,2)".

(ii) (t,w) = D,¢(t,w) admits an F-progressively measurable version.

(iii)
H¢||112f1{2(07T;Rn) i= ||¢H%§(O,T;]R") + ||D¢()||2T2
T T T
::E/ |¢(s)|2ds+IE/ / ID,6(s)2dods < oo.
0 o Jo
The space L{ 5(0,T;R") is closed under the norm || - [|Ls , (0, 7r")-

We now show that under Assumptions (H3) and (H4), the L2-solution to an FBSDE is
differentiable in Malliavin’s sense and the derivative is a solution to a linear FBSDE. This
result generalizes the one stated by Pardoux and Peng [19] in the decoupled case. For simplicity
of notation, we restrict ourselves to the case d = 1 in this subsection, and suppress (¢, x) in
LT = (Xtr ytr 76%)  We shall combine the method used in [7, 19] (for BSDEs) with the
method of continuation to establish the differentiability in Malliavin’s sense. We split it into

two cases according to the signs of 81, B2 and p1 (see the monotonicity assumption (H3)).

First case (31 >0, u1 >0, B2 > 0 and n < m.
For any ¢,¢ € LE(t,T;R™) NL{,(t, T;R"), k € Lg(t,T;R™) NL{,(t,T;R™) and £ €
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L%, (9 R™)N(Dy,2)™, we introduce the following family of FBSDEs parameterized by a € [0,1]:

dXJ = [ab(s,0F) + ¢s]ds + [ao(s, OF) + ¥s]dW,

—dYS = [(1 - a)51GXT + ag(s, OF) + rs|ds — Z3dW, (3.1)

X ==z, Yi=(0-)mGXp+ad(Xy)+¢,
where O% := (X* Y Z%). Tt is clear that, when o« = 0, FBSDE (3.1) is in a decoupled form
and then the Malliavin’s differentiability has been established due to the work of El Karoui, Peng
and Quenez [7]; when o =1 and (¢, 9, k, &) vanish, FBSDE (3.1) coincides with FBSDE (1.2).
We shall show that there exists a fixed step-length d9 > 0, such that if for some «g € [0, 1),
the solution to (3.1) is differentiable in Malliavin’s sense for any (¢, v, k,&), then the same
conclusion holds for «g replaced by ag + 6 < 1 with ¢ € [0,dp]. Once this has been proved, we
can increase the parameter « step by step and finally reach o = 1, which gives the Malliavin’s
differentiability of the solution to FBSDE (1.2). This method was originally introduced by
Hu and Peng [10] for dealing with the L?-solvability of coupled FBSDEs, which is called the
method of continuation.

We have the following continuation lemma.

Lemma 3.2 Let Assumptions (H3) and (H4) hold. Then there exists an absolute constant
do > 0, such that if for some ag € [0,1), the solution to FBSDE (3.1) is differentiable in
Malliavin’s sense for any ¢, 1 € Lg(t, T;R™) NL{ o (¢, T;R™), & € Lg(t, T; R™) N LY 5 (¢, T; R™)
and £ € L%_—T(Q;Rm) N (D1,2)™, then the same is true for a = ap+ 3 with 6 € [0,dp], o+ < 1.

Proof Let dp > 0 be undetermined and 6 € [0, dp]. We introduce the following sequence
defined by 0% := (X°,Y° 7% = (0,0,0) and
AX I = [agb(s, OFFY) + 6b(s, ©F) + ¢4]ds

+ [ (5,08 + 50 (s,0%) + o] dWy,
=AY = [(1 = a0)BiGXH + aog(s, 007 — 0BGXT +dg(s,00) + riJds (32)
— zkaw;,
X =2, YT = (1 - a0)mGXET 4 ap®(X5H) — 6 GX g + 60(XF) + &,

where ©F := (X* Y* Z*). Tt is easy to verify that the coefficients of the above FBSDE (3.2)

satisfy the monotonicity conditions. Then, by applying the L?-estimate, we have
k+1 ) 21k k—12
||6 e ||MF2(t,T) <o ||6 -6 ||MF2(t,T)'

We note that the constant C' > 0 appearing in the inequality is independent of ay and ¢. Hence,
if we choose 6; > 0 such that €67 < %, then, for any § € [0, 1], it turns out that ©% is a Cauchy
sequence in MZ(t, T; R"+™+m) By passing to the limit in FBSDEs (3.2), we see that the limit
of Cauchy sequence ©F solves FBSDE (3.1) for a = g + 6. In other words, ©F converges in
M2(t, T; RvmHm) 0 @20+ a5 k — o0.
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By our assumption, the solution to FBSDE (3.1) is differentiable in the Malliavin’s sense

for o = o and for any Malliavin differentiable (¢,, s,€&). From (3.2), it is clear that ©F €

To(t, T;R™) x LY 5 (¢, T; R™) x IL§ 5(t, T; R™) recursively. Moreover, the Malliavin derivative
DO .= (D, X*1 D, Yk D,Z*¥+1) is a solution to the following linear FBSDE:

DQX;C—H = [apo (o, ®Z+1) + do (o, 65) + 1/’9]

+ / {aoVb(r, 0D ,0F ! 1+ §Vb(r,0F)D,0% 4 D, ¢, }dr
4

—|—/ {aoVao(r, @fH)DE,@f‘H + 0Vo(r, @f)DQGf + D, AW,
4

4o
DYk = [(1 — a0)mGD X + oo (XFT)D X5 — 6 GD X5 (3.3)

) T
+O DX+ Dt + [ {0V 04 D01
+0Vg(r,0%)D,0F + (1 — ap)51GD,X**! — 56,GD,XF + Dk, }dr

T
— / D, ZFaw,.

We notice that, due to Lemma 3.1, the monotonicity condition is satisfied for the above FBSDEs

(3.3). Moreover, Lemma 3.1 works once again to ensure the unique solvability of the following
FBSDE:

X¢ =[(ao+ 9)o(p, @g‘“+6) + ] + / {(avg + 6)Vb(r, @?O’Lé)@f + D,y }dr
0
+ / {(avg + 6)Vo(r, @f‘““)@f + Dy, AW,
0
4 de ap+4 4
Y2 = [(1 = a0 = )mGX + (a0 +0) (X5 XF + D¢ (3.4)
T
+ / {(ag +0)Vy(r, @f“’“)@f + (1 —ap—§)B1GX2 + D,k bdr

T
- / Zedw,,

where ©¢ := (X¢, Y2 7°9).
Applying the L?-estimate to ©¢ leads to

”@Qﬂ?wg(g,:r) < CIE{l + |@go+6|2 F [l + | Dt
T
+ [ IDodn P+ Dow P+ Dot Pl .
o
Hence,
T T T T
|18 B mde < cB{1+ [ 105 oPdot [ pualtde+ [ IDsePde
0 0 0 0

T T
+/ / [|DQ¢T|2 + |Dgwr|2 + |D9/€r|2]drdg}.
0 0
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With the help of the L2-estimate of the solution ©%°+° to FBSDE (3.1),
T T T
| 10% B myde < CE{1+ 6P + [ IDugPde+ [ l1ork + fou? + I Pl
0 0 0

T T
b [ ] UDun P+ 1D+ 1Dy Parde)
0 0
= O+ eI, , + 10l , + IR, + Il } < © (35)

By applying the L%-estimate to the difference of D,0%"! and ©¢, we obtain

DO = %32 (1) < Clag ARy, +0°AL +6°B), (3.6)
where o o 2
_ k ag+5\ (2 k Qo+ 9
A= E{|0(9’99) — (0, 65° ) + ‘E(XT) - E(XTO )| X7
T
+/ (IVg(r, ©F) — Vg(r, 02019)|2 1 |Vb(r, OF) — Vb(r, ©20+9)|2
4
+ |Vo(r, @f) — Vo (r, 9g0+6)|2]|@$|2d7“}
and
o d@ k 2 k 012 k 012 T N oo
B = B{ | (X5 1D, X5 - X2+ (D, X5 - X¢ P+ | 1D, XE - X¢ar
0

T
+ [ V9(r O5)F + Vbl OB + Vol 64| D,6k — efldr ).
[

With the help of (3.5), the fact that ©F converges to ©2°+° in MZ2(0,7), and Lebesgue’s
dominated convergence theorem, we have

T
lim Aldo =0.

k—oo Jo

We also have

BY < C||D,O" — 07|32, 1.

Then, (3.6) is deduced to
1D O35,y < OR DO — 02032, 1) + CAL,, + AD)

Choose & € (0,481] such that C3 < 1. Let § € [0,80). For any & > 0, there exists N > 0 such
that, for any k > N,

T T
1
k+1 2 k 2
/o | D,© — ®9||MF2(Q,T)dQ <e+ 1 /0 [D,©" — @g”MF?(g,T)dQ-

Thus, we obtain recursively, for every k > N,

T T
4 1
D @k+1 2 D eN 2
/0 1D, - ®Q||M}?(Q7T)dg < §€+ JFH1—N /o D07 — GQHMFZ(@T)dQ'
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Hence, it follows that D,0% is a Cauchy sequence under the norm || - Then, we have

[t

1,2
proved that © is a Cauchy sequence in L{ ,(0,7). Since L ,(0,T) is closed under the norm
|- le (0,7, the limit ©27° belongs to L ,(0,7) and a version of D,0%T is given by ©°¢.

We complete the proof of the lemma.
Second case 1 >0, u1 >0, B2 > 0 and m < n.

Instead of (3.1), we need to consider the following family of FBSDEs parameterized by
a € [0,1):
dX® =[(1 - a)Ba(~GTY?) + ab(s,0%) + ¢,]ds
+[(1 = @)B(—GTZ) + ao(s,02) + ¥, ]dW,
—dYY = [ag(s,0F) + ks]ds — Z&dW, (37)
Xp=z, Yr=a®(X7)+<E

Similar to Lemma 3.2, for the second case, we can prove the following lemma.

Lemma 3.3 Let Assumptions (H3) and (H4) hold. Then there exists an absolute constant
00 > 0, such that if for some ag € [0,1), the solution to FBSDE (3.7) is differentiable in
Malliavin’s sense for any ¢, 1 € Lg(t, T;R™) NL{ o (¢, T;R™), & € Lg(t, T; R™) NL{ 5 (¢, T; R™)
and & € L%, (G R™)N (D 2)™, then the same is true for o = ag+ 8 with § € [0, do], ap+6 < 1.

Theorem 3.1 Let Assumptions (H3) and (H4) hold. Then the solution ©%* to FBSDE (1.2)
belongs to 1§ o (0, T; R™FmTmxd) “and a version of {D,0L" := (D, X", D, YE", D, Z5"), s €
lo, T} is given by

D, X" = o(o, @tg’z) —|—/ Vb(r, @i’x)DE;@i’zdr—l—/ Vo(r,0L")D,0L"dW,,
¢ ¢ (3.8)
e, ; T T
D,Y:" = E(Xf”)DQXT-'z - / Vg(r,0L")D,05"dr — / D, Zt AW,
Moreover, {D;Y}%; s € [t,T]} defined by (3.8) is a version of {ZL*; s € [t,T]}.

Proof For the first case, by Lemma 3.2, we can establish the Malliavin’s differentiability
for FBSDEs (3.1) with any (¢, %, s, &) and « € [0,1]. In particular, (3.1) with (¢, 9, k,&) =0
and a = 1, which is (1.2), is differentiable in Malliavin’s sense, and (3.4) coincides with (3.8).
For the second case, we consider (3.7) and use Lemma 3.3 to get the same conclusion.

Now the remaining thing is to prove DyYs; = Z;. The same as El Karoui, Peng and Quenez

[7], we notice that
Y.=Y; — /S g(r,©,)dr + /S Z,dW,, se[t,T].
t t
Then, by [7, Lemma 5.1],
DY, =Z,— /S Vg(r,0,)D,0,dr + /S D, Z,dW,, s € o, T].
0

0
By taking s = o, we get D,Y, = Z,, then the proof is finished.
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3.2 Continuous differentiability of u with respect to

By Corollary 2.1, the function u defined by (2.31) is continuous in (¢,2). Now we continue
to study the continuous differentiability with respect to z under Assumptions (H3) and (H4).
Let (t,z) € [0,T] x R™ be given. Let {e1,ea,--- ,e,} denote an orthonormal basis of R™. For
any i =1,2,---,n and h € R\ {0}, we define

ALK = KL - XL,
AZYSt,z = B 1[Yst,r+hei o Yst.'z]v = [t,T].
DZ® = B e 70,

Then Al ©6% = (Al Xt* ALYhe Al Z6%) satisfies the following FBSDE:
s 1
ALXE = ey + / / Vb(r, ©L% + AhAL O NG L7 dNdr
t Jo
s 1
+ / / Vo (r, 0L + AhAL QL)AL OLTd AW,
t Jo

) L ad . ) r o
ALY = / fi—x(X;uAhA;X;w)A;X;wdA— / N} ZEE AW,
0 s

T 1
+ / / Vg(r,0h" + AhALOLT)AL O d\dr.
s 0

ae ® (axm oYhe azh

! s po ) the unique solution

For any ¢ = 1,2,--- ,n, we also denote by <5
to the following FBSDE:

aXt’”” s et x
5 zei—l—/ Vb(r,@” i dr—l—/ Vo(r,0h") == dWr,
6xi t 6
aybr  dd ( m)ang N / - m)a@zw q Tozte aw,. (3.10)
= — r, O r—
ox; dz T 7 9 g\ ox; s Oz
Equivalently, by setting VO»* = (ag;f , aéa;: P 6693:) as well as setting VX** VY and
VZ%® similarly, we collect the above FBSDEs from ¢ = 1 to n in the following form:
VXL = I—I—/ Vb(r, 0L\ VOL dr —|—/ Vo(r,0L")VeLsdw,.,
. ' . ! . (3.11)
Vit = SEnvxg [ veeinvelrar - [ vzisaw,,

where I denotes the (n x n) identity matrix. We shall later interpret VX5® (resp. VY%,
VZ5*) as the matrix of first order partial derivatives of X5* (resp. Y%, Z1*) with respect to
x.

Due to Lemma 3.1, the monotonicity condition is satisfied for FBSDEs (3.9) and (3.10) (or
(3.11)). Then these FBSDEs admit unique L2-solutions, and we can use the L?-estimate to get

0" |12

P Cy, i=1,2,-,n (3.12)

Mg (t,T)

180" gz iy < C. |
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and
00HT |12

Bxi

HA;@W - <CA* +19 +1° +1°),

MZ(t,T)
where

do

1 t,x
do t,x 7 t,x t,x 2 8‘)(’1"7
_IEH/O X + MALXET A~ (X

al'i

2:|’
‘agtm
0

Ty

T 1
= IE/ ‘/ Vf(r, 0L — AhALOLTYAN — V f(r, ©8F) dr with f =g,b,0.
t 0

With the help of (3.12), from Lebesgue’s dominated convergence theorem, we have

a@t@ 2
32Ei

Then by the definition of partial derivatives, VO"®  of the unique solution to FBSDE (3.11),

hm HAl eohr —

=0. 3.13
Mg (t.T) (3.13)

is the gradient of ©%* with respect to z. In particular, when s = ¢, the function w is partially

differentiable with respect to x, and
Vu(t,z) = VY*.

Moreover, from (3.12), Vu is bounded.
Next, we show that Vu is continuous. Let (¢, z), (¢,2') € [0,T] x R™. For the case t’ < t,
by applying the L?-estimate on the interval [t, T], we have

0T et _qeere gete 2
H M2(0,T) Hﬁ—xz  Omy

Ox; B Ox; M2(#',T)
< C(II® + 119 4 11° + 117 + II19 + II1° + I117),
where .
d® Ao 219X 5" 2
m* = B[S (X" Xh L]
dx( )~ dx X Oz, ’

6@15,1 2
‘8—5 ds with f = g,b, 0,

%

/= / V£ (5,00 ) — Vf(s,05%)
L OF g OV

' =g e
/t, By( 0 ) ox;

Firstly, we estimate IT1I7. With the help of (3.12),

8f( I ds with f =g,b,0.

83/;.,1 2
Bxi

' < ¢ (1+‘
t/

)ds <C@t-t).
Secondly, we analyze II®. From (2.33), we have
E[Xp " — X5 < Ol o] + (Lt [af? + 1o’ Pt ).

Then X;:’m, converges to Xp* in L% (G R™) as (t',2") — (t7,z). Consequently, X;:’r, con-
verges to Xftp’w in probability P. With the help of (3.12) and Lebesgue’s dominated convergence

theorem, we get

lim m® =o.
(t",x")—=(t—,x)



Probabilistic Interpretation for Partial Differential-Algebraic Equations 897

Finally, a similar analysis as II® leads to

lim 1Y =o0.
(t",x")—=(t—,x)

In summary,
2
=0. (3.14)

‘aet’ﬁz’ _0ehr
ME(0.T)

im

(t,2")—(t™ z)

For the other case t < t/, we do not apply the L2-estimate on the whole interval [t,T].
Instead, we apply it only on the interval [t',T], which leads to

2 0X}*
<o(e] %
M2(#',T) dx;

where II? is defined in the previous paragraph, and

oot pete 2 ~g ~b ~o
H ]+11‘I’+119+11b+11),

2

0L
— | ds with f=g,b,0.

T

~f /w/ T

11 :E/ IVf(s,05%) = Vf(s, 0% )Iz‘ 3
t’ r

K2

For simplicity, we also introduce the notation

2

861&@
—=—| ds with f =g,b,0.
7

o~ t/
i’ - & / v is.0577 %
t

2

By considering the forward equation in (3.10) on the interval [t,#] and with the help of
Burkholder-Davis-Gundy inequality, we get

254 2 —~b —~o0
]E[ sup s } <O +100).
sE[t,t'] L4
Then,
et petT 2 g ~b =0 —~b o
H - <CM®+ T + 10 + 10 + 100 +100).
ox; ox; MZ(t',T)

Similar to the previous paragraph, we can check that II1?, IIf and IIT" tend to zero as (t',2') —

(t*,x). Therefore,
2

tx’ t,x
‘89 09 —0. (3.15)
M2(2,T)

1m
(t.2") = (t+,2)

. . !t oy . .
On the interval [t, '], we notice that 6%;1, = (e, Y, 0). Burkholder-Davis-Gundy inequal-

t
8% ?

ity works once again to yield

Haet’@’ 002
ox; Ox; M2 (t,t)
R ) S YlOZbT 2 =g b o
<C(E|=t— - 2t E/ s |"ds+ 1007 + 101 + 101
per " 9ebe 2 Y
gc(H _ +E/ s |"ds + 1017 + 01 +111).
ox; Ox; M2, 1) ‘ T,
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From (3.12) and (3.15), we have

90" 9ot 2
im ‘ - —0. (3.16)
(e —=(tt,x) Il O, Ox; 1M2(t,e)
It is obvious that
Haet’@’ _0ehe 2 _ Haet’@’ _0ete 2 Ha@fﬂw’ IEERE
ox; Oz; llmzor) — Il Ox; Oz; mzw ) ox; Oz Mzt
Then, (3.15)—(3.16) imply
90t get 2
lim ’ - —0. (3.17)
(2= (t+,x) Il O, Ox; |lM2(0,T)
Combining (3.14) and (3.17), we obtain
0! gete 2
lim ‘ - —0. (3.18)
3 —(tx) 1| Ox; Ox; 11Mz(0,1)

In particular, Vu is continuous in (¢, x).

We summarize the above analysis as follows.

Lemma 3.4 Let Assumptions (H3) and (H4) hold. Then u € C%1([0,T] x R™*;R™). More-

over, all the partial derivatives are bounded on [0,T] x R™.

3.3 Twice continuous differentiability of u with respect to

It should be noticed that just the L2-estimates of coupled FBSDEs are involved in our
analysis of the above two subsections. However, when we consider the same issues on the
second order derivatives of u, there are some additional non-homogeneous items appearing in
the corresponding equations (compare (3.9) and (3.10) with (3.22) and (3.23) below), which
brings us difficulties. Since the non-homogeneous items will appear in quadratic forms of

85):2 or/and A} O (i = 1,2,---,n), it seems the L2-estimates will not be enough for our

analysis below. Due to this, we shall employ L*-estimates by imposing Assumption (H2)* in
this subsection. Besides Assumption (H2)*, we shall also need the following assumption.

(H5) The coefficient o depends linearly on z, i.e., o is in the form: For any ¢ € [0,7] and
any 0 = (z,y,2) € Rrtmtmxd,

m d

a(t,0) = oot z,y) + D Y 0Pt 2, 9) 2,
p=1qg=1
where P4 takes values in R™*9 and z,, is the element of matrix z located in the p-th row and
the ¢-th column.
Consequently, (H5) implies that the Hessian matrix £-%

gi‘; = 0. The following analysis in this
subsection is under Assumptions (H2)%, (H3), (H4) and (H5).
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It is clear that in the present smoothness situation, the constant L, (involved in Assumption
(H2)*) is the bound of 42, L, is the bound of (6%%(,2,y))mxa, and L is the bound of other
first order partial derivatives of coefficients v = (g, b, o) with respect to 6.

First of all, under Assumption (H2)*, (H3) and (H4), replacing L*-estimates with L%-
estimates, we can improve (3.12)—(3.13) and (3.18) to the following:

i ot.x(4 0L 14
O el e (3.19)
_ tax 4
lim HAZ@’*I — 90 = (3.20)
h—0 Ox; Ma(,T)
and o )
,w 14
lim ‘86 _ 2 —0. (3.21)
3=tz 1| Ox; Ox; lMa(0,1)

The proofs are similar to those appearing in the previous subsection, hence we omit them.
Now, similar to the previous subsection, for any 4,5 = 1,2,---,n and h € R\ {0}, we

introduce the notations

t,x t,x+he; t,x
A oXY - {8XS _0X5 }
h Oz, ox; dx; 1’
QYL oyrthe gyt
AN s ph 5 _ s selt,T].
t,x tx+he; t,x
A 0Z; - 0Zs B 0Z! }
h Oz, dx; ox;
Then Agl 38®w - (AfI ag(; - Agl ag; - Agl 36Zm ) satisfies the following FBSDE:
th . . t,x
8,5 / / (D2(r, 047 + ARA O A O, 8; Jddr
2 t,x Jjat.x Jjat.x 69
+ D o(r, O + A OF) A0, ok >d)\dW
t,x t,x
/ Vb(r, @b e ng 90, —dr +/ Vo(r, 0L the) Al 90, dw,,
Oz Ox;
oy h® d2o OXp"
i t,x J vt J vitx
85 _/0 <d 3 (X5 + ARALXET) A X5, 5T e (3.22)
. . t,x
+ / / <D29(r,®i’m+/\hA§1®£’I)A§1®£’r, 00 >d/\dr
t Jo ox;
wthepy g OXF" P
+@(X; +h])A]8 / vg (__)tm-l-heJ)Ahaa@:; dr
07
A
/ h 8961

Here, for an R"-valued function f(-) = (f(-), f2(:),---, f™(-))T, we use the notation (D?f(-)6, )
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to denote another R™-valued function in which the k-th component is (D2 f*(-)0, 6) and

82]019 62fk 62fk
ox? ) 8y3x(-) 32’33:(-)
2k _ ank 82fk 82fk
DO = | o) B 50
82]019 62fk 62fk

81:82(.) 3y8z(-) 022 )
Moreover, for an R™*?-valued function f(-), the notation (D2f(:)f, 0) has a similar meaning.
Besides FBSDE (3.22), we also introduce another FBSDE as follows:

2 vtx s t,x t,x s 20Qt,z
X, :/ <D2b(r, 93’$)86T 8®T dr—i—/ Vb(r,G?w)a " 4
t

a$j8$i ij ’ 3%1 8 3%1
s a@t x a@t x 82615,1
t,x t,x T
+/t (D% (r 04 S e P Naw, +/ e

o2yt d2® oxXLET xh*® do 2D¢
= ( S, S N (3.23)

@( T ) 813j ’ 3%1 E( T )8$38$1

a$j8$i o
s a@tm 8@1&,1 s 82@1&,95
t,x T t,x T
+/t < 9(r,07") 5~ dz; 0wy >dr+/t V(r, O, )axj(?xidr
T 92t
VA
— L —dW,.
s 8$38$1

As in the previous subsection, Assumption (H4) ensures that the Lipschitz condition holds true
for FBSDEs (3.22) and (3.23). Moreover, with the help of Lemma 3.1 and Assumption (H3), the
monotonicity condition is also satisfied for the above two FBSDEs. However, when we continue
to check the corresponding square integrability conditions for the coefficients of FBSDEs (3.22)
and (3.23), the following two items

Lo t,x Jj otz J ot Z;"
<{ | 0z (1, O + AR O )dA}A zZ", o > € [t,T) (3.24)
and , ) t
Po, . 0ZET 9ZLe
<a 5 (1, O )axj " o, > €] (3.25)

appear in the diffusion coefficients, which bring us a difficulty: For fixed w € 2, we require

that the above two items are square integrable with respect to the time variable r € [¢,T].

However, Af;Z GES aaZ;; and az are also known to be only square integrable. Therefore, the
square integrability requ1rements of (3.24)—(3.25) cannot be satisfied in general. To avoid this
difficulty, we introduce Assumption (H5). Under Assumption (H5), the estimates (3.19) ensure
that the corresponding square integrability conditions for the coefficients of FBSDEs (3.22) and
(3.23) are satisfied. Therefore, FBSDEs (3.22) and (3.23) admit unique L2-solutions and the

corresponding L2-estimates can be used in our analysis below.
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The next analysis is a bit complicated, but is very similar to the previous subsection. Then
we would like to provide a brief derivation procedure. By virtue of (3.19), we have

(,_)t x
b9z,

82@t T
H Ox; 81:1

With the help of Lebesgue’s dominated convergence theorem as well as (3.19)—(3.20) and (3.26),

245

<C. (3.26)

M2 (t,T) MZ(t,T)

we obtain . b,
00t §geebLT
lim HAJ

h—0 ox; 8:1@835Z

3.27
21y (3.27)

The above equation implies that the function u is twice partially differentiable with respect to

x, and
u Y ”
7t7 = ) .7':1727"'7 .
81?]82131( CC) 8$38$1 bJ "
Moreover, (3.26) implies ai_zgzi is bounded for any 4,7 =1,2,--- ,n

In order to exhibit the treatment techniques on the non-homogeneous items appearing in
this subsection, we would like to indicate how we treat the following “hard” term: When we

analyze the “left continuity” of the second order partial derivatives, we need to prove

t t' t!
oxt .« 2,97t 2
lim E/ s ‘ s° |"qs =o. (3.28)
(#a)—=(t—z) Jp | Oxj ox;
In fact, by Holder’s inequality,
t t' x| o t'x' o t'x' 4 1 t'x’ 1
o [ 1 2 oo o 12557 ) (] P2 )
+ ij 3%1 sE[t! ] 813j ' 82131

From (3.19), the first item on the right hand side of the above inequality is bounded by C’f .

Moreover, we notice that on the time interval [t/ ], aZ = 0. Then
t t! z! t t! t,x
0Zt" 12 N2 ozt 0Zb% 12 \2
B/ % dS)]:E[(/ o o %) ]
t Bxi + al'l al'l
B Hazt/@/ B Ot 14 _ Ha@t',m' B HOLT |14
9z Oz; gy — Il Oz, Oz; Mg )
Therefore,
t ta’ tax’ ta’ t,x
oXt® 121902t |2 1100 0eh* |12
E / s ‘ s Pas<of| 2 -2 .
v | 0z ox; ox; Ox; NMaw 1)

Due to (3.21), we obtain (3.28).
We continue our analysis. By virtue of Lebesgue’s dominated convergence theorem, Holder’s
inequality, Burkholder-Davis-Gundy inequality as well as (3.19), (3.21) and (3.26), we success-

fully obtain
82@1&/@/ 920t
O0xj0x; axj ox;

lim = (3.29)
(¢ ,x")—(t,x) MZ(0,T)
In particular, afééiz. is continuous in (¢, z) for any i,j =1,2,--- ,n.
50T,

In summary, we have the following lemma.
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Lemma 3.5 Let Assumptions (H2)*, (H3), (H4) and (H5) hold. Then u € C%2([0,T] x

R™; R™). Moreover, all the partial derivatives are bounded on [0,T] x R™.

Remark 3.1 In this subsection, due to the non-homogeneous items appearing in FBSDEs
(3.22) and (3.23), we impose Assumptions (H2)* and (H5). Instead of them, we can also

introduce the following assumption.
(H6) All the coefficients (®,~) depend linearly on 6.

Under Assumption (H6), all the non-homogeneous items in (3.22)—(3.23) (and then the
corresponding difficulties) disappear. Moreover, all the conclusions in the rest of this paper are
right. However, it is easy to understand that Assumption (H6) will lead to the second order
partial derivatives of u to be zero. Therefore, the system of PDAEs (1.1) will degenerate to be

a first order one.

4 Classical Solution to the System of PDAEs

In this section, we shall link the family of coupled FBSDEs (1.2) to the system (1.1) of
PDAEs. In the first subsection, we shall work for the algebraic equation in the PDAE system

(1.1), and in the second subsection, we shall consider the differential equation in (1.1).

4.1 Algebraic equations and the function v

The method used in the following Lemmas 4.1-4.2 is similar to the one in [27]. Since the
issue of the viscosity solution was investigated in [27], then the dimension m was restricted to
1 there. In comparison, this subsection will focus on the multidimensional case, i.e., m > 1.

As a start, we give a property for smooth G-monotonic functions (see Definition 2.1).

Lemma 4.1 Let f € CY(R";R™) be a G-monotonic function with v > 0. Then, for any

matriz IC € R4, we have

(Vf(z)K, GK) > v|K|* for any x € R".

Proof By the definition of G-monotonicity, for any vector x, K € R™ and any positive
number § > 0, we have
(@ +8K) — f(z), GOK)) > v[oK]?.

From Lagrange’s differential mean value theorem, there exists an o € (0,1) depending on §,
such that
(Vf(z+adK)(0K), GOK)) > v|0K|%

By dividing 62 on both sides, and then letting 6 — 07, we have

(Vf(x)K, GK) > v|K|*. (4.1)
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Now, let K = (K1, Ka,--- , Kq) € R be a given matrix, where K; € R" is the j-th volume
vector of £ (j =1,2,---,d). Applying (4.1) to each K yields

SH

d
(VI@)K, GK) =Y (Vf(@)K;, GK;) > > v|K;|* = v|K].

Jj=1 Jj=1

We finish the proof.

For clarity, we extract the algebraic equation from the PDAE system (1.1) and rewrite it as
follows:
v(t,x) = Vu(t,z)o(t, z,u(t, z),v(t, x)). (4.2)
Although the above algebraic equation can be considered for any given u € C%*([0, T]xR"™; R™),
in this subsection, we are concerned about a special case where the function u appearing in (4.2)
is given by (2.31). Since there are only the first order partial derivatives involved in (4.2), most
of our results in this subsection will be under Assumptions (H3) and (H4). From Proposition 2.2,
we know that u is G-monotonic. Moreover, Lemma 3.4 implies that u € C%1([0, T] x R"; R™)
and all its first order partial derivatives are bounded. The following lemma provides some

preliminary results.

Lemma 4.2 Let Assumptions (H3) and (H4) hold. Let u be defined by (2.31).

(a) Let (t,z), (£,7) € [0,T] x R™ be given. If v and T satisfy the algebraic equations (4.2)
with (t,z) and (1,T), respectively, then

|E - U| < O|V’UJ(Z, E)U(za T, u(zv E)v U) - Vu(t, ZZ?)O'(t, €T, u(tv ZI?), U)|a

where C > 0 is a constant independent of (t,xz) and (t,T).

(b) For any (t,x) € [0,T] x R™, the algebraic equation (4.2) admits at most one solution.

Proof (a) For simplicity, we use the denotations

Vu :=Vu(t,z), Vu:=Vult,z), u:=(t,z,ult,z)), u:= 7T ut7T))
in this part of proof. From the algebraic equations, we have
v —v = Vilo(u,v) — o(u,v)] + [Vuo(u,v) — Vuo(u, v)]. (4.3)

By taking inner product with G[o(u,7) — o(@,v)], from Lemma 4.1 and the monotonicity

condition of o, we get
—Bo|GT (T —v)|* > (T —v, Glo(T,v) — o(@,v)])
= (Vuo(u,v) — o(u,v)], Glo(w,v) — o(w,v)])
+ (Vuo(u,v) — Vuo(u,v), Glo(a,v) — o(u,v)])

Y

v|o (@, 7) — o(@,v)|?

+ (Vuo (u,v) — Vuo(u,v), Glo(u,v) — o(a,v)]), (4.4)
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where v > 0 is the G-monotonicity constant of u (see Proposition 2.2). Next, similar to
Subsection 3.1, according to the signs of 81, 2 and w1 in the monotonicity assumption (H3),
we split our problem into two cases.
First case (1 >0, uy > 0, B2 > 0 and n < m. In this case, by Proposition 2.2, we have
v > 0. Then, (4.4) implies
1

lo(@,7) — o(@,v)]? < — ;(VHU(H, v) — Vuo(u,v), Glo(u,7) — o(T,v)])

I Gti0(.v) - Vuou.v)llo@. ) - o(w.v)].

IN

Therefore,

|G

lo(w,v) — o(u,v)| < 7||Vﬂa(ﬂ, v) — Vuo(u,v)|.
With the help of the above inequality, from (4.3), we deduce

[v — | < |Vulo(w,v) — o(w,v)]| + |Vuo(u,v) — Vuo(u,v)|
Cv|G
< (1 + ﬁ)Vﬂa(ﬂ,v) — Vuo (u,v)],
v
where the constant Cy > 0 is the bound of the gradient of the function u. We get the desired
result in the first case.
Second case 31 >0, 1 >0, B2 > 0 and m < n. In this case, the (m x m) matrix GGT

is positive definite, and we denote its minimum eigenvalue by Ap);;, > 0. From (4.4),
Amin 20 — v)? < Bo|GT (@ —v)|? < — (VEo(u,v) — Vuo(u,v), Glo(a,v) — o(a,v)])
< |G|L,|Vuo(u,v) — Vuo(u,v)|[v — v,
where the constant L, > 0 is the bound of g—‘;. Therefore,

|G|L.
/\minﬁQ

The result in the second case is proved.

[T —o] <

|Vuo (u,v) — Vuo (u, v)]|.

(b) By letting (¢,7) = (¢,z) in the conclusion (a) of this lemma, we obtain the uniqueness

of the algebraic equation.
With the previous preparations, now we give the main result of this subsection.

Proposition 4.1 Let Assumptions (H3) and (H4) hold. For any (t,z) € [0,T] x R™, let
OhT = (Xt* Yi® 742 be the unique solution to FBSDE (1.2).

(a) For any (t,z), the trajectories of the process Z4* are continuous. Consequently, similar
to the definition (2.31) of the function u, we can define another function v : [0, T] x R™ — R™*d
as follows:

o(t,x) = Z0*,  (t,x) € [0,T] x R™. (4.5)

(b) For any (t,z), the above defined v(t,x) is the unique solution to the algebraic equation
(4.2).
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(c) The function v defined by (4.5) is continuous with respect to (t,x) € [0,T] x R".
(d) Similar to the function u, the following Markovian property of the function v holds true:

v(s, Xb*) =z se[t,T), (t,z) €[0,T] x R™. (4.6)
(e) There exists a constant C' > 0 such that
lv(t,z)] < C(1+|z]), (t,2) €[0,T] xR",

i.e., the function v is linear growth with respect to x.
(f) Let Assumptions (H2)* and (H5) also hold. Then, there exists a constant C > 0 such
that
[v(t,T) —v(t,z)| < C(1+ |z))|T—=x|, t€][0,T], z,T € R".

Consequently, the function v is local Lipschitz continuous with respect to x.

Proof (a) From Lemma 3.4, Theorem 3.1 and the Markovian property of the function u

(see [27, Proposition 2.6 or Remark 2.7]), we derive

Zb = DYE" = Dgu(s, X5") = Vu(s, XE")D X5 = Vu(s, X0%)o (s, OL7)
= Vu(s, X;)o(s, X%, u(s, X7), Z7). (4.7)

Now, we fix w €  and consider the corresponding trajectories of X**(w) and Z%*(w). For any
s, ' € [t,T], (4.7) means that Z5%(w) and Z%*(w) are the solutions to the algebraic equations
(4.2) with (s, X1®(w)) and (s, X" (w)), respectively. By Lemma 4.2(a),

125" (w) = Zo" ()] < CVu(s, X" (w))o(s', X5 (w), u(s', X5" (), 2" (w))
- VU(S, X?w(w))a(s, X?w(w)v u(sv Xz)w(w))v Z?w(w))"

Due to the continuity of o, u, Vu and X"*(w), we get

lim 25" (w) = 257 (w).

s'—s
Due to the arbitrariness of s € [t,T] and w € €2, we prove the trajectory continuity of Z*.
(b)—(d) After defining the function v by (4.5), we find that the conclusion (b) is an obvious
consequence of (4.7) with s = ¢. Then, Lemma 4.2(a) works again to ensure the conclusion (c).
Due to the conclusion (b) of this proposition, for any (¢,2) € [0,T] x R™ and any s € [¢,T], we
have
v(s, XL") = Vu(s, X))o (s, X5 u(s, X07), v(s, XE7)),

where v is given by (4.5). From the uniqueness of the algebraic equation (4.2) (see Lemma

4.2(b)) as well as (4.7), we obtain the Markovian property of v.
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(e) From the conclusion (c), v(+,0) is bounded. With the help of Lemma 4.2(a), we calculate
v(t, 2)] < |u(t, 0)| + |v(t, ) —v(t,0)]
< C+ CVul(t,z)o(t,z,u(t, z),v(t,0)) — Vu(t,0)o(t,0,u(t,0),v(t,0))]
< C+ CVul(t,z)o(t, z,u(t, z),v(t,0))]
< C+ C(1+ |z| + [u(t, z)| + |v(t,0)]) < C(1 + |z]).
(f) Under Assumptions (H2)* and (H5), Lemma 4.2(a) works once again to lead
[v(t, ) —v(t,z)| < C|Vu(t,T) — Vu(t,z)||o(t, z, u(t, ), v(t, x))|
+ C|\Vu(t,T)||o(t, T, u(t,T), v(t,x)) — o(t, z,u(t, z),v(t, z))]|
<Clz—z|(1+|z]) + C(|7 — z|) < C(1+ |z])|T — |-

The proof is completed.

4.2 Existence and uniqueness of the classical solution

Let us introduce a couple of spaces:

(1) U is a subspace of C12([0,T] x R"; R™) in which the functions are of linear growth with
respect to x € R”.

(2) V is a subspace of C([0, T] x R"; R™*%) in which the functions are of linear growth and
locally Lipschitz continuous with respect to x € R™.

We first recall a result from [27, Theorem 3.1] which provides the uniqueness for (1.1).

Lemma 4.3 Let Assumptions (H3) and (H4) hold. Let (u,v) € U x V be a classical solu-
tion to the PDAE system (1.2). Then @ and v are uniquely determined by (2.31) and (4.5),

respectively.

The following lemma collects some calculations which will be used in the proof of our main
result (Theorem 4.1).

Lemma 4.4 Let Assumptions (H2)*, (H3), (H4) and (H5) hold. Let 0 <t <r <t <T
and v € R™. Then, there exists a constant C > 0 independent of ', r and x such that

1X* ’m”?\/[;(t/,T) <C. (4.8)

Moreover, we have the following convergence

lim E[O.* -0 =0 (4.9)
(t',r) = (t:1)
t'<r<t
and
lim  E[|f(r,0L") = f(t,07")] =0 with f = g,b,0. (4.10)

(t',r)—(t,t)
t'<r<t
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Proof Obviously, (4.8) is a consequence of the standard L?-estimate. Now, we calculate

/]

E[ X! — 22 <2IE / Ib(s, ) |ds +21E ‘/

< CE/ (14107 2)ds
t/
From the Markovian property and the linear growth property of (u,v),

E[ X! — )] gCE/ (1+|X!")?)ds < c{1+E[ sup | X! ]}( —9).
se(t't]

With the help of (4.8), we deduce from the above inequality that

lim  E[XY* — 22 = 0. (4.11)
(t' )= (t,t)
t'<r<t

Next we are going to prove (4.9)—(4.10). Noticing Proposition 4.1(f), we calculate
BllO7 = 0y7 ] = B X[ —al® + Ju(r, X[*) — u(t, ) > + [o(r, X[*) — (t,2) ]
< O+ [aP)E[IXE* — 2] + 2fu(r, x) — u(t, 2)|> + 2Jv(r, z) — v(t, z)|>.
By virtue of (4.11), we get the conclusion (4.9). Moreover,
E[|f(r,07%) = f(t,0;")[’]
< 2B[|f(r,00"%) = f(r, 00") ] + 2| (1, 01") — f(r, 04"
< CE[|0)* — 0012 4 2| f(r,z, u(t, x),v(t, ) — f(t, z,u(t, z), v(t, z))|>.
(4.9) works to yield the conclusion (4.10). We finish the proof of this lemma.
We are now in the position to give the main result of this paper.

Theorem 4.1 Under Assumptions (H2)*, (H3), (H4) and (H5), the PDAE system (1.1)
admits a unique solution in the space U x V. Moreover, the unique pair of solutions (u,v) is
defined by (2.31) and (4.5). Furthermore, all the first and second order partial derivatives of u
with respect to x € R™ are bounded on [0,T] x R™.

Proof Due to Lemmas 3.5, 4.3 and Proposition 4.1, the remaining thing is to prove that
u defined by (2.31) is continuously differentiable with respect to ¢t € [0,7T] and solves the
differential equation in system (1.1).

From Lemma 3.5, u € C%2([0,T] x R™;R™). Let (t,z), (t',x) € [0,T] x R™. For the case
t' > t, from Ito’s formula and FBSDE (1.2), we have

u(t',x) —ut,z) = u(t',x) —ut', X5%) +ult', X5*) — u(t, x)

t’ t’
_ _/ Ft’””(r,t’)dr—i—/ 257 — Vu(t!, X7 )o (r, 01| dW,, (4.12)
t t
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where F©*(r,t') takes values in R™ and its k-th component (k= 1,2,---,m) is given by
1 < 0?uF
t,x AN Ty t,x / t,x
R ) = 3 30 (00O g (LX)
#3008 2 (1, X1) + gu(r, 007)
vt W\ Y al’l ) r y M .

After taking expectation on both sides of (4.12), the stochastic integral vanishes. By dividing

t' —t, we have
u(t',x) — u(t, x) 1 /t/ . ,
=— E[F“*(r,¢")]dr. 4.13
t/ _ t t/ _ t . [ (r7 )] T ( )
From the continuity of v = (g,b,0), D?u, Vu and ©b% = (Xt* YHe 7Z62) it is easy to know

that F®(r,t') is continuous with respect to (r,#'). By the boundedness of D?u, Vu and the

linear growth of (u,v), we have
[FU(r, )] < OL 410072 < C[1+ X0 < €1+ sup |XE7P2].
re(t,T]
From Lebesgue’s dominated convergence theorem,
lim  E[F"*(r,t')] = F"*(t,t). (4.14)
(t'r) = (t,t)
t<r<t’

This implies the convergence of (4.13) as ¢ — tT. By taking the limit on both sides of (4.13),
we obtain

aju(tv ZIJ) = _(‘Cu)(ta €T, u(tv ZI?), U(tv ZII)) - g(ta €T, u(tv ZI?), U(tv ZE)), (415)
where 0; u(t, z) denotes the right derivative of u with respect to ¢ at the point (¢, z).

For the other case t' < t, similar to (4.13), we obtain

u(t,x) —u(t', x) _ 1

t—t! ot

/ t E[F'*(r,t)]dr-. (4.16)

Analogous to (4.14), we need the following convergence

lim  E[F"%(r,t)] = FY*(t,1). (4.17)
(', r)—(t,t)
t'<r<t
For this aim, for any £k = 1,2,--- ,m, we consider
, 1 d n
BIF7(r8) = FEP (00 < 5 D0 A7+ DAL+ AL,
ij=1 i=1

where

AY = E[|gr(r,0L7) — gi(t, 077)]],
k

ouF Vo {3y OU
(1.X0%) = bi(t, 7)o (1.)||

3ZIJZ'

AL =E[|pi(r 01)




Probabilistic Interpretation for Partial Differential-Algebraic Equations 909

and - -
o 4 x 8 u ! x x 8 U
0,5,k = ]EH(UUT)Z'J'(Tv 654) )Bxx (tv)(7f ’ ) - (UUT)ij (tv 6? )
iLj

(t,:z:)H.

(4.10) in Lemma 4.4 implies that A — 0 as (t',7) — (¢,t). For simplicity, we omit the proof of

Bxixj

Al — 0, and then continue to consider the convergence of the “hardest” term A7 ;- In fact,

by Hélder’s inequality, we can deduce that

A7 < C{E[L + |22 + | X2} 2 {Elo(r, O ) — o(t, 007) 2]} 2
&2k &2k

)i (t, O VE|| s (t, XE %) — ——— :
+(UU )J(7®t ) [afial'j(t’ " ) al'lal'j(t’z)u

(4.8) and (4.10) in Lemma 4.4 imply the first item on the right hand side of the above inequality
tends to 0 as (/,r) — (t,t). Moreover, (4.9) in Lemma 4.4 implies that X!"* converges to x
in probability P. From Lebesgue’s dominated convergence theorem, the last item in the above
inequality also tends to 0 as (¢,r) — (¢,t). In summary, we have proved (4.17). Therefore,
taking the limit on both sides of (4.16) leads to

Oy u(t,x) = —(Lu)(t, x,u(t,x),v(t,x)) — g(t, z,u(t, x),v(t, z)), (4.18)

where 9; u(t,z) denotes the left derivative of w with respect to ¢t at the point (¢, ).
By combining (4.15) and (4.18), we obtain that u € C*2([0,T] x R"; R™) and satisfies the
differential equation in the PDAE system (1.1). The proof is completed.
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