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Abstract In the present paper, by introducing a family of coupled forward-backward
stochastic differential equations (FBSDEs for short), a probabilistic interpretation for a
system consisting of m second order quasilinear (and possibly degenerate) parabolic partial
differential equations and (m× d) algebraic equations is given in the sense of the classical
solution. For solving the problem, an Lp-estimate (p > 2) for coupled FBSDEs on large
time durations in the monotonicity framework is established, and a new method to analyze
the regularity of solutions to FBSDEs is introduced. The new method avoids the use
of Kolmogorov’s continuity theorem and only employs L2-estimates and L4-estimates to
obtain the desired regularity.
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1 Introduction

It is classical that a system of first order semilinear partial differential equations (PDEs for

short) can be solved via the method of characteristic curves (see Courant and Hilbert [4]). The

well known Feynman-Kac formula provides a probabilistic interpretation for a kind of linear

second order PDEs of elliptic or parabolic types. With the help of the theory of backward

stochastic differential equations (BSDEs for short), researchers have given probabilistic inter-

pretations for some semilinear second order PDEs, see Peng [23], Pardoux and Peng [19], Barles,

Buckdahn and Pardoux [2], Darling and Pardoux [5], Pardoux, Pradeilles and Rao [20], Pardoux

[18], Kobylanski [11], Zhang and Zhao [33], Pardoux and Răşcanu [21], and so on. Along this

line, the next natural problem arises: Which kind of PDEs’ probabilistic interpretation should

be given by the coupled forward-backward stochastic differential equations (FBSDEs for short)
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and in what sense (see Peng [24])? Until now, there have been a few results on this problem.

Pardoux and Tang [22] introduced a kind of coupled FBSDEs and provided a probabilistic

interpretation for quasilinear parabolic PDEs in the sense of the viscosity solution. Recently,

Feng, Wang and Zhao [8] studied the probabilistic interpretation for a system of quasilinear

parabolic and elliptic PDEs in the senses of both classical solutions and Sobolev space weak

solutions.

We notice that, in [8, 22], the authors considered the case σ in FBSDEs (1.2) does not

depend on the variable z. If σ depends on z, the corresponding quasilinear PDE should be

combined with some algebraic equations to form a system. We call it a system of partial

differential-algebraic equations (PDAEs for short). Wu and Yu [27] introduced a system of

second order quasilinear (and possibly degenerate) parabolic PDAEs, and the issue of a proba-

bilistic interpretation for it was studied in the sense of the viscosity solution. It should also be

noticed that, due to the nature of the viscosity solution, the dimension of PDEs in the system

was restricted to be 1 in [27]. In the present paper, we continue to investigate the probabilistic

interpretation for the PDAE system with multidimensional PDEs in the sense of the classical

solution.

Precisely, the following PDAE system will be considered in this paper:





∂tu(t, x) + (Lu)(t, x, u(t, x), v(t, x)) + g(t, x, u(t, x), v(t, x)) = 0,

(t, x) ∈ [0, T ]× R
n,

v(t, x) = ∇u(t, x)σ(t, x, u(t, x), v(t, x)), (t, x) ∈ [0, T ]× R
n,

u(T, x) = Φ(x), x ∈ R
n,

(1.1)

where (u, v) is a pair of unknown functions. In (1.1), u = (u1, u2, · · · , um)T takes values in R
m

and its gradient is denoted by

∇u =




∇u1

∇u2

...

∇um




=




∂u1

∂x1

∂u1

∂x2
· · ·

∂u1

∂xn

∂u2

∂x1

∂u2

∂x2
· · ·

∂u2

∂xn
...

...
. . .

...

∂um

∂x1

∂um

∂x2
· · ·

∂um

∂xn




,

Lu = (Lu1, Lu2, · · · , Lum)T and L is an infinitesimal operator defined by

(Lφ)(t, x, y, z) :=
1

2

n∑

i,j=1

(σσT)ij(t, x, y, z)
∂2φ

∂xi∂xj
(t, x) +

n∑

i=1

bi(t, x, y, z)
∂φ

∂xi
(t, x)

for any smooth function φ. Besides the PDAE system (1.1), we shall also introduce a family of
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coupled FBSDEs parameterized by the initial pairs (t, x) ∈ [0, T ]× R
n as follows:





dXt,x
s = b(s,Θt,x

s )ds+ σ(s,Θt,x
s )dWs, s ∈ [t, T ],

− dY t,x
s = g(s,Θt,x

s )ds− Zt,x
s dWs, s ∈ [t, T ],

X
t,x
t = x, Y

t,x
T = Φ(Xt,x

T ),

(1.2)

where we denote Θt,x = (Xt,x, Y t,x, Zt,x) for simplicity. By FBSDEs (1.2), under suitable

conditions, we shall define a pair of functions taking values in R
m and R

m×d, respectively:

u(t, x) := Y
t,x
t , v(t, x) := Z

t,x
t , (t, x) ∈ [0, T ]× R

n. (1.3)

The main result of this paper (see Theorem 4.1) is that under certain assumptions (u, v) defined

by (1.3) is the unique classical solution to the PDAE system (1.1).

There exist three fundamental methods to investigate coupled FBSDEs on arbitrarily large

time intervals: The method of contraction mapping (see Pardoux and Tang [22]), the four-step

scheme approach (see Ma, Protter and Yong [15]) and the method of continuation (see Hu

and Peng [10], Yong [30] and Peng and Wu [25]). Some recent developments on FBSDEs can

be found in Yong [31] and Ma, Wu, Zhang and Zhang [16]. Compared with the other two

methods, the third method has the advantage of dealing with the case: σ depends on Z. As we

mentioned before, in this case, some algebraic equations will be involved into the corresponding

probabilistic interpretation problem, which is just the feature of this paper. Moreover, the third

method is also good at dealing with possibly degenerate diffusion coefficients σ. Due to these

reasons, in this paper, we shall work in the related monotonicity framework (see Assumption

(H3) in the next section) which is required by the method of continuation. Especially, we shall

start with a standard result (see Lemma 2.2) on FBSDEs in this framework.

As an elementary analysis tool, the Lp-theory (including Lp-solutions and the related Lp-

estimates) (p ≥ 2) of FBSDEs will play a key role in the analysis of the probabilistic interpreta-

tion. In the literature, when p = 2, the L2-theory of FBSDEs within monotonicity framework is

standard (see Lemma 2.2). In comparison, when p > 2, the results are rare. For the Lp-results

on small intervals, one can refer to Delarue [6], Li and Wei [12–13] and Xie and Yu [28]. On

large intervals, Ma, Wu, Zhang and Zhang [16] provided an Lp-result for 1-dimensional FBS-

DEs. Feng, Wang and Zhao [8] established an Lp-result when both b and σ are independent of

z. Recently, Hu, Ji and Xue [9] gave another Lp-result. In these results, the Lipschitz constants

of both b and σ with respect to z are assumed to be very small.

In the present paper, we shall establish an Lp-result on a large time interval in the mono-

tonicity framework (see Theorem 2.1). When they researched the L2-theory of FBSDEs in [6,

14, 16], the authors used the following idea: “Splicing” a sequence of results on small intervals

yields a corresponding result on a large interval. In this paper, we shall adopt this idea to

investigate the Lp-theory with p > 2. In detail, we shall first establish Lp-results on small inter-

vals. Then by the classical standard L2-theory, we “splice” them to obtain a desired Lp-result
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on a large interval. However, due to the high degree of coupling of FBSDEs, even on small

intervals, the Lp-result needs some additional assumptions (see Assumption (H2)p). It is clear

that this Lp-result has a wide range of potential applications. For example, besides the issue of

the probability interpretation, the Lp-theory is also necessary in the study of general maximum

principle for controlled coupled FBSDEs (see [9]). The Lp-result with p > 2 can be regarded as

a contribution of this paper.

Regularity analysis for the solutions to FBSDEs (1.2) is an important part of the probabilis-

tic interpretation of the PDAE system (1.1). The classical method makes use of Kolmogorov’s

continuity theorem as well as Lp-estimates (for all p ≥ 2) (see [8, 19]). For the case of the cou-

pled FBSDEs in the monotonicity framework studied in this paper, the classical method will still

work due to the establishment of the Lp-theory. However, as we mentioned in the above para-

graph, some additional assumptions must be imposed to ensure the feasibility of Lp-estimates.

Moreover, we notice that, with different p > 2, Assumption (H2)′p (depending on p) is in fact a

series of assumptions. In order to weaken assumptions, we introduce a new method to analyze

regularity in this paper. The new method employs Lebesgue’s dominated convergence theorem

to prove the desired convergence many times, instead of the use of Kolmogorov’s continuity

theorem, then only L2-estimates and L4-estimates are involved in our analysis (see Theorem

3.1). The new method can also be applied to other probability interpretation problems, and

can be regarded as another contribution of this paper.

The rest of this paper is organized as follows. In Section 2, we establish an Lp-result for

coupled FBSDEs in the monotonicity framework. We also recall some elementary properties

of the function u from [27]. Section 3 is devoted to the regularity analysis for the solutions

to FBSDEs (1.2) including the Malliavin’s differentiability of Θt,x = (Xt,x, Y t,x, Zt,x) and the

second-order continuous differentiability of u with respect to x. In Section 4, we prove that

the function u is continuous differentiable with respect to t, and (u, v) is the unique classical

solution to the PDAE system (1.1).

2 L
p-theory in Monotonicity Framework

In this paper, we work with a finite time horizon T > 0, a d-dimensional standard Brownian

motion (Ws)s∈[0,T ], a completed probability space (Ω,F ,P), and a filtration F = (Fs)s∈[0,T ]

which is a natural one generated by the progressively measurable processes on Ω × [0, T ]. For

simplicity, we omit all dependence in ω of any random variable or stochastic process in the

notations.

We denote by R
k the k-dimensional Euclidean space with the inner product (resp. norm)

〈·, ·〉 (resp. | · |), Rk×l the collection of (k × l) matrices with the inner product (resp. norm)

〈z, z〉 = tr (zzT) (resp. |z| =
√
tr (zzT)) for any z, z ∈ R

k×l, where the superscript T denotes

the transpose of vectors or matrices. For any p, q ∈ [1,∞) and any given F-stopping time τ ,
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we introduce some Banach (or Hilbert, in case of L2
Fτ

(Ω;Rk) or L2
F
(τ, T ;Rk)) spaces of random

variables or stochastic processes as follows:

(1) Lp
Fτ

(Ω;Rk) is the space of Rk-valued Fτ -measurable random variables ξ such that

‖ξ‖Lp

Fτ
(Ω;Rk) := (E[|ξ|p])

1
p <∞.

(2) Lp
F
(Ω;C([τ, T ];Rk)) is the space of Rk-valued F-progressively measurable processes ϕ

such that for almost all ω ∈ Ω, s 7→ ϕ(s, ω) is continuous and

‖ϕ‖Lp

F
(Ω;C([τ,T ];Rk)) :=

(
E

[
sup

s∈[τ,T ]

|ϕs|
p
]) 1

p

<∞.

(3) Lp
F
(Ω;Lq(τ, T ;Rk)) is the space of Rk-valued F-progressively measurable processes ϕ

such that

‖ϕ‖Lp

F
(Ω;Lq(τ,T ;Rk)) :=

(
E

[( ∫ T

τ

|ϕs|
qds

) p

q
]) 1

p

<∞.

When p = q, we denote Lp
F
(τ, T ;Rk) := L

p
F
(Ω;Lp(τ, T ;Rk)).

Moreover, the following Banach spaces are also introduced:

(1) Mp
F
(τ, T ;Rn+m+m×d) := L

p
F
(Ω;C([τ, T ];Rn)) × L

p
F
(Ω;C([τ, T ];Rm)) × L

p
F
(Ω;L2(τ, T ;

R
m×d)). For any Θ = (X,Y, Z) ∈M

p
F
(τ, T ;Rn+m+m×d), its norm is given by

‖Θ‖Mp

F
(τ,T ;Rn+m+m×d) :=

{
E

[
sup

s∈[τ,T ]

|Xs|
p + sup

s∈[τ,T ]

|Ys|
p +

( ∫ T

τ

|Zs|
2ds

) p

2
]} 1

p

.

(2) Mp
F
(τ, T ;Rm+n+n×d) := L

p
F
(Ω;L1(τ, T ;Rm)) × L

p
F
(Ω;L1(τ, T ;Rn)) × L

p
F
(Ω;L2(τ, T ;

R
n×d)). For any γ = (g, b, σ) ∈ Mp

F
(τ, T ;Rm+n+n×d), its norm is given by

‖γ‖Mp

F
(τ,T ;Rm+n+n×d) :=

{
E

[(∫ T

τ

|gs|ds
)p

+
( ∫ T

τ

|bs|ds
)p

+
(∫ T

τ

|σs|
2ds

) p

2
]} 1

p

.

In the case without causing confusion, we sometimes omit the value spaces in the notations for

simplicity. For example, Mp
F
(τ, T ;Rn+m+m×d) is sometimes abbreviated as Mp

F
(τ, T ).

2.1 L
p-results for coupled FBSDEs

Let us have two mappings: Φ : Ω× R
n → R

m and γ = (g, b, σ) where

g : Ω× [0, T ]× R
n × R

m × R
m×d → R

m,

b : Ω× [0, T ]× R
n × R

m × R
m×d → R

n,

σ : Ω× [0, T ]× R
n × R

m × R
m×d → R

n×d.

We assume that, for any θ = (x, y, z) ∈ R
n+m+m×d, the random variable Φ(x) and the stochas-

tic process γ(·, θ) = (g(·, θ), b(·, θ), σ(·, θ)) are FT -measurable and F-progressively measurable,

respectively. Moreover, we assume the following Lipschitz condition.

(H1) Φ and γ are uniformly Lipschitz continuous with respect to x and θ, respectively.

For convenience, the Lipschitz constant of Φ with respect to x is denoted by Lx, the Lipschitz



880 Z. Wu, B. Xie and Z. Y. Yu

constant of σ with respect to z is denoted by Lz, and the other Lipschitz constants are denoted

by L.

Let τ ∈ [0, T ] be an F-stopping time and ζ ∈ L2
Fτ

(Ω;Rn). We introduce a coupled FBSDE

as follows: 



dXτ,ζ
s = b(s,Θτ,ζ

s )ds+ σ(s,Θτ,ζ
s )dWs, s ∈ [τ, T ],

− dY τ,ζ
s = g(s,Θτ,ζ

s )ds− Zτ,ζ
s dWs, s ∈ [τ, T ],

Xτ,ζ
τ = ζ, Y

τ,ζ
T = Φ(Xτ,ζ

T ),

(2.1)

in which we denote Θτ,ζ = (Xτ,ζ , Y τ,ζ , Zτ,ζ). The special case (1.2) we are most interested in

is that the initial pair (τ, ζ) is deterministic, i.e., τ = t ∈ [0, T ] and ζ = x ∈ R
n.

It is known that, due to the nature of the equation, only with the uniform Lipschitz condition

(H1) for the coefficients (Φ, γ), FBSDE (2.1) does not necessarily have an adapted solution on a

large enough duration (a counterexample can be found in Antonelli [1]). Next, we shall provide

some preliminary results for FBSDEs on small durations. For this aim, let us introduce two

constants and an assumption.

Let p > 2 be given. By the theories of stochastic differential equations (SDEs for short) and

backward stochastic differential equations (BSDEs for short), there exist a pair of constants

CF = CF (p, T, L) > 0 (see [32, Theorems 3.3.1 and 3.4.3]) and CB = CB(p, T, L) > 0 (see

[32, Theorems 4.3.1 and 4.4.4]) such that, for any x ∈ R
n, any ξ ∈ L

p
FT

(Ω;Rm), any standard

Lp-generator (b0, σ0) of SDE1 with Lipschitz constant L, and any standard Lp-generator g0 of

BSDE2 with Lipschitz constant L, the following estimates

E
Ft

[
sup

s∈[t,T ]

|Xs|
p
]
≤ CFE

Ft

{
|x|p +

(∫ T

t

|b0(s, 0)|ds
)p

+
(∫ T

t

|σ0(s, 0)|
2ds

) p

2
}
, (2.2)

E
Ft

[
sup

s∈[t,T ]

|Ys|
p +

(∫ T

t

|Zs|
2ds

) p

2
]
≤ CBE

Ft

{
|ξ|p +

(∫ T

t

|g0(s, 0, 0)|ds
)p}

(2.3)

hold for all t ∈ [0, T ], where E
Ft [·] ≡ E[·|Ft] denotes the conditional expectation operator with

respect to Ft, and X ∈ L
p
F
(Ω;C([0, T ];Rn)) is the unique solution to the following SDE:

{
dXs = b0(s,Xs)ds+ σ0(s,Xs)dWs, s ∈ [0, T ],

X0 = x
(2.4)

and (Y, Z) ∈ L
p
F
(Ω;C([0, T ];Rm))×Lp

F
(Ω;L2(0, T ;Rm×d)) is the unique solution to the following

BSDE: {
− dYs = g0(s, Ys, Zs)ds− ZsdWs, s ∈ [0, T ],

YT = ξ.
(2.5)

1A standard Lp-generator of SDE (on the interval [0, T ]) is a pair of mappings b0 : Ω × [0, T ] × R
n → R

n

and σ0 : Ω × [0, T ] × Rn → Rn×d satisfying the following three conditions: (i) For any x ∈ Rn, the stochastic
processes b0(·, x) and σ0(·, x) are F-progressively measurable; (ii) b0(·, 0) ∈ L

p

F
(Ω;L1(0, T ;Rn)) and σ0(·, 0) ∈

L
p

F
(Ω;L2(0, T ;Rn×d)); (iii) b0 and σ0 are uniformly Lipschitz continuous with respect to x.
2Similarly, a standard Lp-generator of BSDE (on the interval [0, T ]) is a mapping g0 : Ω×[0, T ]×R

m×R
m×d →

R
m satisfying the following three conditions: (i) For any (y, z) ∈ R

m×R
m×d, the stochastic process g0(·, y, z) is

F-progressively measurable; (ii) g0(·, 0, 0) ∈ L
p

F
(Ω;L1(0, T ;Rm)); (iii) g0 is uniformly Lipschitz continuous with

respect to (y, z).
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(H2)′p For the given p > 2, the inequality CF (p, T, L) · CB(p, T, L) · L
p
x · Lp

z < 1 holds.

Remark 2.1 The values of the constants CF (p, T, L) > 0 and CB(p, T, L) > 0 can be

obtained by the theories of SDEs and BSDEs. More accurate estimation techniques of SDEs

and BSDEs will lead to smaller values of CF and CB. Obviously, there are two special cases

covered by Assumption (H2)′p. One of them is Lz = 0, i.e., σ is independent of z, and the other

one is Lx = 0, i.e., Φ degenerates to be an FT -measurable random variable.

Let p > 2 and 0 ≤ t < t′ ≤ T . Let Ψ : Lp
Ft′

(Ω;Rn) → L
p
Ft′

(Ω;Rm) be an operator satisfying

the following condition: There exists a constant Lx > 0 such that

|Ψ[ξ]−Ψ[ξ]| ≤ Lx|ξ − ξ|, P-a.s., ∀ ξ, ξ ∈ L
p
Ft′

(Ω;Rn). (2.6)

We notice that (2.6) can be regarded as a counterpart of Lipschitz continuity for functions in

the operator case. Let ζ ∈ L
p
Ft
(Ω;Rn). We consider the following FBSDE:





dXs = b(s,Θs)ds+ σ(s,Θs)dWs, s ∈ [t, t′],

− dYs = g(s,Θs)ds− ZsdWs, s ∈ [t, t′],

Xt = ζ, Yt′ = Ψ[Xt′ ],

(2.7)

where Θ = (X,Y, Z).

Lemma 2.1 Let p > 2 and 0 ≤ t < t′ ≤ T . Let γ satisfy Assumption (H1) and Ψ satisfy

(2.6). Let Assumption (H2)′p hold. Let ζ ∈ L
p
Ft
(Ω;Rn), Ψ[0] ∈ L

p
Ft′

(Ω;Rm) and γ(·, 0) ∈

Mp
F
(t, t′;Rm+n+n×d). Then, there exist a constant δ = δ(p, T, L, Lx, Lz) > 0 depending on p,

T and the Lipschitz constants L, Lx, Lz, such that when the length of time duration t′ − t ≤ δ,

FBSDE (2.7) with (Ψ, γ, ζ) admits a unique solution Θ = (X,Y, Z) ∈ M
p
F
(t, t′;Rn+m+m×d).

Moreover, the following Lp-estimate holds :

E
Ft

[
sup

s∈[t,t′]

|Xs|
p + sup

s∈[t,t′]

|Ys|
p +

(∫ t′

t

|Zs|
2ds

) p

2
]

≤ C̃pE
Ft [|ζ|p + |Ψ[0]|p + I(t, t′; p)], (2.8)

where C̃p = C̃p(p, T, L, Lx, Lz) > 0 is a constant and

I(t, t′; p) :=
(∫ t′

t

|g(s, 0)|ds
)p

+
(∫ t′

t

|b(s, 0)|ds
)p

+
(∫ t′

t

|σ(s, 0)|2ds
) p

2

. (2.9)

Proof For any (y, z) ∈ L
p
F
(Ω;C([t, t′];Rm)) × L

p
F
(Ω;L2(t, t′;Rm×d)), we introduce the

following decoupled FBSDE:





dXs = b(s,Xs, ys, zs)ds+ σ(s,Xs, ys, zs)dWs, s ∈ [t, t′],

− dYs = g(s,Xs, Ys, Zs)ds− ZsdWs, s ∈ [t, t′],

Xt = ζ, Yt′ = Ψ[Xt′ ],

(2.10)
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which admits a unique solution (X,Y, Z) ∈ M
p
F
(t, t′;Rn+m+m×d) by the classical theories of

SDEs and BSDEs. We define a mapping from L
p
F
(Ω;C([t, t′];Rm))×L

p
F
(Ω;L2(t, t′;Rm×d)) into

itself:

T : (y, z) 7→ (Y, Z). (2.11)

Next, we shall prove that T is contractive when the time duration is small enough. Let

(yi, zi) ∈ L
p
F
(Ω;C([t, t′];Rm)) × L

p
F
(Ω;L2(t, t′;Rm×d)) (i = 1, 2) be given. Let (X i, Y i, Zi) ∈

M
p
F
(t, t′;Rn+m+m×d) be the corresponding solution to FBSDE (2.10). We denote

ŷ = y1 − y2, ẑ = z1 − z2, X̂ = X1 −X2, Ŷ = Y 1 − Y 2, Ẑ = Z1 − Z2.

By the standard Lp-estimate for SDEs (see [32, Theorem 3.4.3]), we have

E

[
sup

s∈[t,t′]

|X̂s|
p
]
≤ CFE

{(∫ t′

t

|b(s,X2
s , y

1
s , z

1
s)− b(s,X2

s , y
2
s , z

2
s)|ds

)p

+
(∫ t′

t

|σ(s,X2
s , y

1
s , z

1
s)− σ(s,X2

s , y
2
s , z

2
s)|

2ds
) p

2
}

≤ CFE

{
C(p, T, L, Lz, ε1, ε2)(t

′ − t)
p
2

[
sup

s∈[t,t′]

|ŷs|
p +

( ∫ t′

t

|ẑs|
2ds

) p

2
]

+ (1 + ε2)(1 + ε1)
p

2Lp
z

(∫ t′

t

|ẑs|
2ds

) p

2
}
, (2.12)

where ε1 > 0 and ε2 > 0 are two arbitrary positive numbers while C(p, T, L, Lz, ε1, ε2) > 0

is a constant which depends on p, T , L, Lz, ε1 and ε2. On the other hand, by the standard

Lp-estimate for BSDEs (see [3, 10, 32, Theorem 4.4.4]), we also have

E

[
sup

s∈[t,t′]

|Ŷs|
p +

(∫ t′

t

|Ẑs|
2ds

) p

2
]

≤ CBE

{
|Ψ[X1

t′ ]−Ψ[X2
t′ ]|

p +
(∫ t′

t

|g(s,X1
s , Y

2
s , Z

2
s )− g(s,X2

s , Y
2
s , Z

2
s )|ds

)p}

≤ CB[L
p
x + Lp(t′ − t)p]E

[
sup

s∈[t,t′]

|X̂s|
p
]
. (2.13)

Substituting (2.12) into (2.13), we have

E

[
sup

s∈[t,t′]

|Ŷs|
p +

( ∫ t′

t

|Ẑs|
2ds

) p

2
]

≤ E

{
C̃(p, T, L, Lx, Lz, ε1, ε2)(t

′ − t)
p

2

[
sup

s∈[t,t′]

|ŷs|
p +

( ∫ t′

t

|ẑs|
2ds

) p

2
]

+ CBCFL
p
x(1 + ε2)(1 + ε1)

p

2Lp
z

(∫ t′

t

|ẑs|
2ds

) p
2
}
. (2.14)

Due to Assumption (H2)′p, we can select small enough constants ε1 > 0 and ε2 > 0 such that

CBCFL
p
x(1 + ε2)(1 + ε1)

p

2Lp
z < 1. Then, we select a constant δ = δ(p, T, L, Lx, Lz) > 0 such



Probabilistic Interpretation for Partial Differential-Algebraic Equations 883

that when t′ − t ≤ δ,

E

[
sup

s∈[t,t′]

|Ŷs|
p +

( ∫ t′

t

|Ẑs|
2ds

) p

2
]
≤ ρE

[
sup

s∈[t,t′]

|ŷs|
p +

(∫ t′

t

|ẑs|
2ds

) p

2
]
, (2.15)

where ρ ∈ (0, 1) is a constant. In other words, the mapping T is contractive. Therefore it

admits a unique fixed point denoted by (Y, Z), which together with the unique solution X to

the following SDE:

Xs = ζ +

∫ s

t

b(r,Xr, Yr, Zr)dr +

∫ s

t

σ(r,Xr , Yr, Zr)dWr, s ∈ [t, t′] (2.16)

is just the unique solution to FBSDE (2.7).

The classical Lp-estimates for SDEs and BSDEs work again to obtain the estimate (2.8).

Since the detailed proof is similar to the above one, we would like to omit it.

In order to ensure the solvability of FBSDE (2.1), we would like to give below a kind of

monotonicity condition for the coefficients (Φ, γ), which was introduced by Hu and Peng [10]

and Peng and Wu [25]. Let G be a given (m× n) full-rank matrix. We denote

A(t, θ) = (−GTg(t, θ), Gb(t, θ), Gσ(t, θ)), (t, θ) ∈ [0, T ]× R
n+m+m×d.

(H3) There exist three nonnegative constants β1, β2 and µ1 satisfying the following two

conditions: (i) β1 > 0, µ1 > 0 in the case of m ≥ n, or β2 > 0 in the case of n ≥ m; (ii) for

each θ = (x, y, z), θ = (x, y, z),

〈Φ(x)− Φ(x), G(x− x)〉 ≥ µ1|G(x − x)|2,

〈A(t, θ) −A(t, θ), θ − θ〉 ≤ − β1|G(x− x)|2 − β2(|G
T(y − y)|2 + |GT(z − z)|2).

With the monotonicity condition (H3), we can get the L2-results of FBSDEs. Similar to

the symbol I(t, T ; p) in (2.9), we set

Î(t, T ; p) =
( ∫ T

t

|g(s,Θs)− g(s,Θs)|ds
)p

+
( ∫ T

t

|b(s,Θs)− b(s,Θs)|ds
)p

+
(∫ T

t

|σ(s,Θs)− σ(s,Θs)|
2ds

) p

2

. (2.17)

Lemma 2.2 Suppose the coefficients (Φ, γ) satisfy Assumptions (H1) and (H3). Let Φ(0) ∈

L2
FT

(Ω;Rm) and γ(·, 0) ∈ M2
F
(0, T ;Rm+n+n×d). Then, for any initial pair (t, ζ) ∈ [0, T ] ×

L2
Ft
(Ω;Rn), FBSDE (2.1) with (Φ, γ, ζ) admits a unique solution

Θt,ζ = (Xt,ζ, Y t,ζ , Zt,ζ) ∈M2
F
(t, T ;Rn+m+m×d).

Moreover, the following L2-estimate holds :

E
Ft

[
sup

s∈[t,T ]

|Xt,ζ
s |2 + sup

s∈[t,T ]

|Y t,ζ
s |2 +

∫ T

t

|Zt,ζ
s |2ds

]

≤ C2E
Ft [|ζ|2 + |Φ(0)|2 + I(t, T ; 2)], (2.18)
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where C2 = C2(T, L, Lx, Lz) > 0 is a constant. Furthermore, let (Φ, γ, ζ) be another set of

coefficients satisfying (H1), where Φ(0) ∈ L2
FT

(Ω;Rm), γ(·, 0) ∈ M2
F
(t, T ;Rm+n+n×d) and ζ ∈

L2
Ft
(Ω;Rn). Let Θ = (X,Y , Z) ∈ M2

F
(t, T ;Rn+m+m×d) be a solution to FBSDE (2.1) with

(Φ, γ, ζ). Then

E
Ft

[
sup

s∈[t,T ]

|Xt,ζ
s −Xs|

2 + sup
s∈[t,T ]

|Y t,ζ
s − Y s|

2 +

∫ T

t

|Zt,ζ
s − Zs|

2ds
]

≤ C2E
Ft [|ζ − ζ|2 + |Φ(XT )− Φ(XT )|

2 + Î(t, T ; 2)], (2.19)

where Î(t, T ; 2) is defined by (2.17).

By now, the results in Lemma 2.2 are standard. Specifically, the unique solvability for

FBSDE (2.1) can be found in Peng and Wu [25, Theorem 2.6], and the pair of L2-estimates are

from Yong [30] (see also Wu [26]).

With the help of Lemma 2.2, for any t ∈ [0, T ], we define an operator u(t, [·]) : L2
Ft
(Ω;Rn) →

L2
Ft
(Ω;Rm) as follows:

u(t, [ζ]) := Y
t,ζ
t , ζ ∈ L2

Ft
(Ω;Rm). (2.20)

A couple of immediate consequences of (2.18)–(2.19) are obtained:

{
(i) |u(t, [ζ])|2 ≤ C2{|ζ|

2 + E
Ft [|Φ(0)|2 + I(t, T ; 2)]},

(ii) |u(t, [ζ])− u(t, [ζ])| ≤
√
C2|ζ − ζ|,

(2.21)

where the constant C2 is the same one given in (2.18).

Moreover, in order to use Lemma 2.1, we need a stronger condition (H2)p to replace (H2)′p.

(H2)p For the given p > 2, the inequality CF (p, T, L) ·CB(p, T, L) ·C
p

2

2 ·Lp
z < 1 holds where

C2 = C2(T, L, Lx, Lz) > 0 is given in (2.18) of Lemma 2.2.

Remark 2.2 Historically, for the Lp-estimates of coupled FBSDEs on small durations,

Delarue [6] for the first time obtained a result when σ is independent of z. In 2014, Li and Wei

[12–13] established Lp-estimates when the Lipschitz constant of σ with respect to z is small

enough. In 2020, Xie and Yu [28] gave the Lp-estimates of FBSDEs (1.2) on small durations as

Φ(·) is linear. To our knowledge, even on small intervals, the Lp-estimates can only be obtained

in the case of

the Lipschitz constant of σ(·, ·) with respect to z is small enough, (2.22)

or the terminal conditions are linear. Moreover, being “small enough” in (2.22) does not obtain

a quantitative characterization. Clearly, condition (2.22) is a special case of (H2)p.

On large time durations, in 2015, Ma et al. [16] firstly provided an Lp-estimate for 1-

dimensional FBSDEs. Some other restrictive assumptions were also required. In 2018, Hu

et al. [9] gave an Lp-result when the Lipschitz constants of both b and σ with respect to (y, z)
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are very small. In 2018, Feng et al. [8] established an Lp-result when both b and σ are inde-

pendent of z. In 2023, Xie and Yu [29] also established an Lp-result for the linear FBSDEs,

without condition (2.22). So far, in the case of nonlinearity, (2.22) cannot be overcome.

Even more frustrating is that we cannot determine the necessity of condition (H2)p for

Lp-estimates. Therefore, we propose a further work: Without using condition (H2)p, prove

the Lp-estimates of FBSDEs. Alternatively, provide an example to illustrate the necessity of

condition (H2)p. Note: This further work is proposed by the referee.

Now, with the help of u(·, [·]) as well as Lemma 2.1, we obtain the following theorem.

Theorem 2.1 Let p > 2 and the coefficients (Φ, γ) satisfy Assumptions (H1), (H2)p and

(H3). Let Φ(0) ∈ L
p
FT

(Ω;Rm) and γ(·, 0) ∈ Mp
F
(0, T ;Rm+n+n×d). Then, for any initial pair

(t, ζ) ∈ [0, T ]× L
p
Ft
(Ω;Rn), FBSDE (2.1) with (Φ, γ, ζ) admits a unique solution

Θt,ζ = (Xt,ζ , Y t,ζ , Zt,ζ) ∈M
p
F
(t, T ;Rn+m+m×d).

Moreover, the following Lp-estimate holds :

E
Ft

[
sup

s∈[t,T ]

|Xt,ζ
s |p + sup

s∈[t,T ]

|Y t,ζ
s |p +

(∫ T

t

|Zt,ζ
s |2ds

) p

2
]

≤ CpE
Ft [|ζ|p + |Φ(0)|p + I(t, T ; p)], (2.23)

where Cp = Cp(p, T, L, Lx, Lz) > 0 is a constant and I(t, T ; p) is defined by (2.9). Furthermore,

let (Φ, γ, ζ) be another set of coefficients satisfying (H1), where Φ(0) ∈ L
p
FT

(Ω;Rm), γ(·, 0) ∈

Mp
F
(t, T ;Rm+n+n×d) and ζ ∈ L

p
Ft
(Ω;Rn). Let Θ = (X,Y , Z) ∈ M

p
F
(t, T ;Rn+m+m×d) be a

solution to FBSDE (2.1) with (Φ, γ, ζ). Then

E
Ft

[
sup

s∈[t,T ]

|Xt,ζ
s −Xs|

p + sup
s∈[t,T ]

|Y t,ζ
s − Y s|

p +
(∫ T

t

|Zt,ζ
s − Zs|

2ds
) p

2
]

≤ CpE
Ft [|ζ − ζ|p + |Φ(XT )− Φ(XT )|

p + Î(t, T ; p)], (2.24)

where Î(t, T ; p) is defined by (2.17).

Proof Let p > 2. By Lemma 2.1, the existence and uniqueness of the Lp-solution and

Lp-estimate hold true on small durations. For the given large duration [t, T ], we split it with

points t = t0 < t1 < · · · < tN = T , and let the mesh size of the partition

max
0≤k≤N−1

(tk+1 − tk) ≤ δ,

where the constant δ is given in Lemma 2.1. On the one hand, from the viewpoint of Lemma

2.2, on each small duration [tk, tk+1] with k = 0, 1, 2, · · · , N − 1, the L2-solution Θt,ζ satisfies
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the following FBSDE (notice the definition of u(·, [·])):




dXs = b(s,Θs)ds+ σ(s,Θs)dW (s), s ∈ [tk, tk+1],

− dYs = g(s,Θs)ds− ZsdWs, s ∈ [tk, tk+1],

Xtk = X
t,ζ
tk
, Ytk+1

= u(tk+1, [Xtk+1
]),

(2.25)

where Θ = (X,Y, Z). On the other hand, we change our viewpoint from Lemma 2.2 to Lemma

2.1, and reanalyze the sequence of FBSDEs (2.25). In fact, firstly on [t0, t1], we notice that

X
t,ζ
t0

= ζ ∈ L
p
Ft0

(Ω;Rn). Moreover, from (2.21)(i) and Hölder’s inequality,

|u(t1, [0])|
p ≤ (C2{E

Ft1 [|Φ(0)|2 + I(t1, T ; 2)]})
p

2

≤ KE
Ft1 [|Φ(0)|p + I(t1, T ; 2)

p

2 ]

≤ KE
Ft1 [|Φ(0)|p + I(t1, T ; p)]. (2.26)

Then

E[|u(t1, [0])|
p] ≤ KE[|Φ(0)|p + I(t, T ; p)] <∞.

With the help of (2.21)(ii), we know that the restriction u(t1, [·])|Lp

Ft1
(Ω;Rn) is an operator from

L
p
Ft1

(Ω;Rn) into L
p
Ft1

(Ω;Rm). Then by Lemma 2.1, {Θτ,ζ
s , s ∈ [t0, t1]} belongs exactly to

M
p
F
(t0, t1;R

n+m+m×d). This procedure can be carried out for k = 1, 2, · · · , N −1 one by one to

yield {Θτ,ζ
s , s ∈ [t, T ]} belongs exactly to Mp

F
(t, T ;Rn+m+m×d). We have proved the existence

and uniqueness of the Lp-solution for FBSDE (2.1) on the whole duration [t, T ].

We turn to prove the Lp-estimate (2.23). For any k = 0, 1, 2, · · · , N − 1, by (2.8), we have

E
Ft

[
sup

s∈[tk,tk+1]

|Xs|
p + sup

s∈[tk,tk+1]

|Ys|
p +

(∫ tk+1

tk

|Zs|
2ds

) p

2
]

≤ CpE
Ft [|Xtk |

p + |u(tk+1, [0])|
p + I(tk, tk+1; p)]. (2.27)

Similar to (2.26),

|u(tk+1, [0])|
p ≤ KE

Ftk+1 [|Φ(0)|p + I(tk+1, T ; p)].

Substituting it into (2.27) leads to

E
Ft

[
sup

s∈[tk,tk+1]

|Xs|
p + sup

s∈[tk,tk+1]

|Ys|
p +

(∫ tk+1

tk

|Zs|
2ds

) p

2
]

≤ KE
Ft [|Xtk |

p + |Φ(0)|p + I(t, T ; p)]. (2.28)

We notice that the first item E
Ft [|Xtk |

p] on the right hand side of the above inequality depends

on E
Ft [|Xtk−1

|p], and then depends on E
Ft [|Xtk−2

|p], · · · ,EFt [|Xt0 |
p] = |ζ|p, in the following

sense:
E
Ft [|Xtk |

p] ≤ E
Ft

[
sup

s∈[tk−1,tk]

|Xs|
p
]

≤ KE
Ft [|Xtk−1

|p + |Φ(0)|p + I(t, T ; p)]

≤ KE
Ft [|Xtk−2

|p + |Φ(0)|p + I(t, T ; p)]

≤ · · · ≤ KE
Ft [|ζ|p + |Φ(0)|p + I(t, T ; p)].
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Therefore, (2.28) is reduced to

E
Ft

[
sup

s∈[tk,tk+1]

|Xs|
p + sup

s∈[tk,tk+1]

|Ys|
p +

(∫ tk+1

tk

|Zs|
2ds

) p
2
]

≤ KE
Ft [|ζ|p + |Φ(0)|p + I(t, T ; p)]. (2.29)

By summing up the above inequalities with k from 0 to N−1, we obtain the desired Lp-estimate

(2.23) on the large duration [t, T ].

The other Lp-estimate (2.24) can be regarded as a consequence of the first Lp-estimate

(2.23). In detail, we denote ζ̂ = ζ − ζ, Θ̂ = Θ−Θ = (X −X,Y − Y , Z − Z) and

f̂(s, x, y, z) = f(s, x+Xs, y + Y s, z + Zs)− f(s,Xs, Y s, Zs), s ∈ [t, T ]

with f = g, b, σ. Then Θ̂ = (X̂, Ŷ , Ẑ) satisfies the following FBSDE





dX̂s = b̂(s, X̂s, Ŷs, Ẑs)ds+ σ̂(s, X̂s, Ŷs, Ẑs)dWs, s ∈ [t, T ],

− dŶs = ĝ(s, X̂s, Ŷs, Ẑs)ds− ẐsdWs, s ∈ [t, T ],

X̂t = ζ̂ , ŶT = Φ̂(X̂T ).

(2.30)

Clearly, (Φ̂, γ̂, ζ̂) satisfies all conditions in Theorem 2.1. Hence, the application of estimate

(2.23) to the above FBSDE yields (2.24). We complete the proof.

2.2 Function u and its elementary properties

In this paper, we shall use the following smoothness assumption.

(H4) Φ and γ are deterministic functions. Moreover, γ is continuous with respect to t. For

any t ∈ [0, T ], (Φ(·), γ(t, ·)) are of class C2 and all the partial derivatives of order less than or

equal to 2 are bounded on [0, T ]× R
n × R

m × R
m×d.

Obviously, (H4) implies (H1) and the boundedness of γ(·, 0). Under Assumption (H4),

the triple of solutions to FBSDE (1.2) is independent of the past information Ft, i.e., Θ
t,x =

(Xt,x, Y t,x, Zt,x) is F
t-adapted, where F

t = (F t
s)s∈[t,T ] is the natural filtration generated by

(Ws−Wt)s∈[t,T ] and augmented by all P-null sets. In particular, Y t,x
t is deterministic. Now, we

recall the operator u(·, [·]) which is defined by (2.20). Obviously, in the Markovian framework

(H4),

u(t, x) := Y
t,x
t , (t, x) ∈ [0, T ]× R

n (2.31)

provides a function from [0, T ]×R
n to R

m. Now, let us recall a result from [27, Lemma 2.4 or

Proposition 2.6].

Proposition 2.1 Let Assumptions (H3) and (H4) hold. Then,

u(t, ζ) = u(t, [ζ]) = Y
t,ζ
t for any (t, ζ) ∈ [0, T ]× L2

Ft
(Ω;Rn). (2.32)
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This result means that the value of the composite function is equal to the value of the operator.

For the convenience of notation, we shall define Θt,x
s for all (s, t) ∈ [0, T ]2 by setting

(Xt,x
s , Y t,x

s , Zt,x
s ) ≡ (Xt,x

t , Y
t,x
t , 0) for s < t. The following corollary shows the continuity

of the function u. It can be regarded as an improved version of [27, Proposition 2.5].

Corollary 2.1 Let Assumptions (H3) and (H4) hold. Then there exists a constant C > 0

such that, for any (t, x), (t′, x′) ∈ [0, T ]× R
n,

‖Θt,x −Θt′,x′

‖2M2
F
(0,T ) ≤ C{|x− x′|2 + (1 + |x|2 + |x′|2)|t′ − t|}. (2.33)

Consequently, the function u is Lipschitz continuous in x uniformly for any given t ∈ [0, T ],

and is 1
2 -Hölder continuous in t for any given x ∈ R

n.

Proof Without loss of generality, we assume that t ≤ t′. By the L2-estimate, we have

‖Θt,x −Θt′,x′

‖2M2
F
(t,T ) ≤ C2

{
|x− x′|2 +

(∫ t′

t

|g(s, x′, Y t′,x′

t′ , 0)|ds
)2

+
(∫ t′

t

|b(s, x′, Y t′,x′

t′ , 0)|ds
)2

+

∫ t′

t

|σ(s, x′, Y t′,x′

t′ , 0)|2ds
}
.

With the help of Assumption (H4) and (2.21)(i), we obtain (2.33) and finish the proof.

At the end of this section, we recall a definition and a property of the function u from [27,

Remark 2.9 and Proposition 2.8]. They will be used to deal with the algebraic equation in the

PDAE system (1.1).

Definition 2.1 Let G ∈ R
m×n be a matrix, ν ≥ 0 be a constant and f : Rn → R

m be a

function. If

〈f(x)− f(x), G(x − x)〉 ≥ ν|x− x|2 for any x, x ∈ R
n, (2.34)

then we call f G-monotonic with ν. Moreover, when ν > 0, we also call f strictly G-monotonic

with ν.

Proposition 2.2 Let Assumptions (H3) and (H4) hold. Then, there exists a constant ν ≥ 0

such that for any t ∈ [0, T ], the function u(t, ·) defined by (2.31) is G-monotonic with ν, where

the matrix G is the same one appearing in Assumption (H3). Moreover, when β1 > 0, µ1 > 0,

β2 ≥ 0 and m ≥ n in Assumption (H3), the constant ν is strictly greater than 0.

3 Regularity of Solutions to FBSDEs

The following lemma is helpful for our analysis below.

Lemma 3.1 For any t ∈ [0, T ], assume that (Φ(·), γ(t, ·)) are of class C1. Then the follow-

ing two statements are equivalent.

(i) (Φ, γ) satisfies the monotonicity assumption (H3).
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(ii) For any θ0 = (x0, y0, z0) ∈ R
n × R

m × R
m×d, denote





Φ̃(x) :=
dΦ

dx
(x0)x,

f̃(t, θ) := ∇f(t, θ0)θ :=
∂f

∂x
(t, θ0)x+

∂f

∂y
(t, θ0)y +

∂f

∂z
(t, θ0)z,

where f = g, b, σ. Then (Φ̃, γ̃) = (Φ̃, g̃, b̃, σ̃) satisfies the monotonicity condition (H3) with the

same constants β1, β2 and µ1.

Proof We only prove the part about Φ and Φ̃. The same technique can also be used to

prove the other part about γ and γ̃.

We first prove that Statement (i) implies Statement (ii). Let us begin with the following

inequality: For any x0 and x0,

〈Φ(x0)− Φ(x0), G(x0 − x0)〉 ≥ µ1|G(x0 − x0)|
2.

Now, for any vector K ∈ R
n and any real number δ > 0, we select x0 = x0 + δK, then

δ〈Φ(x0 + δK)− Φ(x0), GK〉 ≥ δ2µ1|GK|2.

By the smoothness condition of Φ, by Lagrange’s differential mean value theorem, for each

δ > 0, there exists an α ∈ (0, 1) depending on δ, such that

〈dΦ
dx

(x0 + αδK)K, GK
〉
≥ µ1|GK|2.

Letting δ → 0+, we get 〈dΦ
dx

(x0)K, GK
〉
≥ µ1|GK|2.

For any x, x ∈ R
n, replacing K in the above inequality with x− x, we obtain

〈dΦ
dx

(x0)(x − x), G(x − x)
〉
≥ µ1|G(x − x)|2,

which is the monotonicity of Φ̃.

Next we shall employ a framework of reduction to absurdity to prove that Statement (ii)

also implies Statement (i). Assuming that the monotonicity condition of Φ does not hold, i.e.,

there exist x, x ∈ R
n such that

〈Φ(x) − Φ(x), G(x− x)〉 < µ1|G(x − x)|2.

Lagrange’s differential mean value theorem works again to yield that there exists an α ∈ (0, 1)

such that 〈dΦ
dx

(x+ α(x − x))(x − x), G(x − x)
〉
< µ1|G(x − x)|2.

Clearly, the above inequality shows that when x0 = x + α(x − x), the monotonicity condition

of function Φ̃ does not hold at x and x, which contradicts Statement (ii).
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3.1 Malliavin derivative of solutions to FBSDEs

First of all, we recall some notions about Malliavin derivatives on Wiener space from Nualart

[17] and El Karoui, Peng and Quenez [7].

(1) Let Ck
b (R

p;Rq) denote the set of functions of class Ck from R
p into R

q whose partial

derivatives of order less than or equal to k are bounded.

(2) Let S denote the set of random variables ξ of the form ξ = ϕ(W (h1), · · · ,W (hk)), where

ϕ ∈ C∞
b (Rk;R), h1, · · · , hk ∈ L2(0, T ;Rd) and W (hi) =

∫ T

0
〈his, dWs〉.

(3) For any ξ ∈ S, its Malliavin derivative is defined by the following d-dimensional process

D̺ξ =

k∑

j=1

∂ϕ

∂xj
(W (h1), · · · ,W (hk))hj̺, ̺ ∈ [0, T ].

The ith component of D̺ξ is denoted by Di
̺ξ, i = 1, 2, · · · , d. The (1, 2)-norm of ξ is defined

by

‖ξ‖D1,2
=

{
E

[
|ξ|2 +

∫ T

0

|D̺ξ|
2d̺

]} 1
2

.

It is known that the operatorD has a closed extension to the space D1,2, which is the closure

of S with respect to the norm ‖ · ‖D1,2
.

(4) Let La
1,2(0, T ;R

n) be the set ofRn-valued F-progressivelymeasurable processes {φ(t, ω), t ∈

[0, T ]; ω ∈ Ω} satisfying

(i) for a.e. t ∈ [0, T ], φ(t, ·) ∈ (D1,2)
n.

(ii) (t, ω) → D̺φ(t, ω) admits an F-progressively measurable version.

(iii)

‖φ‖2
L
a
1,2(0,T ;Rn) : = ‖φ‖2L2

F
(0,T ;Rn) + ‖D·φ(·)‖

2
L̃
a
1,2

: = E

∫ T

0

|φ(s)|2ds+ E

∫ T

0

∫ T

0

|D̺φ(s)|
2d̺ds <∞.

The space L
a
1,2(0, T ;R

n) is closed under the norm ‖ · ‖La
1,2(0,T ;Rn).

We now show that under Assumptions (H3) and (H4), the L2-solution to an FBSDE is

differentiable in Malliavin’s sense and the derivative is a solution to a linear FBSDE. This

result generalizes the one stated by Pardoux and Peng [19] in the decoupled case. For simplicity

of notation, we restrict ourselves to the case d = 1 in this subsection, and suppress (t, x) in

Θt,x = (Xt,x, Y t,x, Zt,x). We shall combine the method used in [7, 19] (for BSDEs) with the

method of continuation to establish the differentiability in Malliavin’s sense. We split it into

two cases according to the signs of β1, β2 and µ1 (see the monotonicity assumption (H3)).

First case β1 > 0, µ1 > 0, β2 ≥ 0 and n ≤ m.

For any φ, ψ ∈ L2
F
(t, T ;Rn) ∩ L

a
1,2(t, T ;R

n), κ ∈ L2
F
(t, T ;Rm) ∩ L

a
1,2(t, T ;R

m) and ξ ∈
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L2
FT

(Ω;Rm)∩(D1,2)
m, we introduce the following family of FBSDEs parameterized by α ∈ [0, 1]:





dXα
s = [αb(s,Θα

s ) + φs]ds+ [ασ(s,Θα
s ) + ψs]dWs,

− dY α
s = [(1− α)β1GX

α
s + αg(s,Θα

s ) + κs]ds− Zα
s dWs,

Xα
t = x, Y α

T = (1− α)µ1GX
α
T + αΦ(Xα

T ) + ξ,

(3.1)

where Θα := (Xα, Y α, Zα). It is clear that, when α = 0, FBSDE (3.1) is in a decoupled form

and then the Malliavin’s differentiability has been established due to the work of El Karoui, Peng

and Quenez [7]; when α = 1 and (φ, ψ, κ, ξ) vanish, FBSDE (3.1) coincides with FBSDE (1.2).

We shall show that there exists a fixed step-length δ0 > 0, such that if for some α0 ∈ [0, 1),

the solution to (3.1) is differentiable in Malliavin’s sense for any (φ, ψ, κ, ξ), then the same

conclusion holds for α0 replaced by α0 + δ < 1 with δ ∈ [0, δ0]. Once this has been proved, we

can increase the parameter α step by step and finally reach α = 1, which gives the Malliavin’s

differentiability of the solution to FBSDE (1.2). This method was originally introduced by

Hu and Peng [10] for dealing with the L2-solvability of coupled FBSDEs, which is called the

method of continuation.

We have the following continuation lemma.

Lemma 3.2 Let Assumptions (H3) and (H4) hold. Then there exists an absolute constant

δ0 > 0, such that if for some α0 ∈ [0, 1), the solution to FBSDE (3.1) is differentiable in

Malliavin’s sense for any φ, ψ ∈ L2
F
(t, T ;Rn)∩ L

a
1,2(t, T ;R

n), κ ∈ L2
F
(t, T ;Rm)∩ L

a
1,2(t, T ;R

m)

and ξ ∈ L2
FT

(Ω;Rm)∩ (D1,2)
m, then the same is true for α = α0+ δ with δ ∈ [0, δ0], α0+ δ ≤ 1.

Proof Let δ0 > 0 be undetermined and δ ∈ [0, δ0]. We introduce the following sequence

defined by Θ0 := (X0, Y 0, Z0) ≡ (0, 0, 0) and




dXk+1
s = [α0b(s,Θ

k+1
s ) + δb(s,Θk

s) + φs]ds

+ [α0σ(s,Θ
k+1
s ) + δσ(s,Θk

s ) + ψs]dWs,

− dY k+1
s = [(1 − α0)β1GX

k+1
s + α0g(s,Θ

k+1
s )− δβ1GX

k
s + δg(s,Θk

s) + κs]ds

− Zk+1
s dWs,

Xk+1
t = x, Y k+1

T = (1− α0)µ1GX
k+1
T + α0Φ(X

k+1
T )− δµ1GX

k
T + δΦ(Xk

T ) + ξ,

(3.2)

where Θk := (Xk, Y k, Zk). It is easy to verify that the coefficients of the above FBSDE (3.2)

satisfy the monotonicity conditions. Then, by applying the L2-estimate, we have

‖Θk+1 −Θk‖2M2
F
(t,T ) ≤ Cδ2‖Θk −Θk−1‖2M2

F
(t,T ).

We note that the constant C > 0 appearing in the inequality is independent of α0 and δ. Hence,

if we choose δ1 > 0 such that Cδ21 ≤ 1
4 , then, for any δ ∈ [0, δ1], it turns out that Θ

k is a Cauchy

sequence in M2
F
(t, T ;Rn+m+m). By passing to the limit in FBSDEs (3.2), we see that the limit

of Cauchy sequence Θk solves FBSDE (3.1) for α = α0 + δ. In other words, Θk converges in

M2
F
(t, T ;Rn+m+m) to Θα0+δ as k → ∞.
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By our assumption, the solution to FBSDE (3.1) is differentiable in the Malliavin’s sense

for α = α0 and for any Malliavin differentiable (φ, ψ, κ, ξ). From (3.2), it is clear that Θk ∈

L
a
1,2(t, T ;R

n) × L
a
1,2(t, T ;R

m) × L
a
1,2(t, T ;R

m) recursively. Moreover, the Malliavin derivative

D̺Θ
k+1 := (D̺X

k+1, D̺Y
k+1, D̺Z

k+1) is a solution to the following linear FBSDE:





D̺X
k+1
s = [α0σ(̺,Θ

k+1
̺ ) + δσ(̺,Θk

̺) + ψ̺]

+

∫ s

̺

{α0∇b(r,Θ
k+1
r )D̺Θ

k+1
r + δ∇b(r,Θk

r)D̺Θ
k
r +D̺φr}dr

+

∫ s

̺

{α0∇σ(r,Θ
k+1
r )D̺Θ

k+1
r + δ∇σ(r,Θk

r )D̺Θ
k
r +D̺ψr}dWr,

D̺Y
k+1
s =

[
(1− α0)µ1GD̺X

k+1
T + α0

dΦ

dx
(Xk+1

T )D̺X
k+1
T − δµ1GD̺X

k
T

+ δ
dΦ

dx
(Xk

T )D̺X
k
T +D̺ξ

]
+

∫ T

s

{α0∇g(r,Θ
k+1
r )D̺Θ

k+1
r

+ δ∇g(r,Θk
r )D̺Θ

k
r + (1− α0)β1GD̺X

k+1
r − δβ1GD̺X

k
r +D̺κr}dr

−

∫ T

s

D̺Z
k+1
r dWr.

(3.3)

We notice that, due to Lemma 3.1, the monotonicity condition is satisfied for the above FBSDEs

(3.3). Moreover, Lemma 3.1 works once again to ensure the unique solvability of the following

FBSDE:




X̺
s = [(α0 + δ)σ(̺,Θα0+δ

̺ ) + ψ̺] +

∫ s

̺

{(α0 + δ)∇b(r,Θα0+δ
r )Θ̺

r +D̺φr}dr

+

∫ s

̺

{(α0 + δ)∇σ(r,Θα0+δ
r )Θ̺

r +D̺ψr}dWr,

Y ̺
s =

[
(1− α0 − δ)µ1GX

̺
T + (α0 + δ)

dΦ

dx
(Xα0+δ

T )X̺
T +D̺ξ

]

+

∫ T

s

{(α0 + δ)∇g(r,Θα0+δ
r )Θ̺

r + (1− α0 − δ)β1GX
̺
r +D̺κr}dr

−

∫ T

s

Z̺
rdWr,

(3.4)

where Θ̺ := (X̺, Y ̺, Z̺).

Applying the L2-estimate to Θ̺ leads to

‖Θ̺‖2M2
F
(̺,T ) ≤ CE

{
1 + |Θα0+δ

̺ |2 + |ψ̺|
2 + |D̺ξ|

2

+

∫ T

̺

[|D̺φr |
2 + |D̺ψr|

2 + |D̺κr|
2]dr

}
.

Hence,

∫ T

0

‖Θ̺‖2M2
F
(̺,T )d̺ ≤ CE

{
1 +

∫ T

0

|Θα0+δ
̺ |2d̺+

∫ T

0

|ψ̺|
2d̺+

∫ T

0

|D̺ξ|
2d̺

+

∫ T

0

∫ T

0

[|D̺φr |
2 + |D̺ψr|

2 + |D̺κr|
2]drd̺

}
.



Probabilistic Interpretation for Partial Differential-Algebraic Equations 893

With the help of the L2-estimate of the solution Θα0+δ to FBSDE (3.1),

∫ T

0

‖Θ̺‖2M2
F
(̺,T )d̺ ≤ CE

{
1 + |ξ|2 +

∫ T

0

|D̺ξ|
2d̺+

∫ T

0

[|φr|
2 + |ψr|

2 + |κr|
2]dr

+

∫ T

0

∫ T

0

[|D̺φr |
2 + |D̺ψr|

2 + |D̺κr|
2]drd̺

}

= C{1 + ‖ξ‖2
D1,2

+ ‖φ‖2
L
a
1,2

+ ‖ψ‖2
L
a
1,2

+ ‖κ‖2
L
a
1,2
} ≤ C. (3.5)

By applying the L2-estimate to the difference of D̺Θ
k+1 and Θ̺, we obtain

‖D̺Θ
k+1 −Θ̺‖2M2

F
(̺,T ) ≤ C(α2

0A
̺
k+1 + δ2A

̺
k + δ2B

̺
k), (3.6)

where

A
̺
k = E

{
|σ(̺,Θk

̺)− σ(̺,Θα0+δ
̺ )|2 +

∣∣∣dΦ
dx

(Xk
T )−

dΦ

dx
(Xα0+δ

T )
∣∣∣
2

|X̺
T |

2

+

∫ T

̺

[|∇g(r,Θk
r)−∇g(r,Θα0+δ

r )|2 + |∇b(r,Θk
r )−∇b(r,Θα0+δ

r )|2

+ |∇σ(r,Θk
r )−∇σ(r,Θα0+δ

r )|2]|Θ̺
r |

2dr
}

and

B
̺
k = E

{∣∣∣dΦ
dx

(Xk
T )

∣∣∣
2

|D̺X
k
T −X

̺
T |

2 + |D̺X
k
T −X

̺
T |

2 +

∫ T

̺

|D̺X
k
r −X̺

r |
2dr

+

∫ T

̺

[|∇g(r,Θk
r)|

2 + |∇b(r,Θk
r )|

2 + |∇σ(r,Θk
r )|

2]|D̺Θ
k
r −Θ̺

r |dr
}
.

With the help of (3.5), the fact that Θk converges to Θα0+δ in M2
F
(0, T ), and Lebesgue’s

dominated convergence theorem, we have

lim
k→∞

∫ T

0

A
̺
kd̺ = 0.

We also have

B
̺
k ≤ C‖D̺Θ

k −Θ̺‖2M2
F
(̺,T ).

Then, (3.6) is deduced to

‖D̺Θ
k+1 −Θ̺‖2M2

F
(̺,T ) ≤ Cδ2‖D̺Θ

k − Θ̺‖2M2
F
(̺,T ) + C(A̺

k+1 +A
̺
k).

Choose δ0 ∈ (0, δ1] such that Cδ20 ≤ 1
4 . Let δ ∈ [0, δ0]. For any ε > 0, there exists N > 0 such

that, for any k ≥ N ,

∫ T

0

‖D̺Θ
k+1 −Θ̺‖2M2

F
(̺,T )d̺ ≤ ε+

1

4

∫ T

0

‖D̺Θ
k −Θ̺‖2M2

F
(̺,T )d̺.

Thus, we obtain recursively, for every k ≥ N ,

∫ T

0

‖D̺Θ
k+1 −Θ̺‖2M2

F
(̺,T )d̺ ≤

4

3
ε+

1

4k+1−N

∫ T

0

‖D̺Θ
N −Θ̺‖2M2

F
(̺,T )d̺.
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Hence, it follows that D̺Θ
k is a Cauchy sequence under the norm ‖ · ‖

L̃
a
1,2

. Then, we have

proved that Θk is a Cauchy sequence in L
a
1,2(0, T ). Since L

a
1,2(0, T ) is closed under the norm

‖ · ‖La
1,2(0,T ), the limit Θα0+δ belongs to L

a
1,2(0, T ) and a version of D̺Θ

α0+δ is given by Θ̺.

We complete the proof of the lemma.

Second case β1 ≥ 0, µ1 ≥ 0, β2 > 0 and m ≤ n.

Instead of (3.1), we need to consider the following family of FBSDEs parameterized by

α ∈ [0, 1]: 



dXα
s = [(1− α)β2(−G

TY α
s ) + αb(s,Θα

s ) + φs]ds

+ [(1− α)β2(−G
TZα

s ) + ασ(s,Θα
s ) + ψs]dWs,

− dY α
s = [αg(s,Θα

s ) + κs]ds− Zα
s dWs,

Xα
t = x, Y α

T = αΦ(Xα
T ) + ξ.

(3.7)

Similar to Lemma 3.2, for the second case, we can prove the following lemma.

Lemma 3.3 Let Assumptions (H3) and (H4) hold. Then there exists an absolute constant

δ0 > 0, such that if for some α0 ∈ [0, 1), the solution to FBSDE (3.7) is differentiable in

Malliavin’s sense for any φ, ψ ∈ L2
F
(t, T ;Rn)∩ L

a
1,2(t, T ;R

n), κ ∈ L2
F
(t, T ;Rm)∩ L

a
1,2(t, T ;R

m)

and ξ ∈ L2
FT

(Ω;Rm)∩ (D1,2)
m, then the same is true for α = α0+ δ with δ ∈ [0, δ0], α0+ δ ≤ 1.

Theorem 3.1 Let Assumptions (H3) and (H4) hold. Then the solution Θt,x to FBSDE (1.2)

belongs to L
a
1,2(0, T ;R

n+m+m×d), and a version of {D̺Θ
t,x
s := (D̺X

t,x
s , D̺Y

t,x
s , D̺Z

t,x
s ), s ∈

[̺, T ]} is given by




D̺X
t,x
s = σ(̺,Θt,x

̺ ) +

∫ s

̺

∇b(r,Θt,x
r )D̺Θ

t,x
r dr +

∫ s

̺

∇σ(r,Θt,x
r )D̺Θ

t,x
r dWr,

D̺Y
t,x
s =

dΦ

dx
(Xt,x

T )D̺X
t,x
T +

∫ T

s

∇g(r,Θt,x
r )D̺Θ

t,x
r dr −

∫ T

s

D̺Z
t,x
r dWr.

(3.8)

Moreover, {DsY
t,x
s ; s ∈ [t, T ]} defined by (3.8) is a version of {Zt,x

s ; s ∈ [t, T ]}.

Proof For the first case, by Lemma 3.2, we can establish the Malliavin’s differentiability

for FBSDEs (3.1) with any (φ, ψ, κ, ξ) and α ∈ [0, 1]. In particular, (3.1) with (φ, ψ, κ, ξ) = 0

and α = 1, which is (1.2), is differentiable in Malliavin’s sense, and (3.4) coincides with (3.8).

For the second case, we consider (3.7) and use Lemma 3.3 to get the same conclusion.

Now the remaining thing is to prove DsYs = Zs. The same as El Karoui, Peng and Quenez

[7], we notice that

Ys = Yt −

∫ s

t

g(r,Θr)dr +

∫ s

t

ZrdWr, s ∈ [t, T ].

Then, by [7, Lemma 5.1],

D̺Ys = Z̺ −

∫ s

̺

∇g(r,Θr)D̺Θrdr +

∫ s

̺

D̺ZrdWr, s ∈ [̺, T ].

By taking s = ̺, we get D̺Y̺ = Z̺, then the proof is finished.
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3.2 Continuous differentiability of u with respect to x

By Corollary 2.1, the function u defined by (2.31) is continuous in (t, x). Now we continue

to study the continuous differentiability with respect to x under Assumptions (H3) and (H4).

Let (t, x) ∈ [0, T ]× R
n be given. Let {e1, e2, · · · , en} denote an orthonormal basis of Rn. For

any i = 1, 2, · · · , n and h ∈ R \ {0}, we define





△i
hX

t,x
s := h−1[Xt,x+hei

s −Xt,x
s ],

△i
hY

t,x
s := h−1[Y t,x+hei

s − Y t,x
s ],

△i
hZ

t,x
s := h−1[Zt,x+hei

s − Zt,x
s ],

s ∈ [t, T ].

Then △i
hΘ

t,x = (△i
hX

t,x,△i
hY

t,x,△i
hZ

t,x) satisfies the following FBSDE:





△i
hX

t,x
s = ei +

∫ s

t

∫ 1

0

∇b(r,Θt,x
r + λh△i

hΘ
t,x
r )△i

hΘ
t,x
r dλdr

+

∫ s

t

∫ 1

0

∇σ(r,Θt,x
r + λh△i

hΘ
t,x
r )△i

hΘ
t,x
r dλdWr ,

△i
hY

t,x
s =

∫ 1

0

dΦ

dx
(Xt,x

T + λh△i
hX

t,x
T )△i

hX
t,x
T dλ−

∫ T

s

△i
hZ

t,x
r dWr

+

∫ T

s

∫ 1

0

∇g(r,Θt,x
r + λh△i

hΘ
t,x
r )△i

hΘ
t,x
r dλdr.

(3.9)

For any i = 1, 2, · · · , n, we also denote by ∂Θt,x

∂xi
:=

(
∂Xt,x

∂xi
, ∂Y

t,x

∂xi
, ∂Z

t,x

∂xi

)
the unique solution

to the following FBSDE:





∂Xt,x
s

∂xi
= ei +

∫ s

t

∇b(r,Θt,x
r )

∂Θt,x
r

∂xi
dr +

∫ s

t

∇σ(r,Θt,x
r )

∂Θt,x
r

∂xi
dWr,

∂Y t,x
s

∂xi
=

dΦ

dx
(Xt,x

T )
∂X

t,x
T

∂xi
+

∫ T

s

∇g(r,Θt,x
r )

∂Θt,x
r

∂xi
dr −

∫ T

s

∂Zt,x
r

∂xi
dWr.

(3.10)

Equivalently, by setting ∇Θt,x =
(
∂Θt,x

∂x1
, ∂Θ

t,x

∂x2
, · · · , ∂Θ

t,x

∂xn

)
as well as setting ∇Xt,x, ∇Y t,x and

∇Zt,x similarly, we collect the above FBSDEs from i = 1 to n in the following form:





∇Xt,x
s = I +

∫ s

t

∇b(r,Θt,x
r )∇Θt,x

r dr +

∫ s

t

∇σ(r,Θt,x
r )∇Θt,x

r dWr,

∇Y t,x
s =

dΦ

dx
(Xt,x

T )∇Xt,x
T +

∫ T

s

∇g(r,Θt,x
r )∇Θt,x

r dr −

∫ T

s

∇Zt,x
r dWr,

(3.11)

where I denotes the (n × n) identity matrix. We shall later interpret ∇Xt,x
s (resp. ∇Y t,x

s ,

∇Zt,x
s ) as the matrix of first order partial derivatives of Xt,x

s (resp. Y t,x
s , Zt,x

s ) with respect to

x.

Due to Lemma 3.1, the monotonicity condition is satisfied for FBSDEs (3.9) and (3.10) (or

(3.11)). Then these FBSDEs admit unique L2-solutions, and we can use the L2-estimate to get

‖△i
hΘ

t,x‖2M2
F
(t,T ) ≤ C2,

∥∥∥∂Θ
t,x

∂xi

∥∥∥
2

M2
F
(t,T )

≤ C2, i = 1, 2, · · · , n (3.12)
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and ∥∥∥△i
hΘ

t,x −
∂Θt,x

∂xi

∥∥∥
2

M2
F
(t,T )

≤ C(IΦ + Ig + Ib + Iσ),

where

IΦ = E

[∣∣∣
∫ 1

0

dΦ

dx
(Xt,x

T + λh△i
hX

t,x
T )dλ −

dΦ

dx
(Xt,x

T )
∣∣∣
2∣∣∣∂X

t,x
T

∂xi

∣∣∣
2]
,

If = E

∫ T

t

∣∣∣
∫ 1

0

∇f(r,Θt,x
r − λh△i

hΘ
t,x
r )dλ−∇f(r,Θt,x

r )
∣∣∣
2∣∣∣∂Θ

t,x
r

∂xi

∣∣∣
2

dr with f = g, b, σ.

With the help of (3.12), from Lebesgue’s dominated convergence theorem, we have

lim
h→0

∥∥∥△i
hΘ

t,x −
∂Θt,x

∂xi

∥∥∥
2

M2
F
(t,T )

= 0. (3.13)

Then by the definition of partial derivatives, ∇Θt,x, of the unique solution to FBSDE (3.11),

is the gradient of Θt,x with respect to x. In particular, when s = t, the function u is partially

differentiable with respect to x, and

∇u(t, x) = ∇Y t,x
t .

Moreover, from (3.12), ∇u is bounded.

Next, we show that ∇u is continuous. Let (t, x), (t′, x′) ∈ [0, T ]× R
n. For the case t′ ≤ t,

by applying the L2-estimate on the interval [t′, T ], we have

∥∥∥∂Θ
t′,x′

∂xi
−
∂Θt,x

∂xi

∥∥∥
2

M2
F
(0,T )

=
∥∥∥∂Θ

t′,x′

∂xi
−
∂Θt,x

∂xi

∥∥∥
2

M2
F
(t′,T )

≤ C(IIΦ + IIg + IIb + IIσ + IIIg + IIIb + IIIσ),

where

IIΦ = E

[∣∣∣dΦ
dx

(Xt′,x′

T )−
dΦ

dx
(Xt,x

T )
∣∣∣
2∣∣∣∂X

t,x
T

∂xi

∣∣∣
2]
,

IIf = E

∫ T

t

|∇f(s,Θt′,x′

s )−∇f(s,Θt,x
s )|2

∣∣∣∂Θ
t,x
s

∂xi

∣∣∣
2

ds with f = g, b, σ,

IIIf = E

∫ t

t′

∣∣∣∂f
∂x

(s,Θt′,x′

s )ei +
∂f

∂y
(s,Θt′,x′

s )
∂Y

t,x
t

∂xi

∣∣∣
2

ds with f = g, b, σ.

Firstly, we estimate IIIf . With the help of (3.12),

IIIf ≤ C

∫ t

t′

(
1 +

∣∣∣∂Y
t,x
t

∂xi

∣∣∣
2)

ds ≤ C(t− t′).

Secondly, we analyze IIΦ. From (2.33), we have

E[|Xt′,x′

T −X
t,x
T |2] ≤ C{|x′ − x|+ (1 + |x|2 + |x′|2)|t′ − t|}.

Then X
t′,x′

T converges to Xt,x
T in L2

FT
(Ω;Rn) as (t′, x′) → (t−, x). Consequently, Xt′,x′

T con-

verges to Xt,x
T in probability P. With the help of (3.12) and Lebesgue’s dominated convergence

theorem, we get

lim
(t′,x′)→(t−,x)

IIΦ = 0.
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Finally, a similar analysis as IIΦ leads to

lim
(t′,x′)→(t−,x)

IIf = 0.

In summary,

lim
(t′,x′)→(t−,x)

∥∥∥∂Θ
t′,x′

∂xi
−
∂Θt,x

∂xi

∥∥∥
2

M2
F
(0,T )

= 0. (3.14)

For the other case t ≤ t′, we do not apply the L2-estimate on the whole interval [t, T ].

Instead, we apply it only on the interval [t′, T ], which leads to

∥∥∥∂Θ
t′,x′

∂xi
−
∂Θt,x

∂xi

∥∥∥
2

M2
F
(t′,T )

≤ C
(
E

[∣∣∣∂X
t,x
t′

∂xi
− ei

∣∣∣
2]

+ IIΦ + ĨI
g
+ ĨI

b
+ ĨI

σ
)
,

where IIΦ is defined in the previous paragraph, and

ĨI
f
= E

∫ T

t′
|∇f(s,Θt′,x′

s )−∇f(s,Θt,x
s )|2

∣∣∣∂Θ
t,x
s

∂xi

∣∣∣
2

ds with f = g, b, σ.

For simplicity, we also introduce the notation

ĨII
f
= E

∫ t′

t

|∇f(s,Θt,x
s )|2

∣∣∣∂Θ
t,x
s

∂xi

∣∣∣
2

ds with f = g, b, σ.

By considering the forward equation in (3.10) on the interval [t, t′] and with the help of

Burkholder-Davis-Gundy inequality, we get

E

[
sup

s∈[t,t′]

∣∣∣∂X
t,x
s

∂xi
− ei

∣∣∣
2]

≤ C(ĨII
b
+ ĨII

σ
).

Then,
∥∥∥∂Θ

t′,x′

∂xi
−
∂Θt,x

∂xi

∥∥∥
2

M2
F
(t′,T )

≤ C(IIΦ + ĨI
g
+ ĨI

b
+ ĨI

σ
+ ĨII

b
+ ĨII

σ
).

Similar to the previous paragraph, we can check that IIΦ, ĨI
f
and ĨII

f
tend to zero as (t′, x′) →

(t+, x). Therefore,

lim
(t′,x′)→(t+,x)

∥∥∥∂Θ
t′,x′

∂xi
−
∂Θt,x

∂xi

∥∥∥
2

M2
F
(t′,T )

= 0. (3.15)

On the interval [t, t′], we notice that ∂Θt′,x′

∂xi
≡

(
ei,

∂Y
t′,x′

t′

∂xi
, 0
)
. Burkholder-Davis-Gundy inequal-

ity works once again to yield

∥∥∥∂Θ
t′,x′

∂xi
−
∂Θt,x

∂xi

∥∥∥
2

M2
F
(t,t′)

≤ C
(
E

∣∣∣∂Y
t,x
t′

∂xi
−
∂Y

t′,x′

t′

∂xi

∣∣∣
2

+ E

∫ t′

t

∣∣∣∂Z
t,x
s

∂xi

∣∣∣
2

ds+ ĨII
g
+ ĨII

b
+ ĨII

σ
)

≤ C
(∥∥∥∂Θ

t′,x′

∂xi
−
∂Θt,x

∂xi

∥∥∥
2

M2
F
(t′,T )

+ E

∫ t′

t

∣∣∣∂Z
t,x
s

∂xi

∣∣∣
2

ds+ ĨII
g
+ ĨII

b
+ ĨII

σ
)
.
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From (3.12) and (3.15), we have

lim
(t′,x′)→(t+,x)

∥∥∥∂Θ
t′,x′

∂xi
−
∂Θt,x

∂xi

∥∥∥
2

M2
F
(t,t′)

= 0. (3.16)

It is obvious that

∥∥∥∂Θ
t′,x′

∂xi
−
∂Θt,x

∂xi

∥∥∥
2

M2
F
(0,T )

≤
∥∥∥∂Θ

t′,x′

∂xi
−
∂Θt,x

∂xi

∥∥∥
2

M2
F
(t′,T )

+
∥∥∥∂Θ

t′,x′

∂xi
−
∂Θt,x

∂xi

∥∥∥
2

M2
F
(t,t′)

.

Then, (3.15)–(3.16) imply

lim
(t′,x′)→(t+,x)

∥∥∥∂Θ
t′,x′

∂xi
−
∂Θt,x

∂xi

∥∥∥
2

M2
F
(0,T )

= 0. (3.17)

Combining (3.14) and (3.17), we obtain

lim
(t′,x′)→(t,x)

∥∥∥∂Θ
t′,x′

∂xi
−
∂Θt,x

∂xi

∥∥∥
2

M2
F
(0,T )

= 0. (3.18)

In particular, ∇u is continuous in (t, x).

We summarize the above analysis as follows.

Lemma 3.4 Let Assumptions (H3) and (H4) hold. Then u ∈ C0,1([0, T ]×R
n;Rm). More-

over, all the partial derivatives are bounded on [0, T ]× R
n.

3.3 Twice continuous differentiability of u with respect to x

It should be noticed that just the L2-estimates of coupled FBSDEs are involved in our

analysis of the above two subsections. However, when we consider the same issues on the

second order derivatives of u, there are some additional non-homogeneous items appearing in

the corresponding equations (compare (3.9) and (3.10) with (3.22) and (3.23) below), which

brings us difficulties. Since the non-homogeneous items will appear in quadratic forms of

∂Θt,x

∂xi
or/and △i

hΘ
t,x (i = 1, 2, · · · , n), it seems the L2-estimates will not be enough for our

analysis below. Due to this, we shall employ L4-estimates by imposing Assumption (H2)4 in

this subsection. Besides Assumption (H2)4, we shall also need the following assumption.

(H5) The coefficient σ depends linearly on z, i.e., σ is in the form: For any t ∈ [0, T ] and

any θ = (x, y, z) ∈ R
n+m+m×d,

σ(t, θ) = σ0(t, x, y) +

m∑

p=1

d∑

q=1

σpq(t, x, y)zpq,

where σpq takes values in R
m×d and zpq is the element of matrix z located in the p-th row and

the q-th column.

Consequently, (H5) implies that the Hessian matrix ∂2σ
∂z2 ≡ 0. The following analysis in this

subsection is under Assumptions (H2)4, (H3), (H4) and (H5).
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It is clear that in the present smoothness situation, the constant Lx (involved in Assumption

(H2)4) is the bound of dΦ
dx , Lz is the bound of (σpq(t, x, y))m×d, and L is the bound of other

first order partial derivatives of coefficients γ = (g, b, σ) with respect to θ.

First of all, under Assumption (H2)4, (H3) and (H4), replacing L2-estimates with L4-

estimates, we can improve (3.12)–(3.13) and (3.18) to the following:

‖△i
hΘ

t,x‖4M4
F
(t,T ) ≤ C4,

∥∥∥∂Θ
t,x

∂xi

∥∥∥
4

M4
F
(t,T )

≤ C4, (3.19)

lim
h→0

∥∥∥△i
hΘ

t,x −
∂Θt,x

∂xi

∥∥∥
4

M4
F
(t,T )

= 0 (3.20)

and

lim
(t′,x′)→(t,x)

∥∥∥∂Θ
t′,x′

∂xi
−
∂Θt,x

∂xi

∥∥∥
4

M4
F
(0,T )

= 0. (3.21)

The proofs are similar to those appearing in the previous subsection, hence we omit them.

Now, similar to the previous subsection, for any i, j = 1, 2, · · · , n and h ∈ R \ {0}, we

introduce the notations




△j
h

∂Xt,x
s

∂xi
:= h−1

[∂Xt,x+hej
s

∂xi
−
∂Xt,x

s

∂xi

]
,

△j
h

∂Y t,x
s

∂xi
:= h−1

[∂Y t,x+hej
s

∂xi
−
∂Y t,x

s

∂xi

]
,

△j
h

∂Zt,x
s

∂xi
:= h−1

[∂Zt,x+hej
s

∂xi
−
∂Zt,x

s

∂xi

]
.

s ∈ [t, T ].

Then △j
h
∂Θt,x

∂xi
=

(
△j

h
∂Xt,x

∂xi
,△j

h
∂Y t,x

∂xi
,△j

h
∂Zt,x

∂xi

)
satisfies the following FBSDE:





△j
h

∂Xt,x
s

∂xi
=

∫ s

t

∫ 1

0

〈
D2b(r,Θt,x

r + λh△j
hΘ

t,x
r )△j

hΘ
t,x
r ,

∂Θt,x
r

∂xi

〉
dλdr

+

∫ s

t

∫ 1

0

〈
D2σ(r,Θt,x

r + λh△j
hΘ

t,x
r )△j

hΘ
t,x
r ,

∂Θt,x
r

∂xi

〉
dλdWr

+

∫ s

t

∇b(r,Θt,x+hej
r )△j

h

∂Θt,x
r

∂xi
dr +

∫ s

t

∇σ(r,Θt,x+hej
r )△j

h

∂Θt,x
r

∂xi
dWr,

△j
h

∂Y t,x
s

∂xi
=

∫ 1

0

〈d2Φ
dx2

(Xt,x
T + λh△j

hX
t,x
T )△j

hX
t,x
T ,

∂X
t,x
T

∂xi

〉
dλ

+

∫ s

t

∫ 1

0

〈
D2g(r,Θt,x

r + λh△j
hΘ

t,x
r )△j

hΘ
t,x
r ,

∂Θt,x
r

∂xi

〉
dλdr

+
dΦ

dx
(X

t,x+hej
T )△j

h

∂X
t,x
T

∂xi
+

∫ T

s

∇g(r,Θt,x+hej
r )△j

h

∂Θt,x
r

∂xi
dr

−

∫ T

s

△j
h

∂Zt,x
r

∂xi
dWr.

(3.22)

Here, for anR
n-valued function f(·) = (f1(·), f2(·), · · · , fn(·))T, we use the notation 〈D2f(·)θ, θ〉
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to denote another Rn-valued function in which the k-th component is 〈D2fk(·)θ, θ〉 and

D2fk(·) =




∂2fk

∂x2
(·)

∂2fk

∂y∂x
(·)

∂2fk

∂z∂x
(·)

∂2fk

∂x∂y
(·)

∂2fk

∂y2
(·)

∂2fk

∂z∂y
(·)

∂2fk

∂x∂z
(·)

∂2fk

∂y∂z
(·)

∂2fk

∂z2
(·)




.

Moreover, for an R
n×d-valued function f(·), the notation 〈D2f(·)θ, θ〉 has a similar meaning.

Besides FBSDE (3.22), we also introduce another FBSDE as follows:





∂2Xt,x
s

∂xj∂xi
=

∫ s

t

〈
D2b(r,Θt,x

r )
∂Θt,x

r

∂xj
,
∂Θt,x

r

∂xi

〉
dr +

∫ s

t

∇b(r,Θt,x
r )

∂2Θt,x
r

∂xj∂xi
dr

+

∫ s

t

〈
D2σ(r,Θt,x

r )
∂Θt,x

r

∂xj
,
∂Θt,x

r

∂xi

〉
dWr +

∫ s

t

∇σ(r,Θt,x
r )

∂2Θt,x
r

∂xj∂xi
dWr ,

∂2Y t,x
s

∂xj∂xi
=

〈d2Φ
dx2

(Xt,x
T )

∂X
t,x
T

∂xj
,
∂X

t,x
T

∂xi

〉
+

dΦ

dx
(Xt,x

T )
∂2X

t,x
T

∂xj∂xi

+

∫ s

t

〈
D2g(r,Θt,x

r )
∂Θt,x

r

∂xj
,
∂Θt,x

r

∂xi

〉
dr +

∫ s

t

∇g(r,Θt,x
r )

∂2Θt,x
r

∂xj∂xi
dr

−

∫ T

s

∂2Zt,x
r

∂xj∂xi
dWr .

(3.23)

As in the previous subsection, Assumption (H4) ensures that the Lipschitz condition holds true

for FBSDEs (3.22) and (3.23). Moreover, with the help of Lemma 3.1 and Assumption (H3), the

monotonicity condition is also satisfied for the above two FBSDEs. However, when we continue

to check the corresponding square integrability conditions for the coefficients of FBSDEs (3.22)

and (3.23), the following two items

〈[ ∫ 1

0

∂2σ

∂z2
(r,Θt,x

r + λh△j
hΘ

t,x
r )dλ

]
△j

hZ
t,x
r ,

∂Zt,x
r

∂xi

〉
, r ∈ [t, T ] (3.24)

and 〈∂2σ
∂z2

(r,Θt,x
r )

∂Zt,x
r

∂xj
,
∂Zt,x

r

∂xi

〉
, r ∈ [t, T ] (3.25)

appear in the diffusion coefficients, which bring us a difficulty: For fixed ω ∈ Ω, we require

that the above two items are square integrable with respect to the time variable r ∈ [t, T ].

However, △j
hZ

t,x, ∂Zt,x

∂xi
and ∂Zt,x

∂xj
are also known to be only square integrable. Therefore, the

square integrability requirements of (3.24)–(3.25) cannot be satisfied in general. To avoid this

difficulty, we introduce Assumption (H5). Under Assumption (H5), the estimates (3.19) ensure

that the corresponding square integrability conditions for the coefficients of FBSDEs (3.22) and

(3.23) are satisfied. Therefore, FBSDEs (3.22) and (3.23) admit unique L2-solutions and the

corresponding L2-estimates can be used in our analysis below.
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The next analysis is a bit complicated, but is very similar to the previous subsection. Then

we would like to provide a brief derivation procedure. By virtue of (3.19), we have

∥∥∥△j
h

∂Θt,x

∂xi

∥∥∥
2

M2
F
(t,T )

≤ C,
∥∥∥ ∂

2Θt,x

∂xj∂xi

∥∥∥
2

M2
F
(t,T )

≤ C. (3.26)

With the help of Lebesgue’s dominated convergence theorem as well as (3.19)–(3.20) and (3.26),

we obtain

lim
h→0

∥∥∥△j
h

∂Θt,x

∂xi
−
∂2Θt,x

∂xj∂xi

∥∥∥
2

M2
F
(t,T )

= 0. (3.27)

The above equation implies that the function u is twice partially differentiable with respect to

x, and
∂2u

∂xj∂xi
(t, x) =

∂2Y
t,x
t

∂xj∂xi
, i, j = 1, 2, · · · , n.

Moreover, (3.26) implies ∂2u
∂xj∂xi

is bounded for any i, j = 1, 2, · · · , n.

In order to exhibit the treatment techniques on the non-homogeneous items appearing in

this subsection, we would like to indicate how we treat the following “hard” term: When we

analyze the “left continuity” of the second order partial derivatives, we need to prove

lim
(t′,x′)→(t−,x)

E

∫ t

t′

∣∣∣∂X
t′,x′

s

∂xj

∣∣∣
2∣∣∣∂Z

t′,x′

s

∂xi

∣∣∣
2

ds = 0. (3.28)

In fact, by Hölder’s inequality,

E

∫ t

t′

∣∣∣∂X
t′,x′

s

∂xj

∣∣∣
2∣∣∣∂Z

t′,x′

s

∂xi

∣∣∣
2

ds ≤
{
E

[
sup

s∈[t′,t]

∣∣∣∂X
t′,x′

s

∂xj

∣∣∣
4]} 1

2
{
E

[( ∫ t

t′

∣∣∣∂Z
t′,x′

s

∂xi

∣∣∣
2

ds
)2]} 1

2

.

From (3.19), the first item on the right hand side of the above inequality is bounded by C
1
2

4 .

Moreover, we notice that on the time interval [t′, t], ∂Zt,x

∂xi
≡ 0. Then

E

[( ∫ t

t′

∣∣∣∂Z
t′,x′

s

∂xi

∣∣∣
2

ds
)2]

= E

[(∫ t

t′

∣∣∣∂Z
t′,x′

s

∂xi
−
∂Zt,x

s

∂xi

∣∣∣
2

ds
)2]

=
∥∥∥∂Z

t′,x′

∂xi
−
∂Zt,x

∂xi

∥∥∥
4

L4
F
(Ω;L2(t′,t))

≤
∥∥∥∂Θ

t′,x′

∂xi
−
∂Θt,x

∂xi

∥∥∥
4

M4
F
(t′,t)

.

Therefore,

E

∫ t

t′

∣∣∣∂X
t′,x′

s

∂xj

∣∣∣
2∣∣∣∂Z

t′,x′

s

∂xi

∣∣∣
2

ds ≤ C
1
2

4

∥∥∥∂Θ
t′,x′

∂xi
−
∂Θt,x

∂xi

∥∥∥
2

M4
F
(t′,t)

.

Due to (3.21), we obtain (3.28).

We continue our analysis. By virtue of Lebesgue’s dominated convergence theorem, Hölder’s

inequality, Burkholder-Davis-Gundy inequality as well as (3.19), (3.21) and (3.26), we success-

fully obtain

lim
(t′,x′)→(t,x)

∥∥∥∂
2Θt′,x′

∂xj∂xi
−
∂2Θt,x

∂xj∂xi

∥∥∥
2

M2
F
(0,T )

= 0. (3.29)

In particular, ∂2u
∂xj∂xi

is continuous in (t, x) for any i, j = 1, 2, · · · , n.

In summary, we have the following lemma.
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Lemma 3.5 Let Assumptions (H2)4, (H3), (H4) and (H5) hold. Then u ∈ C0,2([0, T ] ×

R
n;Rm). Moreover, all the partial derivatives are bounded on [0, T ]× R

n.

Remark 3.1 In this subsection, due to the non-homogeneous items appearing in FBSDEs

(3.22) and (3.23), we impose Assumptions (H2)4 and (H5). Instead of them, we can also

introduce the following assumption.

(H6) All the coefficients (Φ, γ) depend linearly on θ.

Under Assumption (H6), all the non-homogeneous items in (3.22)–(3.23) (and then the

corresponding difficulties) disappear. Moreover, all the conclusions in the rest of this paper are

right. However, it is easy to understand that Assumption (H6) will lead to the second order

partial derivatives of u to be zero. Therefore, the system of PDAEs (1.1) will degenerate to be

a first order one.

4 Classical Solution to the System of PDAEs

In this section, we shall link the family of coupled FBSDEs (1.2) to the system (1.1) of

PDAEs. In the first subsection, we shall work for the algebraic equation in the PDAE system

(1.1), and in the second subsection, we shall consider the differential equation in (1.1).

4.1 Algebraic equations and the function v

The method used in the following Lemmas 4.1–4.2 is similar to the one in [27]. Since the

issue of the viscosity solution was investigated in [27], then the dimension m was restricted to

1 there. In comparison, this subsection will focus on the multidimensional case, i.e., m ≥ 1.

As a start, we give a property for smooth G-monotonic functions (see Definition 2.1).

Lemma 4.1 Let f ∈ C1(Rn;Rm) be a G-monotonic function with ν ≥ 0. Then, for any

matrix K ∈ R
n×d, we have

〈∇f(x)K, GK〉 ≥ ν|K|2 for any x ∈ R
n.

Proof By the definition of G-monotonicity, for any vector x, K ∈ R
n and any positive

number δ > 0, we have

〈f(x+ δK)− f(x), G(δK)〉 ≥ ν|δK|2.

From Lagrange’s differential mean value theorem, there exists an α ∈ (0, 1) depending on δ,

such that

〈∇f(x+ αδK)(δK), G(δK)〉 ≥ ν|δK|2.

By dividing δ2 on both sides, and then letting δ → 0+, we have

〈∇f(x)K, GK〉 ≥ ν|K|2. (4.1)
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Now, let K = (K1,K2, · · · ,Kd) ∈ R
n×d be a given matrix, where Kj ∈ R

n is the j-th volume

vector of K (j = 1, 2, · · · , d). Applying (4.1) to each Kj yields

〈∇f(x)K, GK〉 =

d∑

j=1

〈∇f(x)Kj , GKj〉 ≥

d∑

j=1

ν|Kj |
2 = ν|K|2.

We finish the proof.

For clarity, we extract the algebraic equation from the PDAE system (1.1) and rewrite it as

follows:

v(t, x) = ∇u(t, x)σ(t, x, u(t, x), v(t, x)). (4.2)

Although the above algebraic equation can be considered for any given u ∈ C0,1([0, T ]×R
n;Rm),

in this subsection, we are concerned about a special case where the function u appearing in (4.2)

is given by (2.31). Since there are only the first order partial derivatives involved in (4.2), most

of our results in this subsection will be under Assumptions (H3) and (H4). From Proposition 2.2,

we know that u is G-monotonic. Moreover, Lemma 3.4 implies that u ∈ C0,1([0, T ]× R
n;Rm)

and all its first order partial derivatives are bounded. The following lemma provides some

preliminary results.

Lemma 4.2 Let Assumptions (H3) and (H4) hold. Let u be defined by (2.31).

(a) Let (t, x), (t, x) ∈ [0, T ]× R
n be given. If v and v satisfy the algebraic equations (4.2)

with (t, x) and (t, x), respectively, then

|v − v| ≤ C|∇u(t, x)σ(t, x, u(t, x), v)−∇u(t, x)σ(t, x, u(t, x), v)|,

where C > 0 is a constant independent of (t, x) and (t, x).

(b) For any (t, x) ∈ [0, T ]× R
n, the algebraic equation (4.2) admits at most one solution.

Proof (a) For simplicity, we use the denotations

∇u := ∇u(t, x), ∇u := ∇u(t, x), u := (t, x, u(t, x)), u := (t, x, u(t, x))

in this part of proof. From the algebraic equations, we have

v − v = ∇u[σ(u, v)− σ(u, v)] + [∇uσ(u, v)−∇uσ(u, v)]. (4.3)

By taking inner product with G[σ(u, v) − σ(u, v)], from Lemma 4.1 and the monotonicity

condition of σ, we get

−β2|G
T(v − v)|2 ≥ 〈v − v, G[σ(u, v)− σ(u, v)]〉

= 〈∇u[σ(u, v)− σ(u, v)], G[σ(u, v)− σ(u, v)]〉

+ 〈∇uσ(u, v)−∇uσ(u, v), G[σ(u, v)− σ(u, v)]〉

≥ ν|σ(u, v)− σ(u, v)|2

+ 〈∇uσ(u, v)−∇uσ(u, v), G[σ(u, v)− σ(u, v)]〉, (4.4)
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where ν ≥ 0 is the G-monotonicity constant of u (see Proposition 2.2). Next, similar to

Subsection 3.1, according to the signs of β1, β2 and µ1 in the monotonicity assumption (H3),

we split our problem into two cases.

First case β1 > 0, µ1 > 0, β2 ≥ 0 and n ≤ m. In this case, by Proposition 2.2, we have

ν > 0. Then, (4.4) implies

|σ(u, v)− σ(u, v)|2 ≤ −
1

ν
〈∇uσ(u, v)−∇uσ(u, v), G[σ(u, v)− σ(u, v)]〉

≤
|G|

ν
|∇uσ(u, v)−∇uσ(u, v)||σ(u, v)− σ(u, v)|.

Therefore,

|σ(u, v)− σ(u, v)| ≤
|G|

ν
|∇uσ(u, v)−∇uσ(u, v)|.

With the help of the above inequality, from (4.3), we deduce

|v − v| ≤ |∇u[σ(u, v)− σ(u, v)]|+ |∇uσ(u, v)−∇uσ(u, v)|

≤
(
1 +

C∇|G|

ν

)
|∇uσ(u, v)−∇uσ(u, v)|,

where the constant C∇ > 0 is the bound of the gradient of the function u. We get the desired

result in the first case.

Second case β1 ≥ 0, µ1 ≥ 0, β2 > 0 and m ≤ n. In this case, the (m ×m) matrix GGT

is positive definite, and we denote its minimum eigenvalue by λmin > 0. From (4.4),

λminβ2|v − v|2 ≤ β2|G
T(v − v)|2 ≤ − 〈∇uσ(u, v)−∇uσ(u, v), G[σ(u, v)− σ(u, v)]〉

≤ |G|Lz|∇uσ(u, v)−∇uσ(u, v)||v − v|,

where the constant Lz > 0 is the bound of ∂σ
∂z

. Therefore,

|v − v| ≤
|G|Lz

λminβ2
|∇uσ(u, v)−∇uσ(u, v)|.

The result in the second case is proved.

(b) By letting (t, x) = (t, x) in the conclusion (a) of this lemma, we obtain the uniqueness

of the algebraic equation.

With the previous preparations, now we give the main result of this subsection.

Proposition 4.1 Let Assumptions (H3) and (H4) hold. For any (t, x) ∈ [0, T ] × R
n, let

Θt,x = (Xt,x, Y t,x, Zt,x) be the unique solution to FBSDE (1.2).

(a) For any (t, x), the trajectories of the process Zt,x are continuous. Consequently, similar

to the definition (2.31) of the function u, we can define another function v : [0, T ]×R
n → R

m×d

as follows :

v(t, x) = Z
t,x
t , (t, x) ∈ [0, T ]× R

n. (4.5)

(b) For any (t, x), the above defined v(t, x) is the unique solution to the algebraic equation

(4.2).
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(c) The function v defined by (4.5) is continuous with respect to (t, x) ∈ [0, T ]× R
n.

(d) Similar to the function u, the following Markovian property of the function v holds true :

v(s,Xt,x
s ) = Zt,x

s , s ∈ [t, T ], (t, x) ∈ [0, T ]× R
n. (4.6)

(e) There exists a constant C > 0 such that

|v(t, x)| ≤ C(1 + |x|), (t, x) ∈ [0, T ]× R
n,

i.e., the function v is linear growth with respect to x.

(f) Let Assumptions (H2)4 and (H5) also hold. Then, there exists a constant C > 0 such

that

|v(t, x)− v(t, x)| ≤ C(1 + |x|)|x− x|, t ∈ [0, T ], x, x ∈ R
n.

Consequently, the function v is local Lipschitz continuous with respect to x.

Proof (a) From Lemma 3.4, Theorem 3.1 and the Markovian property of the function u

(see [27, Proposition 2.6 or Remark 2.7]), we derive

Zt,x
s = DsY

t,x
s = Dsu(s,X

t,x
s ) = ∇u(s,Xt,x

s )DsX
t,x
s = ∇u(s,Xt,x

s )σ(s,Θt,x
s )

= ∇u(s,Xt,x
s )σ(s,Xt,x

s , u(s,Xt,x
s ), Zt,x

s ). (4.7)

Now, we fix ω ∈ Ω and consider the corresponding trajectories of Xt,x(ω) and Zt,x(ω). For any

s, s′ ∈ [t, T ], (4.7) means that Zt,x
s (ω) and Zt,x

s′ (ω) are the solutions to the algebraic equations

(4.2) with (s,Xt,x
s (ω)) and (s′, Xt,x

s′ (ω)), respectively. By Lemma 4.2(a),

|Zt,x
s′ (ω)− Zt,x

s (ω)| ≤ C|∇u(s′, Xt,x
s′ (ω))σ(s′, Xt,x

s′ (ω), u(s′, Xt,x
s′ (ω)), Zt,x

s (ω))

−∇u(s,Xt,x
s (ω))σ(s,Xt,x

s (ω), u(s,Xt,x
s (ω)), Zt,x

s (ω))|.

Due to the continuity of σ, u, ∇u and Xt,x(ω), we get

lim
s′→s

Z
t,x
s′ (ω) = Zt,x

s (ω).

Due to the arbitrariness of s ∈ [t, T ] and ω ∈ Ω, we prove the trajectory continuity of Zt,x.

(b)–(d) After defining the function v by (4.5), we find that the conclusion (b) is an obvious

consequence of (4.7) with s = t. Then, Lemma 4.2(a) works again to ensure the conclusion (c).

Due to the conclusion (b) of this proposition, for any (t, x) ∈ [0, T ]×R
n and any s ∈ [t, T ], we

have

v(s,Xt,x
s ) = ∇u(s,Xt,x

s )σ(s,Xt,x
s , u(s,Xt,x

s ), v(s,Xt,x
s )),

where v is given by (4.5). From the uniqueness of the algebraic equation (4.2) (see Lemma

4.2(b)) as well as (4.7), we obtain the Markovian property of v.
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(e) From the conclusion (c), v(·, 0) is bounded. With the help of Lemma 4.2(a), we calculate

|v(t, x)| ≤ |v(t, 0)|+ |v(t, x) − v(t, 0)|

≤ C + C|∇u(t, x)σ(t, x, u(t, x), v(t, 0)) −∇u(t, 0)σ(t, 0, u(t, 0), v(t, 0))|

≤ C + C|∇u(t, x)σ(t, x, u(t, x), v(t, 0))|

≤ C + C(1 + |x|+ |u(t, x)|+ |v(t, 0)|) ≤ C(1 + |x|).

(f) Under Assumptions (H2)4 and (H5), Lemma 4.2(a) works once again to lead

|v(t, x)− v(t, x)| ≤ C|∇u(t, x)−∇u(t, x)||σ(t, x, u(t, x), v(t, x))|

+ C|∇u(t, x)||σ(t, x, u(t, x), v(t, x)) − σ(t, x, u(t, x), v(t, x))|

≤ C|x− x|(1 + |x|) + C(|x − x|) ≤ C(1 + |x|)|x − x|.

The proof is completed.

4.2 Existence and uniqueness of the classical solution

Let us introduce a couple of spaces:

(1) U is a subspace of C1,2([0, T ]×R
n;Rm) in which the functions are of linear growth with

respect to x ∈ R
n.

(2) V is a subspace of C([0, T ]×R
n;Rm×d) in which the functions are of linear growth and

locally Lipschitz continuous with respect to x ∈ R
n.

We first recall a result from [27, Theorem 3.1] which provides the uniqueness for (1.1).

Lemma 4.3 Let Assumptions (H3) and (H4) hold. Let (ũ, ṽ) ∈ U× V be a classical solu-

tion to the PDAE system (1.2). Then ũ and ṽ are uniquely determined by (2.31) and (4.5),

respectively.

The following lemma collects some calculations which will be used in the proof of our main

result (Theorem 4.1).

Lemma 4.4 Let Assumptions (H2)4, (H3), (H4) and (H5) hold. Let 0 ≤ t′ ≤ r ≤ t ≤ T

and x ∈ R
n. Then, there exists a constant C > 0 independent of t′, r and x such that

‖Xt′,x‖2M2
F
(t′,T ) ≤ C. (4.8)

Moreover, we have the following convergence

lim
(t′,r)→(t,t)

t′≤r≤t

E[|Θt′,x
r −Θt,x

t |2] = 0 (4.9)

and

lim
(t′,r)→(t,t)

t′≤r≤t

E[|f(r,Θt′,x
r )− f(t,Θt,x

t )|2] = 0 with f = g, b, σ. (4.10)



Probabilistic Interpretation for Partial Differential-Algebraic Equations 907

Proof Obviously, (4.8) is a consequence of the standard L2-estimate. Now, we calculate

E[|Xt′,x
r − x|2] ≤ 2E

[( ∫ r

t′
|b(s,Θt′,x

s )|ds
)2]

+ 2E
[∣∣∣
∫ r

t′
σ(s,Θt′,x

s )dWs

∣∣∣
2]

≤ CE

∫ t

t′
(1 + |Θt′,x

s |2)ds.

From the Markovian property and the linear growth property of (u, v),

E[|Xt′,x
r − x|2] ≤ CE

∫ t

t′
(1 + |Xt′,x

s |2)ds ≤ C
{
1 + E

[
sup

s∈[t′t]

|Xt′,x
s |2

]}
(t′ − t).

With the help of (4.8), we deduce from the above inequality that

lim
(t′,r)→(t,t)

t′≤r≤t

E[|Xt′,x
r − x|2] = 0. (4.11)

Next we are going to prove (4.9)–(4.10). Noticing Proposition 4.1(f), we calculate

E[|Θt′,x
r −Θt,x

t |2] = E[|Xt′,x
r − x|2 + |u(r,Xt′,x

r )− u(t, x)|2 + |v(r,Xt′,x
r )− v(t, x)|2]

≤ C(1 + |x|2)E[|Xt′,x
r − x|2] + 2|u(r, x)− u(t, x)|2 + 2|v(r, x)− v(t, x)|2.

By virtue of (4.11), we get the conclusion (4.9). Moreover,

E[|f(r,Θt′,x
r )− f(t,Θt,x

t )|2]

≤ 2E[|f(r,Θt′,x
r )− f(r,Θt,x

t )|2] + 2|f(r,Θt,x
t )− f(r,Θt,x

t )|2

≤ CE[|Θt′,x
r −Θt,x

t |2] + 2|f(r, x, u(t, x), v(t, x)) − f(t, x, u(t, x), v(t, x))|2.

(4.9) works to yield the conclusion (4.10). We finish the proof of this lemma.

We are now in the position to give the main result of this paper.

Theorem 4.1 Under Assumptions (H2)4, (H3), (H4) and (H5), the PDAE system (1.1)

admits a unique solution in the space U × V. Moreover, the unique pair of solutions (u, v) is

defined by (2.31) and (4.5). Furthermore, all the first and second order partial derivatives of u

with respect to x ∈ R
n are bounded on [0, T ]× R

n.

Proof Due to Lemmas 3.5, 4.3 and Proposition 4.1, the remaining thing is to prove that

u defined by (2.31) is continuously differentiable with respect to t ∈ [0, T ] and solves the

differential equation in system (1.1).

From Lemma 3.5, u ∈ C0,2([0, T ]× R
n;Rm). Let (t, x), (t′, x) ∈ [0, T ]× R

n. For the case

t′ ≥ t, from Itô’s formula and FBSDE (1.2), we have

u(t′, x)− u(t, x) = u(t′, x)− u(t′, Xt,x
t′ ) + u(t′, Xt,x

t′ )− u(t, x)

= −

∫ t′

t

F t,x(r, t′)dr +

∫ t′

t

[Zt,x
r −∇u(t′, Xt,x

r )σ(r,Θt,x
r )]dWr , (4.12)
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where F t,x(r, t′) takes values in R
m and its k-th component (k = 1, 2, · · · ,m) is given by

F
t,x
k (r, t′) =

1

2

n∑

i,j=1

(σσT)ij(r,Θ
t,x
r )

∂2uk

∂xi∂xj
(t′, Xt,x

r )

+

n∑

i=1

bi(r,Θ
t,x
r )

∂uk

∂xi
(t′, Xt,x

r ) + gk(r,Θ
t,x
r ).

After taking expectation on both sides of (4.12), the stochastic integral vanishes. By dividing

t′ − t, we have

u(t′, x)− u(t, x)

t′ − t
= −

1

t′ − t

∫ t′

t

E[F t,x(r, t′)]dr. (4.13)

From the continuity of γ = (g, b, σ), D2u, ∇u and Θt,x = (Xt,x, Y t,x, Zt,x), it is easy to know

that F t,x(r, t′) is continuous with respect to (r, t′). By the boundedness of D2u, ∇u and the

linear growth of (u, v), we have

|F t,x(r, t′)| ≤ C[1 + |Θt,x
r |2] ≤ C[1 + |Xt,x

r |2] ≤ C
[
1 + sup

r∈[t,T ]

|Xt,x
r |2

]
.

From Lebesgue’s dominated convergence theorem,

lim
(t′,r)→(t,t)

t≤r≤t′

E[F t,x(r, t′)] = F t,x(t, t). (4.14)

This implies the convergence of (4.13) as t′ → t+. By taking the limit on both sides of (4.13),

we obtain

∂+t u(t, x) = −(Lu)(t, x, u(t, x), v(t, x)) − g(t, x, u(t, x), v(t, x)), (4.15)

where ∂+t u(t, x) denotes the right derivative of u with respect to t at the point (t, x).

For the other case t′ ≤ t, similar to (4.13), we obtain

u(t, x)− u(t′, x)

t− t′
= −

1

t− t′

∫ t

t′
E[F t′,x(r, t)]dr. (4.16)

Analogous to (4.14), we need the following convergence

lim
(t′,r)→(t,t)

t′≤r≤t

E[F t′,x(r, t)] = F t,x(t, t). (4.17)

For this aim, for any k = 1, 2, · · · ,m, we consider

E[|F t′,x
k (r, t)− F

t,x
k (t, t)|] ≤

1

2

d∑

i,j=1

∆σ
i,j,k +

n∑

i=1

∆b
i,k +∆g

k,

where

∆g
k = E[|gk(r,Θ

t′,x
r )− gk(t,Θ

t,x
t )|],

∆b
i,k = E

[∣∣∣bi(r,Θt′,x
r )

∂uk

∂xi
(t,Xt′,x

r )− bi(t,Θ
t,x
t )

∂uk

∂xi
(t, x)

∣∣∣
]
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and

∆σ
i,j,k = E

[∣∣∣(σσT)ij(r,Θ
t′,x
r )

∂2uk

∂xixj
(t,Xt′,x

r )− (σσT)ij(t,Θ
t,x
t )

∂2uk

∂xixj
(t, x)

∣∣∣
]
.

(4.10) in Lemma 4.4 implies that ∆g
k → 0 as (t′, r) → (t, t). For simplicity, we omit the proof of

∆b
i,k → 0, and then continue to consider the convergence of the “hardest” term ∆σ

i,j,k. In fact,

by Hölder’s inequality, we can deduce that

∆σ
i,j,k ≤ C{E[1 + |x|2 + |Xt′,x

r |2]}
1
2 {E[|σ(r,Θt′,x

r )− σ(t,Θt,x
t )|2]}

1
2

+ (σσT)ij(t,Θ
t,x
t )E

[∣∣∣ ∂2uk

∂xi∂xj
(t,Xt′,x

r )−
∂2uk

∂xi∂xj
(t, x)

∣∣∣
]
.

(4.8) and (4.10) in Lemma 4.4 imply the first item on the right hand side of the above inequality

tends to 0 as (t′, r) → (t, t). Moreover, (4.9) in Lemma 4.4 implies that Xt′,x
r converges to x

in probability P. From Lebesgue’s dominated convergence theorem, the last item in the above

inequality also tends to 0 as (t′, r) → (t, t). In summary, we have proved (4.17). Therefore,

taking the limit on both sides of (4.16) leads to

∂−t u(t, x) = −(Lu)(t, x, u(t, x), v(t, x)) − g(t, x, u(t, x), v(t, x)), (4.18)

where ∂−t u(t, x) denotes the left derivative of u with respect to t at the point (t, x).

By combining (4.15) and (4.18), we obtain that u ∈ C1,2([0, T ]× R
n;Rm) and satisfies the

differential equation in the PDAE system (1.1). The proof is completed.
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