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Abstract In this paper, the authors investigate a delay differential equation of the form

w(z + 1) −w(z − 1) + a(z)
w′(z)

w(z)
=

P (z, w)

Q(z, w)
,

where a(z) is a nonzero rational function, P (z, w) and Q(z, w) are prime polynomials in
w with rational coefficients. They remove the restriction that the order of meromorphic
solutions of the above difference equation is σ2(w) < 1, and obtain the growth of tran-
scendental meromorphic solutions. The exact forms of all transcendental entire solutions
are obtained when deg

w
P = deg

w
Q = 0, or deg

w
P = 1 and deg

w
Q = 0, respectively.

If deg
w
P ≥ 2 and deg

w
Q = 0, or deg

w
Q ≥ 1 and Q(z, 0) 6≡ 0, they prove that the

above equation has no transcendental entire solution. They show that the existence of
transcendental entire solutions of the above equation depends on the degrees of P (z,w)
and Q(z, w).
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1 Introduction

In this paper, we use the basic notions of Nevanlinna’s theory (see [6, 11]). In addition, we

use σ(w) (resp. σ2(w)), to denote the order (resp. the hyper order), of meromorphic function

w(z); λ(w) (resp. λ( 1
w
)), to denote the exponents of convergence of zeros (resp. poles), of w(z).

Let S(r, w) denote any quantity satisfying S(r, w) = o(T (r, w)) for all r outside of a set with

finite logarithmic measure.

Halburd and Korhonen [5] studied delay differential equations and obtained the following

theorem.

Theorem 1.1 (see [5, Theorem 1.1]) Let w(z) be a non-rational meromorphic solution of

w(z + 1)− w(z − 1) + a(z)
w′(z)

w(z)
= R(z, w) =

P (z, w)

Q(z, w)
, (1.1)
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where a(z) is rational, P (z, w) is a polynomial in w(z) having rational coefficients in z, and

Q(z, w) is a polynomial in w with roots that are non-zero rational functions of z and not roots

of P (z, w). If the hyper-order of w(z) is less than one, then

degw P = degw Q+ 1 ≤ 3 or degw R = max{degw P, degw Q} ≤ 1.

Zhang and Huang [12, Theorem 2.1] proved if (1.1) admits a transcendental entire solution

with σ2(w) < 1, then (1.1) reduces into

w(z + 1)− w(z − 1) + a(z)
w′(z)

w(z)
=

a2(z)w(z)
2 + a1(z)w(z) + a0(z)

w(z)
, (1.2)

where a2(z)(6≡ 0), a1(z) and a0(z) are rational functions. Wang, Long and Wang [9] studied

the properties of rational solutions of (1.1) with constant coefficients.

As we all know, the order of meromorphic solutions of difference equations is usually re-

stricted by the condition “σ2(w) < 1”. Naturally, some interesting problems arise without this

restriction.

Problem 1.1 What is the growth of transcendental meromorphic solutions of (1.1)?

Problem 1.2 What is the existence of transcendental entire solutions of (1.1); if they exist,

what will the entire solutions be presented?

In Section 3, we give answers to Problems 1.1–1.2, and find interesting properties on entire

solutions of (1.1) depending on the degree of P (z, w) and Q(z, w).

2 Lemmas

Before relating our main results, we prepare some lemmas.

Lemma 2.1 (see [3, Corollary 2.5]) Let f(z) be a meromorphic function of finite order σ

and let η be a nonzero complex constant. Then for each ε(0 < ε < 1), we have

m
(

r,
f(z + η)

f(z)

)

+m
(

r,
f(z)

f(z + η)

)

= O(rσ−1+ε).

Lemma 2.2 (see [3, Theorem 2.1]) Let f be a meromorphic function with order σ =

σ(f), σ < +∞, and let η be a fixed nonzero complex number, then for each ε > 0, we have

T (r, f(z + η)) = T (r, f(z)) +O(rσ−1+ε) +O(log r).

Lemma 2.3 (see [4, Theorem 3.2, 7, Theorem 2.4]) Let w be a transcendental meromorphic

solution with finite order of difference equation

P (z, w) = 0,

where P (z, w) is a difference polynomial in w(z). If P (z, a) 6≡ 0 for a meromorphic function a,

where a is a small function with respect to w, then

m
(

r,
1

w − a

)

= S(r, w).
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Lemma 2.4 (see [2, Theorem 3]) Let Pn(z), · · · , P0(z) be polynomials such that PnP0 6≡ 0

and satisfy

Pn(z) + · · ·+ P0(z) 6≡ 0.

Then every finite order transcendental meromorphic solution f(z) 6≡ 0 of difference equation

Pn(z)f(z + n) + · · ·+ P1(z)f(z + 1) + P0(z)f(z) = 0

satisfies σ(f) ≥ 1, f(z) assumes every nonzero value a ∈ C infinitely often, and λ(f−a) = σ(f).

Lemma 2.5 Let w(z) be a transcendental meromorphic solution of delay differential equa-

tion

w(z + 1)− w(z − 1) + a(z)
w′(z)

w(z)
= a0(z), (2.1)

where a(z) and a0(z) are nonzero rational functions. Then σ(w) ≥ 1.

Proof First, suppose that w(z) has finitely many zeros and poles, then w(z) is of regular

order or infinite order. Obviously, σ(w) ≥ 1.

Second, suppose that w(z) has infinitely many zeros. Since a(z) and a0(z) are rational

functions, there exists R > 0 such that all zeros and poles of a(z) and a0(z) lying in the region

D = {z : |ℜz| < R, |ℑz| < R}. The region C \D can be divided into four regions (see [1]):

D1 = {z : ℜz ≥ R}, D2 = {z : ℜz ≤ −R},

D3 = {z : ℑz ≥ R}, D4 = {z : ℑz ≤ −R}.

Choosing a zero z0 of w(z) such that |z0| is large enough and a(z0 + 1) 6= −a(z0 +3). Then

z0 ∈ C \D. Without loss of generality, we assume z0 ∈ D1. If z0 ∈ Dj(j = 2, 3, 4), the similar

results can be obtained. The process will not interrupt, since a(z) and a0(z) have only finitely

many zeros and poles, but w(z) has infinitely many zeros.

For convenience, let ki, i ∈ Z denote the multiplicity of the poles of w(z) at z0+ i. Specially,

ki = 0 means w(z0 + i) 6= ∞.

By (2.1), we see z0 is a simple pole of a(z)w
′(z)

w(z) , then either z0 + 1 or z0 − 1 is a pole of

w(z), and k1 + k−1 > 0. Again by (2.1), we see if k1 ≥ 2, then k−1 ≥ 2. Thus, we can divide

the proof into the following three cases: k1 = 1, k1 ≥ 2, k−1 = 1.

Case 1 k1 = 1.

Iterating (2.1) twice, we obtain

w(z + 2) = w(z)− a(z + 1)
w′(z + 1)

w(z + 1)
+ a0(z + 1) (2.2)

and

w(z + 3) = w(z + 1)− a(z + 2)
w′(z + 2)

w(z + 2)
+ a0(z + 2). (2.3)
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In (2.2), w(z0) = 0, z0 + 1 is a simple pole of a(z)w
′(z)

w(z) , a0(z0 + 1) 6= ∞, then z0 + 2 is

a simple pole of w(z). So, k2 = 1. In (2.3), z0 + 1, z0 + 2 are simple poles of w(z), a(z)w
′(z)

w(z)

respectively, then w(z0 + 3) may take three different values as follows.

Case 1.1 z0 + 3 is a simple pole of w(z).

The next iteration will loop like the first step k1 = 1, k2 = 1.

Case 1.2 z0 + 3 is a zero of w(z).

We assert z0 +4 is a pole of w(z). Suppose to the contrary, w(z0 +4) 6= ∞. Iterating (2.3),

we have

w(z + 4) = w(z + 2)− a(z + 3)
w′(z + 3)

w(z + 3)
+ a0(z + 3). (2.4)

By k2 = 1 and (2.2), for z near z0 + 2, we have

w(z) =
a(z0 + 1)

z − (z0 + 2)
+O(1), (2.5)

while by k3 = 1, w(z0 + 4) 6= ∞ and (2.4), for z near z0 + 2, we have

w(z) =
−a(z0 + 3)

z − (z0 + 2)
+O(1).

But a(z0 +1) 6= −a(z0 +3), a contradiction with (2.5). So, z0 +4 is a pole of w(z). Combining

this with k1 = k2 = 1, we have k4 = 1.

We continue to iterate (2.4), then

w(z + 5) = w(z + 3)− a(z + 4)
w′(z + 4)

w(z + 4)
+ a0(z + 4). (2.6)

By k3 = 1, k4 = 1 and (2.6), we obtain k5 = 1. The next iteration will loop like the first step

k1 = 1, k2 = 1.

Case 1.3 z0 + 3 is neither a pole nor a zero of w(z).

We also have (2.4) and (2.6). By k2 = 1 and w(z0 +3) 6= 0,∞, we obtain k4 = 1 from (2.4).

Again by k4 = 1 and w(z0 + 3) 6= 0,∞, we have k5 = 1. The next iteration will loop like the

first one k1 = 1, k2 = 1.

From above Cases 1.1–1.3, we see w(z0 + i)(i ∈ N) are simple poles of w(z) possibly except

z0 + nj , where n1 ≥ 3, nj+1 ≥ nj + 3(j ∈ N). Hence, σ(w) ≥ λ
(

1
w

)

≥ 1.

Case 2 k1 ≥ 2.

Similar to Case 1, we also have (2.3) and (2.6).

In (2.3), z0 + 1 is a pole of w(z) with multiplicity k1 ≥ 2, z0 + 2 is at most a simple pole of

a(z)w
′(z)

w(z) , a0(z0 + 2) 6= ∞, so z0 + 3 is a pole of w(z) with multiplicity k3 = k1 ≥ 2.

By k3 ≥ 2 and (2.6), z0 +4 is at most a simple pole of a(z)w
′(z)

w(z) , so z0 + 5 is a pole of w(z)

with multiplicity k5 = k3 = k1 ≥ 2. Continuing this step, we see z0 + 2n− 1(n ∈ N) are poles

of w(z) with the same multiplicity k1 ≥ 2. Thus, σ(w) ≥ λ
(

1
w

)

≥ 1.

Case 3 k−1 = 1.

The proof is similar to the proof of Case 1, so we omit it.
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Third, suppose that w(z) has finitely many zeros. Using the same method similar to Step

3 of Lemma 2.6 below, we also obtain σ(w) ≥ 1.

Lemma 2.6 Let w(z) be a transcendental meromorphic solution of equation

w(z + 1)− w(z − 1) + a(z)
w′(z)

w(z)
= a1(z)w(z) + a0(z), (2.7)

where a(z), a1(z), a0(z) are nonzero rational functions such that
a(z)
a1(z)

is not a constant. Then

σ(w) ≥ 1.

Proof First, suppose that w(z) has finitely many zeros and poles, then w(z) is of regular

order or infinite order. Obviously, σ(w) ≥ 1.

Second, suppose that w(z) has infinitely many zeros. Since a(z), a1(z) and a0(z) are rational

functions, there exists R > 0 such that all zeros and poles of a(z), a1(z) and a0(z), lie in the

region D= {z : |ℜz| < R, |ℑz| < R}.The region C \ D can be divided into four regions (see

[1]):

D1 = {z : ℜz ≥ R}, D2 = {z : ℜz ≤ −R},

D3 = {z : ℑz ≥ R}, D4 = {z : ℑz ≤ −R}.

Choosing a zero z0 of w(z), such that |z0| is large enough and z0 ∈ C \D. For convenience,

we assume a(z) and a1(z) are polynomials. Without loss of generality, we assume z0 ∈ D1. If

z0 ∈ Dj(j = 2, 3, 4), the similar results can be obtained. The process will not interrupt, since

a(z), a1(z) and a0(z) have only finitely many zeros and poles, but w(z) has infinitely many

zeros.

Substituting z0 into (2.7), z0 is a simple pole of a(z)w
′(z)

w(z) , then at least one of z0 + 1 and

z0 − 1 is a pole of w(z), and k1 + k−1 ≥ 1. Obviously, there are three cases: k1 ≥ 2, k1 = 1 and

k−1 = 1. If z0 + n(n ∈ Z) is a pole of w(z) with multiplicity kn, then w(z) can be written as

w(z) =
c−kn

(z − z0 − n)kn
+

c−kn+1

(z − z0 − n)kn−1
+ · · ·+

c−1

z − z0 − n
+ ϕ(z),

where c−kn
(6= 0), c−kn+1, · · · , c−1 are constants, ϕ(z) is an analytic function.

We only concern the coefficient c−kn
of the first item in the principal part. In the following

proof, it will be seen that c−kn
is the combinations of a(z0), a1(z0) and their shifts, which

may be regarded as the polynomials a(z), a1(z) and their shifts at the value of z0. That is,

c−kn
= c−kn

(z0), and we discuss c−kn
(z) first.

Case 1 k1 ≥ 2.

Shifting (2.7), we have

w(z + 2) = w(z) + a1(z + 1)w(z + 1)− a(z + 1)
w′(z + 1)

w(z + 1)
+ a0(z + 1). (2.8)

In the right side of (2.8), w(z0) = 0, z0 +1 is a pole of w(z) with multiplicity k1(≥ 2), a simple

pole of a(z)w
′(z)

w(z) . So, z0 + 2 is a pole of w(z) with multiplicity k1, and

c−k2
(z) = c−k1

a1(z + 1). (2.9)
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Iterating (2.8), we obtain

w(z + 3) = w(z + 1) + a1(z + 2)w(z + 2)− a(z + 2)
w′(z + 2)

w(z + 2)
+ a0(z + 2). (2.10)

By (2.10), k1 = k2 ≥ 2, z0 + 2 is a simple pole of a(z)w
′(z)

w(z) , then

c−k3
(z) = c−k1

+ c−k2
(z)a1(z + 2). (2.11)

Shifting (2.7) n (n ≥ 4) times, we have

w(z + n) = w(z + n− 2) + a1(z + n− 1)w(z + n− 1)

− a(z + n− 1)
w′(z + n− 1)

w(z + n− 1)
+ a0(z + n− 1). (2.12)

In (2.12), we obtain the recurrence formula

c−kn
(z) = c−kn−2

(z) + c−kn−1
(z)a1(z + n− 1). (2.13)

From (2.9), (2.11) and (2.13), we see c−kn
(z) is a polynomial. Assert that

deg c−kn
(z) = (n− 1) deg a1(z), n ∈ N. (2.14)

(i) For n = 1, c−k1
is a constant, so deg c−k1

= 0 = (1− 1) deg a1(z).

(ii) Assume deg c−kj
(z) = (j − 1) deg a1(z), j = 2, · · · , n− 1.

(iii) By (2.13) and deg c−kn−2
(z) < deg c−kn−1

(z), we have

deg c−kn
(z) =deg c−kn−1

(z) + deg a1(z + n− 1)

=(n− 2) deg a1(z) + deg a1(z) = (n− 1) deg a1(z).

The above (i)–(iii) show (2.14) holds. Obviously, c−kn
(z0) 6= 0 since z0 is large enough. Hence,

z0 + n(n ∈ N) are poles of w(z) with the same multiplicity k1. So, σ(w) ≥ λ( 1
w
) ≥ 1.

Case 2 k1 = 1.

Shifting (2.7), we also have (2.8), (2.10) and (2.12). In the right side of (2.8), w(z0) = 0,

z0 + 1 is a simple pole of w(z) and a(z)w
′(z)

w(z) . So,

c−2(z) = c−1a1(z + 1) + a(z + 1). (2.15)

We have c−2(z) 6≡ 0, by the fact that a(z)
a1(z)

is not a constant. So, z0+2 is a simple pole of w(z).

By this and (2.10), we have

c−3(z) = c−1 + c−2(z)a1(z + 2) + a(z + 2). (2.16)

By (2.12), we have the recurrence formula

c−n(z) = c−n+2(z) + c−n+1(z)a1(z + n− 1) + a(z + n− 1), n ≥ 3. (2.17)
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Assert that

c−n(z) 6≡ 0, n ∈ N.

We deduce from (2.15) that

0 ≤ deg c−2(z) ≤ max{deg a1, deg a}.

Case 2.1 deg c−2(z) = max{deg a1, deg a}.

By the assumption and (2.16), we have

deg c−3(z) = deg(c−2(z)a1(z + 2)) = deg a1 +max{deg a1, deg a}.

By this and (2.17), for n ≥ 4, we have

deg c−n(z) =deg(c−n+1(z)a1(z + n− 1)) = deg c−n+1(z) + deg a1

=(n− 2) deg a1 +max{deg a1, deg a},

which follows c−n(z) 6≡ 0.

Case 2.2 0 < deg c−2(z) < max{deg a1, deg a}.

So, deg a1 = deg a. By this and (2.16), we have

deg c−3(z) = deg(c−2(z)a1(z + 2)) = deg a1 + deg c−2.

By this and (2.17), for n ≥ 4, we have

deg c−n(z) = deg(c−n+1(z)a1(z + n− 1)) = deg c−n+1(z) + deg a1

= (n− 2) deg a1 + deg c−2,

which follows c−n(z) 6≡ 0.

Case 2.3 deg c−2 = 0.

So, c−2 is a nonzero constant. By this and (2.16), we have

0 ≤ deg c−3 ≤ max{deg a1, deg a}.

If 0 < deg c−3 ≤ max{deg a1, deg a}, using the same method similar to the above Cases

2.1–2.2, we can obtain c−n(z) 6≡ 0.

We only need to consider deg c−3 = 0, which means c−3 is a constant. By (2.15)–(2.16) and

the fact that c−2, c−3 are constants, we have

{

c−2 = c−1a1(z) + a(z),

c−3 = c−2a1(z) + a(z) + c−1.

Minus the above equalities, we have

c−3 − c−2 = (c−2 − c−1)a1(z) + c−1.



918 S. T. Lan, Z. B. Huang and R. R. Zhang

Thus, a1 is a constant or c−2 = c−1. If a1 is a constant, by deg a = deg a1 = 0, we see both a

and a1 are constants, which contradicts the fact a(z)
a1(z)

is not a constant. So, c−2 = c−1, which

follows c−3 = 2c−1.

Next we prove deg c−4 ≥ 1. Assume c−4 is a constant, by (2.17), we have

c−4 = c−3a1(z) + a(z) + c−2.

Together with c−3 = c−2a1(z) + a(z) + c−1 and c−3 = 2c−1, c−2 = c−1, we have

c−4 − c−3 = (c−3 − c−2)a1(z) + c−2 − c−1 = c−1a1(z),

which follows a1(z) =
c−4−c−3

c−1

is a constant. By deg a = deg a1 = 0, which contradicts the fact
a(z)
a1(z)

is not a constant. So deg c−4 ≥ 1.

By (2.17), we see c−5(z) = c−3 + c−4(z)a1(z + 4) + a(z + 4), hence,

deg c−5 = deg(c−4(z)a1(z + 4)) = deg c−4 + deg a1.

Using a same method similar to the above Case 2.2, we have

deg c−n = (n− 4) deg a1 + deg c−4, n ≥ 4.

Combining this with c−1, c−2 = c−1, c−3 = 2c−1, we have cn(z) 6≡ 0, n ∈ N.

The above Cases 2.1–2.3 show cn(z) 6≡ 0(n ∈ N). Since z0 is large enough, c−n(z0) 6= 0,

that is, z0 + n are simple poles of w(z), therefore, σ(w) ≥ λ
(

1
w

)

≥ 1.

Case 3 k−1 = 1.

Using the same method similar to the above Case 2, we may prove σ(w) ≥ λ
(

1
w

)

≥ 1.

Suppose that w(z) has finitely many zeros. Assume σ(w) = σ < 1. By equation (2.7), we

have

w(z + 1)

w(z)
−

w(z − 1)

w(z)
+ a(z)

w′(z)

w2(z)
= a1(z) +

a0(z)

w(z)
.

Let y(z) = 1
w(z) , then σ(y) = σ(w) = σ < 1. The last equality shows

y(z)

y(z + 1)
−

y(z)

y(z − 1)
− a(z)y′(z) = a1(z) + a0(z)y(z)

or

a(z)y′(z) + a0(z)y(z) = c(z), (2.18)

where

c(z) =
y(z)

y(z + 1)
−

y(z)

y(z − 1)
− a1(z). (2.19)

Applying Lemma 2.1 to (2.19), for any given ǫ (0 < ǫ < 1− σ), we have

m(r, c(z)) ≤ m
(

r,
y(z)

y(z + 1)

)

+m
(

r,
y(z)

y(z − 1)

)

+m(r, a1(z))



Delay Differential Equations 919

= O(rσ−1+ǫ) +O(log r) = O(log r).

Since w(z) has finitely many zeros, y(z) has finitely many poles. By this and (2.18), we

have

N(r, c(z)) ≤ N(r, y′) +N(r, a(z)) +N(r, a0(z))

≤ 2N(r, y) +O(log r) = O(log r). (2.20)

By (2.20) and m(r, c) = O(log r), we have

T (r, c(z)) = m(r, c(z)) +N(r, c(z)) = O(log r),

that is, c(z) is a rational function, and c∗(z) = c(z) + a1(z) is a rational function, too. By

(2.19), we have

y(z)

y(z + 1)
−

y(z)

y(z − 1)
= c∗(z). (2.21)

If y(z+1) ≡ y(z− 1), then y(z+2) ≡ y(z), that is, y(z) is a nonconstant periodic function,

obviously σ(y) ≥ 1, a contradiction. So, y(z + 1) 6≡ y(z − 1). By this and (2.21), we have

c∗(z) 6≡ 0.

Set c∗(z) = P (z)
Q(z) , where P (z), Q(z) are nonzero polynomials. By this and substituting

y(z) = 1
w(z) into (2.21), we have

w(z + 1)

w(z)
−

w(z − 1)

w(z)
=

P (z)

Q(z)

and

Q(z)w(z + 1)−Q(z)w(z − 1)− P (z)w(z) = 0. (2.22)

In (2.22), the coefficients satisfy

Q(z) + (−Q(z)) + (−P (z)) = −P (z) 6≡ 0.

Applying Lemma 2.4 to (2.22) yields a contradiction.

Lemma 2.7 (see [10, Lemma 1.9]) Let gj(z)(j = 1, 2, · · · , n) be entire functions and

aj(z)(j = 0, 1, · · · , n) be meromorphic functions satisfying

T (r, aj) = o
(

n
∑

k=1

T (r, egk)
)

, r → ∞, r 6∈ E, j = 0, 1, · · · , n.

If

n
∑

j=1

aj(z)e
gj(z) ≡ a0(z),

then there exist constants cj , j = 1, 2, · · · , n, at least one of them is not zero, such that

n
∑

j=1

cjaj(z)e
gj(z) ≡ 0.
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Lemma 2.8 (see [10, Theorem 1.50]) Suppose that f1(z), f2(z), · · · , fn(n ≥ 2) are mero-

morphic functions satisfying the following conditions :

(i)
n
∑

j=1

Cjfj(z) ≡ 0, where Cj(j = 1, 2, · · · , n) are constants ;

(ii) fj(z) 6≡ 0(j = 1, 2, · · · , n), and
fj(z)
fk(z)

are not constants for 1 ≤ j < k ≤ n;

(iii)
n
∑

j=1

(

N(r, fj) +N
(

r, 1
fj

))

= o(τ(r))(r → ∞, r 6∈ E), where τ(r) = min
1≤j<k≤n

{

T
(

r,
fj
fk

)}

.

Then Cj = 0(j = 1, 2, · · · , n).

Lemma 2.9 (see [8, Lemma 3]) Suppose that h is a nonconstant meromorphic function

satisfying

N(r, h) +N
(

r,
1

h

)

= S(r, h).

Let f = aph
p+ ap−1h

p−1 + · · ·+ a0 and g = bqh
q + bq−1h

q−1+ · · ·+ b0 be polynomials in h with

coefficients a0, a1, · · · , ap, b0, b1, · · · , bq being small functions of h and apbqa0 6≡ 0. If q ≤ p,

then m
(

r, g

f

)

= S(r, h).

Lemma 2.10 Let w(z) = H(z)eh(z), where H(z) is a nonzero small function of eh(z),

P (z, w) and Q(z, w) be polynomials in w with coefficients being small functions of w and

Q(z, 0) 6≡ 0. If p = degw P ≤ degw Q = q, then

m
(

r,
P (z, w)

Q(z, w)

)

= S(r, eh) = S(r, w).

Proof Denote
{

P (z, w) = apw
p + ap−1w

p−1 + · · ·+ a0,

Q(z, w) = bqw
q + bq−1w

q−1 + · · ·+ b0,

where ap(6≡ 0), · · · , a0, bq(6≡ 0), b1, · · · , b0 are small functions of w.

Substituting w(z) = H(z)eh(z) into P (z, w) and Q(z, w) respectively, we obtain

P (z, w) = ap(z)H
p(z)eph(z) + · · ·+ a1(z)H(z)eh(z) + a0(z)

= a∗p(z)e
ph(z) + · · ·+ a∗1(z)e

h(z) + a∗0(z) (2.23)

and

Q(z, w) = bq(z)H
q(z)eqh(z) + · · ·+ b1(z)H(z)eh(z) + b0(z)

= b∗q(z)e
qh(z) + · · ·+ b∗1(z)e

h(z) + b∗0(z), (2.24)

where

a∗j (z) = aj(z)H
j(z), b∗k(z) = bk(z)H

k(z), j = 0, · · · , p, k = 0, · · · , q. (2.25)

Obviously, for j = 0, · · · , p, k = 0, · · · , q,

T (r, a∗j ) = S(r, w) = S(r, eh), T (r, b∗k) = S(r, w) = S(r, eh). (2.26)
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We note that

N(r, eh) +N
(

r,
1

eh

)

= 0. (2.27)

By (2.23)–(2.27), we see P (z, w) and Q(z, w) can also be regarded as polynomials in eh with

coefficients a∗0, a
∗
1, · · · , a

∗
p, b

∗
0, b

∗
1, · · · , b

∗
q being small functions of eh.

Since Q(z, 0) 6≡ 0, we obtain b0(z) 6≡ 0. Thus,

a∗p(z)b
∗
q(z)b

∗
0(z) = ap(z)bq(z)b0(z)H

p+q(z) 6≡ 0.

Combining this with p ≤ q and Lemma 2.9, we have

m
(

r,
P (z, w)

Q(z, w)

)

= S(r, eh) = S(r, w).

3 Main Results

In the following, we give answers to Problems 1.1–1.2, and find interesting properties on

entire solutions of (1.1) depending on the degrees of P (z, w) and Q(z, w).

3.1 deg
w
P = deg

w
Q = 0

(1.1) reduces into

w(z + 1)− w(z − 1) + a(z)
w′(z)

w(z)
= a0(z),

where a(z) and a0(z) are rational functions.

Halburd and Korhonen [5] pointed out if a0(z) = ikπa(z)(k ∈ N), then w(z) = Ceikπz , C 6= 0

is a one-parameter family of zero-free entire transcendental finite-order solution of (2.1) for any

rational function a(z). The following Theorems 3.1–3.2 deal with Problems 1.1–1.2 for (2.1),

respectively.

Theorem 3.1 Let w(z) be a transcendental meromorphic solution of delay differential e-

quation (2.1), where a(z), a0(z) are nonzero rational functions. Then σ(w) ≥ 1.

Proof Theorem 3.1 arrives quickly by Lemma 2.5.

Theorem 3.2 All transcendental entire solutions w(z) of (2.1) have the forms

w(z) = Ceikπz , C ∈ C \ {0}, k ∈ Z \ {0}.

Proof Let w(z) be a transcendental entire solution of (2.1). If w(z) has infinitely many

zeros, then a(z)w
′(z)

w(z) has infinitely many poles, but w(z+1)−w(z− 1)−a0(z) has only finitely

many poles, a contradiction. So, w(z) has finitely many zeros. By this, w(z) has the following

form

w(z) = H(z)eh(z), (3.1)
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where H(z) is a nonzero polynomial, h(z) is a nonconstant entire function.

Substituting (3.1) into (2.1), we have

H(z + 1)eh(z+1) −H(z − 1)eh(z−1) = c(z), (3.2)

where

c(z) = a0(z)− a(z)
(H ′(z)

H(z)
+ h′(z)

)

. (3.3)

Case 1 c(z) 6≡ 0.

By (3.2), we have

H(z + 2)eh(z+2) +H(z + 1)eh(z+1) −H(z)eh(z) −H(z − 1)eh(z−1) = c(z + 1) + c(z). (3.4)

By (3.3), we have

T (r, c(z)) = T (r, h′(z)) +O(log r) = S(r, eh(z)).

So,

T (r, c(z + 1) + c(z)) = S(r, eh(z+1)) + S(r, eh(z)). (3.5)

We note that T (r,H(z + j − 1)) = O(log r), j = 0, 1, 2, 3. We obtain from (3.4)–(3.5) and

Lemma 2.7 that there exist constants c0, c1, c2, c3, at least one of them is not zero, such that

c3H(z + 2)eh(z+2) + c2H(z + 1)eh(z+1) − c1H(z)eh(z) − c0H(z − 1)eh(z−1) = 0. (3.6)

Let

fj(z) = H(z + j − 1)eh(z+j−1), j = 0, 1, 2, 3. (3.7)

By (3.6)–(3.7), we have

c3f3(z) + c2f2(z)− c1f1(z)− c0f0(z) = 0. (3.8)

Case 1.1 Suppose none of h(z+1)−h(z), h(z+2)−h(z), h(z+2)−h(z−1) are constants.

Then

fj(z)

fk(z)
=

H(z + j − 1)

H(z + k − 1)
eh(z+j)−h(z+k), 0 ≤ j < k ≤ 3 are transcendental.

Obviously,

3
∑

j=0

(

N(r, fj) +N
(

r,
1

fj

))

= O(log r) = o(τ(r)), (3.9)

where τ(r) = min
0≤j<k≤3

{

T
(

r,
fj
fk

)}

. Thus, we obtain from (3.8)–(3.9) and Lemma 2.8 that

cj = 0, j = 0, 1, 2, 3, a contradiction.
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Case 1.2 Suppose that h(z + 1)− h(z) = d is a constant. Then

h(z + 1) = h(z) + d, h(z − 1) = h(z)− d.

By (3.2) and c(z) 6≡ 0, we have

c(z) = (edH(z + 1)− e−dH(z − 1))eh(z) 6≡ 0. (3.10)

Hence edH(z + 1)− e−dH(z − 1) 6≡ 0.

By (3.3) and (3.10), we obtain

T (r, eh(z)) = T (r, c(z)) +O(log r) = T (r, h′(z)) +O(log r) = S(r, eh(z)),

a contradiction.

Case 1.3 Suppose that h(z + 2)− h(z) = d is a constant. Then

h(z + 2) = h(z) + d, h(z + 1) = h(z − 1) + d.

Substituting the above equalities into (3.4), we have

(edH(z + 2)−H(z))eh(z) + (edH(z + 1)−H(z − 1))eh(z−1) = c(z + 1) + c(z). (3.11)

By (3.2) and c(z) 6≡ 0 , we have

c(z) = H(z + 1)eh(z+1) −H(z − 1)eh(z−1) = (edH(z + 1)−H(z − 1))eh(z−1) 6≡ 0,

and so,

edH(z + 1)−H(z − 1) 6≡ 0, edH(z + 2)−H(z) 6≡ 0. (3.12)

By h(z + 1) = h(z − 1) + d, we conclude

T (r, c(z + 1) + c(z)) = S(r, eh(z)) + S(r, eh(z+1)) = S(r, eh(z)) + S(r, eh(z−1)).

Applying Lemma 2.7 to (3.11), there exist constants c4, c5, at least one of them is not zero,

such that

c4(e
dH(z + 2)−H(z))eh(z) + c5(e

dH(z + 1)−H(z − 1))eh(z−1) = 0. (3.13)

By (3.12)–(3.13), c4 = 0 if and only if c5 = 0. So c4c5 6= 0.

If h(z)− h(z − 1) is not constant, we have from (3.13) that

eh(z)−h(z−1) = −
c5

c4

edH(z + 1)−H(z − 1)

edH(z + 2)−H(z)
,

which yields

T (r, eh(z)−h(z−1)) = T
(

r,
edH(z + 1)−H(z − 1)

edH(z + 2)−H(z)

)

= O(log r),
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a contradiction.

Thus, h(z)− h(z − 1) is a constant, say h(z)− h(z − 1) = d1. Thus, h(z + 1)− h(z) = d1.

Together with Case 1.2, we again obtain a contradiction.

Case 1.4 Suppose that h(z+2)− h(z− 1) = d is a constant. Then (3.4) can be written as

H(z + 1)eh(z+1) −H(z)eh(z) + (edH(z + 2)−H(z − 1))eh(z−1)

= c(z + 1) + c(z). (3.14)

Case 1.4.1 edH(z + 2)−H(z − 1) ≡ 0.

(3.14) can be written as

H(z + 1)eh(z+1) −H(z)eh(z) = c(z + 1) + c(z). (3.15)

By (3.5), applying Lemma 2.7 to (3.15), there exist constants c6, c7, at least one of them is

not zero, such that

c6H(z + 1)eh(z+1) − c7H(z)eh(z) = 0. (3.16)

By (3.16), c6 = 0 if and only if c7 = 0. So, c6c7 6= 0.

If h(z + 1)− h(z) is not constant, by (3.16), we have

T (r, eh(z+1)−h(z)) = T
(

r,
H(z)

H(z + 1)

)

= O(log r),

a contradiction.

Thus, h(z + 1)− h(z) is a constant, say h(z + 1) − h(z) = d1. Together with Case 1.2, we

also obtain a contradiction.

Case 1.4.2 edH(z + 2)−H(z − 1) 6≡ 0.

By (3.5) and applying Lemma 2.7 to (3.14), there exist constants c8, c9, c10, at least one of

them is not zero, such that

c8H(z + 1)eh(z+1) − c9H(z)eh(z) + c10(e
dH(z + 2)−H(z − 1))eh(z−1) = 0. (3.17)

If one of h(z + 1) − h(z), h(z + 1) − h(z − 1) is a constant, by Case 1.2 and Case 1.3,

respectively, we obtain a contradiction.

So, neither h(z + 1)− h(z) nor h(z + 1)− h(z − 1) are constants. So is h(z)− h(z − 1). Set

f1(z) = H(z + 1)eh(z+1), f2(z) = H(z)eh(z), f3(z) = (edH(z + 2)−H(z − 1))eh(z−1).

Thus, (3.17) can be written as

c8f1(z)− c9f2(z) + c10f3(z) = 0. (3.18)

Obviously,

f1(z)

f2(z)
=

H(z + 1)

H(z)
eh(z+1)−h(z),
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f1(z)

f3(z)
=

H(z + 1)

edH(z + 2)−H(z − 1)
eh(z+1)−h(z−1),

f2(z)

f3(z)
=

H(z)

edH(z + 2)−H(z − 1)
eh(z)−h(z−1)

are transcendental, and so

3
∑

j=1

(

N(r, fj) +N
(

r,
1

fj

))

= O(log r) = o(τ(r)), (3.19)

where τ(r) = min
1≤j<k≤3

{

T
(

r,
fj
fk

)}

.

Applying Lemma 2.8 to (3.18), we have cj = 0, j = 8, 9, 10, a contradiction.

Case 2 c(z) ≡ 0.

It follows (3.3) that h′(z) = a0(z)
a(z) − H′(z)

H(z) . Since h(z) is an entire function, h(z) must be a

polynomial. By (3.2), we have

eh(z+1)−h(z−1) =
H(z − 1)

H(z + 1)
. (3.20)

So, H(z) must be a nonzero constant, otherwise, (3.20) shows

T (r, eh(z+1)−h(z−1)) = T
(

r,
H(z − 1)

H(z + 1)

)

= O(log r),

a contradiction.

Thus, h(z + 1) − h(z − 1) is also a constant and deg h = 1. Set h(z) = d1z + d0, where

d1(6= 0), d0 are constants. Substituting h(z) = d1z + d0 into (3.20), we have e2d1 = 1 and so

d1 = ikπ, k ∈ Z \ {0}. Thus,

w(z) = Heh(z) = Heikπz+c4 = Ceikπz , C ∈ C \ {0}, k ∈ Z \ {0}.

3.2 deg
w
P = 1, deg

w
Q = 0

Halburd and Korhonen [5] obtained the following theorem.

Theorem 3.3 (see [5, Lemma 3.2]) Let w(z) be a non-rational meromorphic solution of

equation

w(z + 1)− w(z − 1) + a(z)
w′(z)

w(z)
= P (z, w), (3.21)

where a(z) is rational in z and P (z, w) is a polynomial in w and rational in z. If the hyper-order

of w is less than one, then degw P ≤ 1.

By Theorem 3.3, (3.21) has the form

w(z + 1)− w(z − 1) + a(z)
w′(z)

w(z)
= a1(z)w(z) + a0(z),

where a(z), a1(z), a0(z) are rational functions.

Zhang and Huang [12] investigated the value distribution and representation of entire solu-

tion of (2.7) as follows.
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Theorem 3.4 (see [12, Theorem 3.1]) Let a(z), a0(z) and a1(z) be rational functions with

a1(z) 6≡ 0 or a0(z) 6≡ 0, and let w(z) be a transcendental entire solution of (2.7) with σ2(w) < 1.

(i) If a(z) ≡ 0, then σ(w) ≥ 1;

(ii) If a(z) 6≡ 0, then w(z) = H(z)edz, where H(z) is a polynomial, and d 6= 0 is a complex

number. Especially, if a1(z) is a polynomial with a1(z) 6≡ ±2i, then w(z) = Cedz, where

C ∈ C \ {0}; if a1(z) ≡ ±2i, then w(z) = (C1z + C0)e
(2k± 1

2
)πiz, where k is an integer and

C1, C0 ∈ C with |C1|+ |C0| 6= 0.

Thus, we deal with Problems 1.1–1.2 for (2.7), and obtain the following theorem.

Theorem 3.5 Let w(z) be a transcendental meromorphic solution of (2.7), where a(z),

a1(z), a0(z) are nonzero rational functions such that
a(z)
a1(z)

is not a constant. Then σ(w) ≥ 1.

Proof Theorem 3.5 arrives quickly by Lemma 2.6.

Example 3.1 The function w(z) = 1
eiπz−1 satisfies delay differential equation

w(z + 1)− w(z − 1) +
w′(z)

w(z)
= −iπzw(z)− iπz,

which satisfies conditions and results of Theorem 3.5.

Theorem 3.6 All transcendental entire solutions w(z) of (2.7) have the form

w(z) = H(z)edz, d ∈ C \ {0}.

Here, H(z) is a nonzero polynomial, and

a0(z)

a(z)
= d+

H ′(z)

H(z)
, a1(z) =

edH(z + 1)

H(z)
−

e−dH(z − 1)

H(z)
.

Proof Let w(z) be a transcendental entire solution of (2.7). If w(z) has infinitely many

zeros, then a(z)w
′(z)

w(z) has infinitely many poles, but w(z+1)−w(z− 1)− a1(z)w(z)− a0(z) has

only finitely many poles, a contradiction. So, w(z) has finitely many zeros and can be written

as

w(z) = H(z)eh(z), (3.22)

where H(z) is a nonzero polynomial, h(z) is a transcendental entire function.

Substituting (3.22) into (2.7), we have

H(z + 1)eh(z+1) −H(z − 1)eh(z−1) − a1(z)H(z)eh(z)

= a0(z)− a(z)
(H ′(z)

H(z)
+ h′(z)

)

. (3.23)

We assert that

a0(z)− a(z)
(H ′(z)

H(z)
+ h′(z)

)

≡ 0.
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Otherwise, if a0(z)− a(z)
(

H′(z)
H(z) + h′(z)

)

6≡ 0. We have from (3.23) that



















T
(

r, a0 − a
(H ′

H
+ h′

))

= T (r, h′) +O(log r) = S(r, eh(z)),

T (r,H(z + 1)) = O(log r), T (r,H(z − 1)) = O(log r),

T (r, a1(z)H(z)) = O(log r).

(3.24)

Applying Lemma 2.7 to (3.23), there exist constants c1, c2, c3, at least one of them is not

zero, such that

c1H(z + 1)eh(z+1) − c2H(z − 1)eh(z−1) − c3a1(z)H(z)eh(z) = 0. (3.25)

Case 1 c1 6= 0.

By (3.25), we have

H(z + 1)eh(z+1) =
c2

c1
H(z − 1)eh(z−1) +

c3

c1
a1(z)H(z)eh(z). (3.26)

Substituting (3.26) into (3.23), we have

(c2

c1
− 1

)

H(z − 1)eh(z−1) +
(c3

c1
− 1

)

a1(z)H(z)eh(z)

= a0(z)− a(z)
(H ′(z)

H(z)
+ h′(z)

)

. (3.27)

If c2
c1

− 1 = 0, then (3.27) can be written as

(c3

c1
− 1

)

a1(z)H(z)eh(z) = a0(z)− a(z)
(H ′(z)

H(z)
+ h′(z)

)

.

By a0(z) − a(z)
(

H′(z)
H(z) + h′(z)

)

6≡ 0, we have c3
c1

− 1 6= 0. By (3.24) and the last equality, we

obtain

T (r, eh(z)) = T
(

r, a0(z)− a(z)
(H ′(z)

H(z)
+ h′(z)

))

+O(log r) = S(r, eh(z)),

a contradiction. So, c2
c1

− 1 6= 0.

If c3
c1

− 1 = 0, then (3.27) shows

(c2

c1
− 1

)

H(z − 1)eh(z−1) = a0(z)− a(z)
(H ′(z)

H(z)
+ h′(z)

)

. (3.28)

By (3.23) and (3.28), we have

H(z + 1)eh(z+1) − a1(z)H(z)eh(z)

=
c2

c2 − c1

(

a0(z)− a(z)
(H ′(z)

H(z)
+ h′(z)

))

. (3.29)

Applying Lemma 2.7 to (3.29), there exist constants c4 and c5, at least one of them is not zero,

such that

c4H(z + 1)eh(z+1) − c5a1(z)H(z)eh(z) = 0. (3.30)
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By (3.30), c4 = 0 if and only if c5 = 0. So, c4c5 6= 0. By (3.30), we have

eh(z+1)−h(z) =
c5a1(z)H(z)

c4H(z + 1)
. (3.31)

If h(z + 1)− h(z) is not a constant, then (3.31) shows

T (r, eh(z+1)−h(z)) = O(log r),

a contradiction.

So, h(z + 1) − h(z) is a constant, say h(z + 1) − h(z) = d. Hence, h(z − 1) = h(z) − d,

together with (3.28), we have

(c2

c1
− 1

)

e−dH(z − 1)eh(z) = a0(z)− a(z)
(H ′(z)

H(z)
+ h′(z)

)

.

Combining this with (3.24),

T (r, eh(z)) = T (r, h′(z)) +O(log r) = S(r, eh(z)),

a contradiction. So, c3
c1

− 1 6= 0.

Applying Lemma 2.7 to (3.27), there exist constants c6 and c7, at least one of them is not

zero, such that

c6

(c2

c1
− 1

)

H(z − 1)eh(z−1) + c7

(c3

c1
− 1

)

a1(z)H(z)eh(z) = 0. (3.32)

By c2
c1

− 1 6= 0, c3
c1

− 1 6= 0, in (3.32), if c6 = 0, then c7 = 0, and vice versa. So, c6 6= 0,

c7 6= 0. By (3.32), we have

H(z − 1)eh(z−1) = −
c7

(c3

c1
− 1

)

c6

(c2

c1
− 1

)a1(z)H(z)eh(z).

Substituting the last equality into (3.27), we have

(c3

c1
− 1

)(

1−
c7

c6

)

a1(z)H(z)eh(z) = a0(z)− a(z)
(H ′(z)

H(z)
+ h′(z)

)

. (3.33)

By a0(z)− a(z)
(

H′(z)
H(z) +h′(z)

)

6≡ 0, 1− c7
c6

6= 0 holds in (3.33). However, (3.24) and (3.33) show

that T (r, eh(z)) = S(r, eh(z)), a contradiction.

Case 2 c2 6= 0.

Using a same method similar to Case 1, we also obtain a contradiction.

Case 3 c3 6= 0.

We see from (3.25) that at least one of c1 and c2 is not zero. If not, c1 = c2 = 0, then

(3.25) can be written as c3a1(z)H(z)eh(z) = 0, a contradiction. By Cases 1–2, we may obtain

a contradiction.

Thus, from above three cases, we have

a0(z)− a(z)
(H ′(z)

H(z)
+ h′(z)

)

≡ 0,
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and so h(z) is a polynomial.

(3.23) shows

H(z + 1)eh(z+1)−h(z)+h(z)−h(z−1) − a1(z)H(z)eh(z)−h(z−1) −H(z − 1) = 0. (3.34)

If deg h(z) ≥ 2, then deg(h(z)− h(z − 1)) ≥ 1. Set y(z) = eh(z)−h(z−1), then (3.34) can be

written as

H(z + 1)y(z + 1)y(z)− a1(z)H(z)y(z)−H(z − 1) = 0.

Set

P (z, y) = H(z + 1)y(z + 1)y(z)− a1(z)H(z)y(z)−H(z − 1) ≡ 0.

Obviously, P (z, 0) = −H(z − 1) 6≡ 0. By Lemma 2.3, we have

m
(

r,
1

y(z)

)

= S(r, y),

which yields

N
(

r,
1

eh(z)−h(z−1)

)

= T (r, eh(z)−h(z−1)) + S(r, eh(z)−h(z−1)),

a contradiction.

Thus, deg h(z) = 1 and h′(z) = d is a nonzero constant, and so

a0(z)

a(z)
≡

H ′(z)

H(z)
+ d.

By this and (3.29), we may assume w(z) = H(z)edz. Substituting these into (2.7), we have

edH(z + 1)edz − e−dH(z − 1)edz − a1(z)H(z)edz ≡ 0,

which yields

a1(z) = ed
H(z + 1)

H(z)
− e−dH(z − 1)

H(z)
.

3.3 deg
w
P ≥ 2, deg

w
Q = 0

Theorem 3.3 also shows if degw P ≥ 2, then all transcendental meromorphic solutions w

of (3.21) with rational coefficients satisfy σ2(w) ≥ 1. So, we only need to solve the existence

problem of transcendental entire solutions of (3.21), and we obtain the following theorem.

Theorem 3.7 Let a(z) be a nonzero rational function, P (z, w) be a polynomial in w with

rational coefficients and degw P ≥ 2, then (3.21) has no transcendental entire solution.

Proof Denote

P (z, w) = ap(z)w
p(z) + ap−1(z)w

p−1(z) + · · ·+ a1(z)w(z) + a0(z), (3.35)
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where p(≥ 2) is a positive integer, ap(z)(6≡ 0), ap−1(z), · · · , a1(z), a0(z) are rational functions.

Suppose w(z) is a transcendental entire solution of (3.21), then w(z) must have finitely

many zeros. Otherwise, w(z + 1)−w(z − 1)− P (z, w) has finitely many poles, while a(z)w
′(z)

w(z)

has infinitely many poles, it is a contradiction. So, w(z) has the form

w(z) = H(z)eh(z), (3.36)

where H(z) is a nonzero polynomial, and h(z) is a nonconstant entire function.

Substituting (3.36) into (3.21), we have

H(z + 1)eh(z+1) −H(z − 1)eh(z−1) + a(z)
(H ′(z)

H(z)
+ h′(z)

)

= ap(z)H
p(z)eph(z) + · · ·+ a1(z)H(z)eh(z) + a0(z) (3.37)

or

H(z + 1)eh(z+1) −H(z − 1)eh(z−1) −

p
∑

j=1

aj(z)H
j(z)ejh(z) = a∗0(z), (3.38)

where

a∗0(z) = a0(z)− a(z)
(H ′(z)

H(z)
+ h′(z)

)

. (3.39)

Obviously,

T (r, a∗0(z)) = T (r, h′(z)) +O(log r) = S(r, eh(z)). (3.40)

Case 1 Suppose that none of h(z+1)−h(z−1), h(z+1)−jh(z), h(z−1)−jh(z), j=1, · · · , p

are constants.

Applying Lemma 2.7 to (3.38), there exist constants d1, · · · , dp+2, at least one of them is

not zero, such that

dp+2H(z + 1)eh(z+1) − dp+1H(z − 1)eh(z−1) −

p
∑

j=1

djaj(z)H
j(z)ejh(z) = 0. (3.41)

Set
{

fj(z) = aj(z)H
j(z)ejh(z), j = 1, 2, · · · , p,

fp+2(z) = H(z + 1)eh(z+1), fp+1(z) = H(z − 1)eh(z−1).
(3.42)

Thus, (3.41) can be rewritten as

dp+2fp+2(z)− dp+1fp+1(z)− dpfp(z)− · · · − d1f1(z) = 0. (3.43)

Obviously,

fj(z)

fk(z)
=

aj(z)

ak(z)
Hj−k(z)e(j−k)h(z), 1 ≤ j < k ≤ p,
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fj(z)

fp+2(z)
=

aj(z)H
j(z)

H(z + 1)
ejh(z)−h(z+1),

fj(z)

fp+1(z)
=

aj(z)H
j(z)

H(z − 1)
ejh(z)−h(z−1), j = 1, 2, · · · , p,

fp+1(z)

fp+2(z)
=

H(z − 1)

H(z + 1)
eh(z−1)−h(z+1)

are transcendental, and so

p+2
∑

j=1

(

N(r, fj(z)) +N
(

r,
1

fj(z)

))

= O(log r) = o(τ(r)), (3.44)

where τ(r) = min
1≤j<k≤p+2

{

T
(

r,
fj
fk

)}

.

Applying Lemma 2.8 to (3.43), we have dj = 0(j = 1, 2, · · · , p+ 2), a contradiction.

Case 2 Suppose that h(z + 1)− h(z) = d is a constant. Then

h(z + 1) = h(z) + d, h(z − 1) = h(z)− d.

Substituting this into (3.37), we have

(edH(z + 1)− e−dH(z − 1))eh(z) + a(z)
(H ′(z)

H(z)
+ h′(z)

)

=

p
∑

j=0

aj(z)H
j(z)ejh(z). (3.45)

Applying Valiron Monho’ko Lemma to (3.45), we obtain

pT (r, eh(z)) = T
(

r,

p
∑

j=0

aj(z)H
j(z)ejh(z)

)

+ S(r, eh(z))

≤ T (r, eh(z)) + S(r, eh(z)),

which yields p ≤ 1, contradicting p ≥ 2.

Case 3 Suppose that h(z + 1)− j0h(z) is a constant, say h(z + 1)− j0h(z) = d, for some

2 ≤ j0 ≤ p, j0 ∈ N. Then

h(z + 1) = j0h(z) + d, h(z − 1) =
1

j0
h(z)−

d

j0
.

Substituting this into (3.37), we have

edH(z + 1)ej0h(z) − e
− d

j0 H(z − 1)e
1

j0
h(z)

+ a(z)
(H ′(z)

H(z)
+ h′(z)

)

=

p
∑

j=0

aj(z)H
j(z)ejh(z)

or

−e−
d
j0 H(z − 1)e

1

j0
h(z) =

p
∑

j=0

aj(z)H
j(z)ejh(z) − edH(z + 1)ej0h(z) − a(z)

(H ′(z)

H(z)
+ h′(z)

)

.
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Thus

T (r, eh(z)) = T (r, (e−
d
j0 H(z − 1)e

1

j0
h(z))j0) +O(log r)

= j0T (r, e
− d

j0 H(z − 1)e
1

j0
h(z)

) +O(log r)

= nj0T (r, e
h(z)) + S(r, eh(z)), (3.46)

where 0 ≤ n ≤ p, n ∈ N.

By (3.46), nj0 = 1. Thus, j0 = n = 1, contradicting j0 ≥ 2.

Case 4 Suppose that h(z − 1) − h(z) = −d is a constant. Clearly, h(z + 1)− h(z) = d is

also a constant. By Case 2, we obtain a contradiction.

Case 5 Suppose that h(z − 1) − j1h(z) = d is a constant for some 2 ≤ j1 ≤ p, j1 ∈ N.

Then

h(z + 1) =
1

j1
h(z)−

d

j1
, h(z − 1) = j1h(z) + d.

Substituting this into (3.37), we have

e
− d

j1 H(z + 1)e
1

j1
h(z)

− edH(z − 1)ej1h(z) + a(z)
(H ′(z)

H(z)
+ h′(z)

)

=

p
∑

j=0

aj(z)H
j(z)ejh(z)

or

e
− d

j1 H(z + 1)e
1

j1
h(z)

=

p
∑

j=0

aj(z)H
j(z)ejh(z) + edH(z − 1)ej1h(z) − a(z)

(H ′(z)

H(z)
+ h′(z)

)

.

Thus

T (r, eh(z)) = T (r, (e
− d

j1 H(z + 1)e
1

j1
h(z)

)j1) +O(log r)

= j1T (r, e
− d

j1 H(z + 1)e
1

j1
h(z)) +O(log r)

= nj1T (r, e
h(z)) + S(r, eh(z)), (3.47)

where 0 ≤ n ≤ p, n ∈ N.

By (3.47), nj1 = 1. Thus, j1 = n = 1, contradicting j1 ≥ 2.

Case 6 Suppose that h(z + 1)− h(z − 1) = d is a constant.

Substituting this into (3.38), we have

(edH(z + 1)−H(z − 1))eh(z−1) −

p
∑

j=1

aj(z)H
j(z)ejh(z) = a∗0(z). (3.48)

If edH(z + 1)−H(z − 1) ≡ 0, then (3.38) can be written as

−

p
∑

j=1

aj(z)H
j(z)ejh(z) = a∗0(z).

Together with (3.39), we obtain

pT (r, eh(z)) = T
(

r,

p
∑

j=1

aj(z)H
j(z)ejh(z)

)

+ S(r, eh(z))
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= T (r, a∗0(z)) + S(r, eh(z))

= S(r, eh(z)),

which yields p = 0, a contradiction.

If edH(z+1)−H(z− 1) 6≡ 0, by (3.39), applying Lemma 2.7 to (3.48), there exist constants

cj(j = 1, 2, · · · , p+ 1), at least one of them is not zero, such that

cp+1(e
dH(z + 1)−H(z − 1))eh(z−1) −

p
∑

j=1

cjaj(z)H
j(z)ejh(z) = 0. (3.49)

If there exists some j1, 1 ≤ j1 ≤ p such that h(z − 1)− j1h(z) is a constant, then by Cases

4–5, we obtain a contradiction.

Thus, h(z − 1)− jh(z)(j = 1, 2, · · · , p) is not constant. Set

fp+1(z) = (edH(z + 1)−H(z − 1))eh(z−1), fj(z) = aj(z)H
j(z)ejh(z), j = 1, · · · , p.

(3.49) can be written as

cp+1fp+1(z)− cpfp(z)− · · · − c1f1(z) = 0. (3.50)

For 1 ≤ j < k ≤ p, i = 1, 2, · · · , p, we obtain

fj(z)

fk(z)
=

aj(z)

ak(z)
Hj−k(z)e(j−k)h(z),

fi(z)

fp+1(z)
=

ai(z)H
i(z)

edH(z + 1)−H(z − 1)
eih(z)−h(z−1)

are transcendental, and so

p+1
∑

j=1

(

N(r, fj(z)) +N
(

r,
1

fj(z)

))

= O(log r) = o(τ(r)), (3.51)

where τ(r) = min
1≤j<k≤p+1

{

T
(

r,
fj
fk

)}

.

Applying Lemma 2.8 to (3.50), we have cj = 0 (j = 1, 2, · · · , p+ 1), a contradiction.

In conclusion, (3.21) has no transcendental entire solution.

3.4 deg
w
Q ≥ 1

Theorem 1.1 shows that if degw P ≥ degw Q + 2 or degw Q ≥ 2, degw P = 0, then all

transcendental meromorphic solutions w of (1.1) with rational coefficients satisfy σ2(w) ≥ 1.

We further obtain the following theorem.

Theorem 3.8 Let a(z) be a nonzero rational function, P (z, w) and Q(z, w) be prime poly-

nomials in w with rational coefficients. If degw Q(z, w) ≥ 1 and Q(z, 0) 6≡ 0, then (1.1) has no

transcendental entire solution.
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Proof Denote
{

P (z, w) = ap(z)w
p(z) + · · ·+ a1(z)w(z) + a0(z),

Q(z, w) = bq(z)w
q(z) + · · ·+ b1(z)w(z) + b0(z),

(3.52)

where ap(z)(6≡ 0), · · · , a0(z), bq(z)(6≡ 0), · · · , b0(z) are rational functions.

Suppose w(z) is a transcendental entire solution of (1.1), then w(z) must have finitely many

zeros. Otherwise, suppose w(z) has infinitely many zeros, the zeros of w(z) are simple poles

a(z)w
′(z)

w(z) , except finitely many, so a(z)w
′(z)

w(z) has infinitely many poles. By Q(z, 0) = b0(z) 6≡ 0,

the zeros of w(z) are not poles of

w(z + 1)− w(z − 1)−
ap(z)w

p(z) + · · ·+ a1(z)w(z) + a0(z)

bq(z)wq(z) + · · ·+ b1(z)w(z) + b0(z)
,

except finitely many. It is a contradiction. So, w(z) has the form

w(z) = H(z)eh(z), (3.53)

where H(z) is a nonzero polynomial, and h(z) is a nonconstant entire function.

Case 1 p ≤ q. Denote

c(z) =
P (z, w)

Q(z, w)
= w(z + 1)− w(z − 1) + a(z)

w′(z)

w(z)
. (3.54)

By p ≤ q, ap(z)bq(z)b0(z) 6≡ 0, (3.53) and Lemma 2.10, we have

m(r, c(z)) = m
(

r,
P (z, w)

Q(z, w)

)

= S(r, eh(z)) = S(r, w). (3.55)

By (3.54), we see the poles of c(z) come from the poles of a(z), zeros of w(z), both have the

finite number. Thus

N(r, c(z)) = O(log r) = S(r, w). (3.56)

By (3.55)–(3.56), we have

T (r, c(z)) = m(r, c(z)) +N(r, c(z)) = S(r, w).

So, c(z) is a nonzero small function of w(z).

By (3.52) and (3.54), we have

ap(z)w
p(z) + · · ·+ a1(z)w(z) + a0(z) = c(z)(bq(z)w

q(z) + · · ·+ b1(z)w(z) + b0(z)),

thus,

p = q, aj(z) ≡ c(z)bj(z), j = 0, · · · , p,

and so

P (z, w) ≡ c(z)Q(z, w),
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which contradicts the fact that P (z, w), Q(z, w) are prime polynomials in w.

Case 2 p > q.

By p > q, we have

P (z, w) = P1(z, w)Q(z, w) + P2(z, w),

where Pi(z, w) (i = 1, 2) are polynomials in w with rational coefficients and degw Pi = pi (i =

1, 2) such that p1 = p− q ≥ 1, 1 ≤ p2 < q.

Thus, (1.1) can be written as

w(z + 1)− w(z − 1) + a(z)
w′(z)

w(z)
=

P1(z, w)Q(z, w) + P2(z, w)

Q(z, w)
= P1(z, w) +

P2(z, w)

Q(z, w)
.

Denote

c∗(z) =
P2(z, w)

Q(z, w)
= w(z + 1)− w(z − 1) + a(z)

w′(z)

w(z)
− P1(z, w). (3.57)

By p2 < q, Q(z, 0) 6≡ 0, (3.53) and Lemma 2.10, we have

m(r, c∗(z)) = S(r, w). (3.58)

By (3.57), the poles of c∗(z) come from the poles of a(z), zeros of w(z) and the poles of

coefficients of P1(z, w). Since w(z) has finitely many zeros, a(z) and the coefficients of P1(z, w)

are rational functions. So,

N(r, c∗(z)) = O(log r) = S(r, w). (3.59)

By (3.58)–(3.59), we have

T (r, c∗(z)) = m(r, c∗(z)) +N(r, c∗(z)) = S(r, w),

thus, c∗(z) is a nonzero small function of w(z).

By (3.57), we obtain

p2T (r, w) = T (r, P2(z, w)) + S(r, w)

= T (r, c∗(z)Q(z, w)) + S(r, w)

= qT (r, w) + S(r, w).

Hence, p2 = q, contradicting p2 < q.

Remark 3.1 The condition “Q(z, 0) 6≡ 0” in Theorem 3.8 is to ensure that meromorphic

solutions of (1.1) have finitely many zeros.
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