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Entire Solutions of Certain Types of Delay
Differential Equations®

Shuangting LAN! Zhibo HUANG? Ranran ZHANG?

Abstract In this paper, the authors investigate a delay differential equation of the form

w'(z) P(z,w)

w(z4+1) —w(z—1) +a(z) w(z) ~ Qle,w)’
where a(z) is a nonzero rational function, P(z,w) and Q(z,w) are prime polynomials in
w with rational coefficients. They remove the restriction that the order of meromorphic
solutions of the above difference equation is o2(w) < 1, and obtain the growth of tran-
scendental meromorphic solutions. The exact forms of all transcendental entire solutions
are obtained when deg, P = deg, @ = 0, or deg,, P = 1 and deg, Q = 0, respectively.
If deg, P > 2 and deg,, @ = 0, or deg, @ > 1 and Q(z,0) #Z 0, they prove that the
above equation has no transcendental entire solution. They show that the existence of

transcendental entire solutions of the above equation depends on the degrees of P(z,w)
and Q(z,w).
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1 Introduction

In this paper, we use the basic notions of Nevanlinna’s theory (see [6, 11]). In addition, we
use o(w) (resp. o2(w)), to denote the order (resp. the hyper order), of meromorphic function
w(z); A(w) (resp. A(1)), to denote the exponents of convergence of zeros (resp. poles), of w(z).
Let S(r,w) denote any quantity satisfying S(r,w) = o(T'(r,w)) for all r outside of a set with
finite logarithmic measure.

Halburd and Korhonen [5] studied delay differential equations and obtained the following

theorem.

Theorem 1.1 (see [5, Theorem 1.1]) Let w(z) be a non-rational meromorphic solution of

—w(z — a(z w'(z) Pl w)
w(z +1) (z—=1)+a( )w Q) (1.1)

= R(z,w) =
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where a(z) is rational, P(z,w) is a polynomial in w(z) having rational coefficients in z, and
Q(z,w) is a polynomial in w with roots that are non-zero rational functions of z and not roots
of P(z,w). If the hyper-order of w(z) is less than one, then

deg, P =deg,@+1<3 or deg,R=max{deg, P,deg, Q} <1.
Zhang and Huang [12, Theorem 2.1] proved if (1.1) admits a transcendental entire solution
with og(w) < 1, then (1.1) reduces into

et D) e 1) a(z)lzj/((j)) N as(z)w(z) +Zti§)w(z) + ao(z)’ (1.2)

where a2(z)(Z£ 0),a1(2) and ag(z) are rational functions. Wang, Long and Wang [9] studied

the properties of rational solutions of (1.1) with constant coefficients.
As we all know, the order of meromorphic solutions of difference equations is usually re-
stricted by the condition “o9(w) < 17. Naturally, some interesting problems arise without this

restriction.
Problem 1.1 What is the growth of transcendental meromorphic solutions of (1.1)?

Problem 1.2 What is the existence of transcendental entire solutions of (1.1); if they exist,

what will the entire solutions be presented?
In Section 3, we give answers to Problems 1.1-1.2, and find interesting properties on entire

solutions of (1.1) depending on the degree of P(z,w) and Q(z,w).

2 Lemmas

Before relating our main results, we prepare some lemmas.

Lemma 2.1 (see [3, Corollary 2.5]) Let f(z) be a meromorphic function of finite order o

and let n) be a nonzero complex constant. Then for each e(0 < & < 1), we have

m(n f (;(er)n)) +m(T’ f(i (i)n)) — O,

Lemma 2.2 (see [3, Theorem 2.1]) Let f be a meromorphic function with order o =

a(f), o < 400, and let n be a fived nonzero complex number, then for each € > 0, we have
T(r, f(z+mn)) =T(r, f(2)) + Or" 1) + O(log 7).

Lemma 2.3 (see [4, Theorem 3.2, 7, Theorem 2.4]) Let w be a transcendental meromorphic

solution with finite order of difference equation
P(z,w) =0,

where P(z,w) is a difference polynomial in w(z). If P(z,a) Z 0 for a meromorphic function a,

where a is a small function with respect to w, then

m(r, " ! ) = S(r,w).
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Lemma 2.4 (see [2, Theorem 3]) Let P,(2),---, Po(z) be polynomials such that P, Py Z 0
and satisfy

Po(z)+ -+ Po(z) #0.
Then every finite order transcendental meromorphic solution f(z) Z 0 of difference equation
P.2)f(z4n)+ -+ Pi(2)f(z+ 1)+ Po(2)f(2) =0

satisfies o(f) > 1, f(2) assumes every nonzero value a € C infinitely often, and \(f—a) = o(f).

Lemma 2.5 Let w(z) be a transcendental meromorphic solution of delay differential equa-
tion
w'(z)
w(z)

where a(z) and ag(z) are nonzero rational functions. Then o(w) > 1.

w(iz+1)—w(z—1)+a(z)

= ap(2), (2.1)

Proof First, suppose that w(z) has finitely many zeros and poles, then w(z) is of regular
order or infinite order. Obviously, o(w) > 1.

Second, suppose that w(z) has infinitely many zeros. Since a(z) and ag(z) are rational
functions, there exists R > 0 such that all zeros and poles of a(z) and ag(z) lying in the region
D ={z:|Rz| < R,|Sz| < R}. The region C \ D can be divided into four regions (see [1]):

Dy ={z:Rz> R}, Dy={z:Rz<—R},
Ds={z:32> R}, Ds={z:32z<—R}.

Choosing a zero zp of w(z) such that |zo| is large enough and a(zp + 1) # —a(zo +3). Then
zo € C\ D. Without loss of generality, we assume zy € Dq. If 29 € D;(j = 2,3,4), the similar
results can be obtained. The process will not interrupt, since a(z) and ag(z) have only finitely
many zeros and poles, but w(z) has infinitely many zeros.

For convenience, let k;, i € Z denote the multiplicity of the poles of w(z) at zo+1i. Specially,
k; = 0 means w(zg + ) # oo.

By (2.1), we see zg is a simple pole of a(z) z/((j)), then either zp + 1 or zp — 1 is a pole of
w(z), and k1 + k_1 > 0. Again by (2.1), we see if k1 > 2, then k_; > 2. Thus, we can divide
the proof into the following three cases: k1 =1, k1 > 2, k_1 = 1.

Case 1 ki =1.

Iterating (2.1) twice, we obtain

w(z+2)=w(z) —alz+ 1)1:;/(51 1)) +ap(z+1) (2.2)
and
wiz+3) = w(z +1) —a(z+ 22D |19 (2.3)
N w(z + 2) 0 ' ’
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In (2.2), w(z9) = 0, z0 + 1 is a simple pole of a(z)ﬁ,((zz)), ap(zo + 1) # oo, then zg + 2 is
w'(2)

a simple pole of w(z). So, ko = 1. In (2.3), 2o + 1,20 + 2 are simple poles of w(z), a(z) e

respectively, then w(zg + 3) may take three different values as follows.
Case 1.1 zp+ 3 is a simple pole of w(z).
The next iteration will loop like the first step ky = 1, ky = 1.
Case 1.2 zp + 3 is a zero of w(z).

We assert zo + 4 is a pole of w(z). Suppose to the contrary, w(zp +4) # co. Iterating (2.3),

we have
w'(z + 3)

4) = 2) — . 2.4
w(z+4) =w(z+ 2) a(z—|—3)wz+3) +aop(z+3) (2.4)

By k2 =1 and (2.2), for z near zo + 2, we have

a(zo + 1)

=—7—+0(1 2.5
w(z) = S+ o), (25)

while by ks = 1, w(zp +4) # oo and (2.4), for z near zy + 2, we have

—a(zo +3)

ety oW

w(z) =

But a(zo+ 1) # —a(z0 + 3), a contradiction with (2.5). So, zp+4 is a pole of w(z). Combining
this with k1 = ko = 1, we have ks = 1.
We continue to iterate (2.4), then

w'(z +4)

w(z+5) =w(z+3) —a(z+4)m

+ao(z+4). (2.6)

By k3 = 1,k4 = 1 and (2.6), we obtain ks = 1. The next iteration will loop like the first step
ey =1, ko = 1.

Case 1.3 2z + 3 is neither a pole nor a zero of w(z).

We also have (2.4) and (2.6). By ko = 1 and w(zp + 3) # 0, 00, we obtain k4 = 1 from (2.4).
Again by k4 = 1 and w(zg + 3) # 0,00, we have ks = 1. The next iteration will loop like the
first one k1 = 1,ky = 1.

From above Cases 1.1-1.3, we see w(zo +7)(i € N) are simple poles of w(z) possibly except
2o + n;, where ny > 3, nj11 > nj +3(j € N). Hence, o(w) > /\(%) > 1.

Case 2 ki > 2.

Similar to Case 1, we also have (2.3) and (2.6).

In (2.3), 29 + 1 is a pole of w(z) with multiplicity k1 > 2, 2o + 2 is at most a simple pole of
a(z)%, ap(zo0 +2) # 00, 80 zg + 3 is a pole of w(z) with multiplicity ks = k; > 2.

w'(2)
w(z)?

with multiplicity k5 = ks = k1 > 2. Continuing this step, we see zg + 2n — 1(n € N) are poles
of w(z) with the same multiplicity k1 > 2. Thus, o(w) > )\(%) > 1.
Case 3 k_1 =1.

The proof is similar to the proof of Case 1, so we omit it.

By k3 > 2 and (2.6), zo + 4 is at most a simple pole of a(z) s0 zp + 5 is a pole of w(z)
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Third, suppose that w(z) has finitely many zeros. Using the same method similar to Step

3 of Lemma 2.6 below, we also obtain o(w) > 1.

Lemma 2.6 Let w(z) be a transcendental meromorphic solution of equation

!/
w(z+1)—w(z—-1)+ a(z)Z((j)> = a1(2)w(z) + ao(2), (2.7)
where a(z), a1(z), ap(z) are nonzero rational functions such that ;1((2)) is not a constant. Then

o(w) > 1.

Proof First, suppose that w(z) has finitely many zeros and poles, then w(z) is of regular
order or infinite order. Obviously, o(w) > 1.

Second, suppose that w(z) has infinitely many zeros. Since a(z), a1(z) and ag(z) are rational
functions, there exists R > 0 such that all zeros and poles of a(z), a1(z) and ag(z), lie in the
region D={z : |Rz| < R, |Sz| < R}. The region C\ D can be divided into four regions (see
[1):

Dy ={z:Rz>R}, Dy={z:Rz<—-R},
D3 ={z2:32> R}, Dy={z:3z<-R}.

Choosing a zero zg of w(z), such that |2| is large enough and 2z € C\ D. For convenience,
we assume a(z) and aq(z) are polynomials. Without loss of generality, we assume zy € D;. If
20 € Dj(j = 2,3,4), the similar results can be obtained. The process will not interrupt, since
a(z), a1(z) and ap(z) have only finitely many zeros and poles, but w(z) has infinitely many
Z€eros.

w'(2)
w(z)?

zo — 1 is a pole of w(z), and k1 +k_1 > 1. Obviously, there are three cases: k1 > 2, k; = 1 and

Substituting zg into (2.7), zo is a simple pole of a(z) then at least one of zp + 1 and

k_1 =1.1If zg + n(n € Z) is a pole of w(z) with multiplicity &, then w(z) can be written as

C—kn Ckpt1 c_q
(Z_Zo_n)kn (Z_Zo—n)k"_l + * Z—ZzZ0o—nNn +<)O(Z)7

w(z) =

where c_p (#0), ¢_, +1, - ,c—1 are constants, ¢(z) is an analytic function.

We only concern the coefficient c_y,, of the first item in the principal part. In the following
proof, it will be seen that c_g, is the combinations of a(zp), a1(z0) and their shifts, which
may be regarded as the polynomials a(z), a1(z) and their shifts at the value of z5. That is,
C_k, = C—k,(20), and we discuss c_, (z) first.

Case 1 ki > 2.

Shifting (2.7), we have
w'(z+1)

w(z+2) =w(z) +a1(z + Nw(z+1) —a(z +1) wiz + 1)

+ao(z +1). (2.8)
In the right side of (2.8), w(zp) = 0, zg + 1 is a pole of w(z) with multiplicity k1 (> 2), a simple

w’(z

pole of a(z) w(z)). So, zp + 2 is a pole of w(z) with multiplicity k1, and

C_y(2) = Cc_pya1(z + 1). (2.9)
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Iterating (2.8), we obtain

w'(z 4 2)
wiz+3)=w(z+1)+a(z+2w(z+2) —a(z +2)——— + ap(z + 2). (2.10)
w(z + 2)
By (2.10), k1 = ko > 2, 29 + 2 is a simple pole of a(z)%, then
Copy(2) = C_py + gy (2)ar(z + 2). (2.11)

Shifting (2.7) n (n > 4) times, we have

w(z+n)=w(z+n—-2)+a(z+n—-Nw(z+n-1)

w(z4+n-—1)
- —1)—7 —1). 2.12
a(z - )T ez ) (2.12)
In (2.12), we obtain the recurrence formula
Cokn(2) =gy o (2) + g (2)ar(z+n —1). (2.13)

From (2.9), (2.11) and (2.13), we see c_, (z) is a polynomial. Assert that
degc_g, (2) = (n—1)degai(z), neN. (2.14)

(i) For n =1, c_y, is a constant, so degc_, = 0= (1 —1)degai(z).
(ii) Assume degc_y,(2) = (j — 1)degai(z), j=2,---,n— 1.
(ili) By (2.13) and degc—_g, ,(z) < degc_g, ,(2), we have

degc_y, (2) =degc_g, ,(2) +degar(z +n — 1)
=(n —2)degai(z) + degai(z) = (n — 1) degay(2).

The above (i)—(iii) show (2.14) holds. Obviously, c¢_y, (z0) # 0 since zg is large enough. Hence,
o + n(n € N) are poles of w(z) with the same multiplicity k1. So, o(w) > A(1) > 1.

Case 2 k1 = 1.

Shifting (2.7), we also have (2.8), (2.10) and (2.12). In the right side of (2.8), w(zo) = 0,

20 + 1 is a simple pole of w(z) and a(z) Tul((zz)). So,

c_o(z) =c_1a1(z+ 1) +a(z+1). (2.15)

We have ¢_5(z) # 0, by the fact that ;1((1)) is not a constant. So, 2o+ 2 is a simple pole of w(z).
By this and (2.10), we have

c_3(z) =c_1 4+ c_2(2)ar(z +2) + a(z + 2). (2.16)
By (2.12), we have the recurrence formula

Cn(z2) =Copnia(z) + cenp1()ar(z+n—1)+a(z+n—-1), n>3. (2.17)
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Assert that
c_n(2)#0, neN.
We deduce from (2.15) that
0 < degc_s(z) < max{degay,dega}.

Case 2.1 degc_s(z) = max{degai,dega}.
By the assumption and (2.16), we have

degc_3(z) = deg(c_2(z)ai(z + 2)) = dega; + max{degay,dega}.
By this and (2.17), for n > 4, we have
degec_p(2) =deg(c_pt1(2)ar(z+n —1)) =dege_ni1(z) + degay
=(n — 2)dega; + max{degay,dega},

which follows ¢_,,(z) Z 0.
Case 2.2 0 < degc_s(z) < max{degay,dega}.
So, dega; = dega. By this and (2.16), we have

degc_3(z) = deg(c_2(2)ai(z +2)) = dega; + degc_s.
By this and (2.17), for n > 4, we have
dege_p(2) =deg(c_ni1(2)ar(z+n—1)) =dege_ni1(z) + degay
= (n—2)dega; + degc_o,

which follows ¢_,,(z) # 0.
Case 2.3 degc_o =0.

So, c_s is a nonzero constant. By this and (2.16), we have
0 < degc_3 < max{degai,dega}.

If 0 < degc_3 < max{degai,dega}, using the same method similar to the above Cases
2.1-2.2, we can obtain c_,(z) # 0.
We only need to consider deg c_s = 0, which means c_3 is a constant. By (2.15)—(2.16) and

the fact that c¢_s,c_3 are constants, we have

{ c_o =c_1a1(z) + a(z),

c_3=c_sa1(2) +a(z) +c_1.

Minus the above equalities, we have

c_g—c_9=(c_og—c_1)ai(z) +c_1.
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Thus, a; is a constant or c_o = c_1. If a; is a constant, by dega = dega; = 0, we see both a
and a; are constants, which contradicts the fact %(ZZ)) is not a constant. So, ¢_s = ¢_1, which
follows c_3 = 2¢_1.

Next we prove degc_4 > 1. Assume c_4 is a constant, by (2.17), we have
c_qg =c_3a1(2) +a(z) + c_a.
Together with ¢_3 = ¢_sa1(2) + a(2) + ¢—1 and ¢c_3 = 2¢_1, ¢c_3 = ¢_1, we have

c_g—c_3=(c_3—c_2)a1(z) + c_2 —c_1 = c_1a1(2),

which follows a;(z) = % is a constant. By dega = dega; = 0, which contradicts the fact
lfl((zz)) is not a constant. So degc_4 > 1.

By (2.17), we see c_5(2) = c_3 + c_4(z)a1(z +4) + a(z + 4), hence,

degc_5 =deg(c_4(2)ar1(z+4)) = degc_y + degay.
Using a same method similar to the above Case 2.2, we have
degc_p, = (n—4)dega; +dege_y, n>4.

Combining this with ¢_1,c_o = ¢_1,¢c_3 = 2¢_1, we have ¢,(2) #0, n € N.
The above Cases 2.1-2.3 show ¢,(z) Z 0(n € N). Since zp is large enough, ¢_,(z9) # 0,
that is, zo + n are simple poles of w(z), therefore, o(w) > A(<) > 1.
Case 3 k_; =1.
Using the same method similar to the above Case 2, we may prove o(w) > A\(+) > 1.
Suppose that w(z) has finitely many zeros. Assume o(w) = o < 1. By equation (2.7), we

have

w(;'(—:)l) - w(;(;)l) +a(z) Z;(é) =ai(z) + ao(z).

~
S

—~
183

~—

Let y(z) = ﬁ, then o(y) = o(w) = o < 1. The last equality shows

D IOy () = ) + an()(e)
a(2)y'(2) + ao(2)y(2) = ¢(2), (2.18)
where
c(z) = ) v —a1(2). (2.19)

yz+1)  y(z-1)

Applying Lemma 2.1 to (2.19), for any given € (0 < e <1 — o), we have

m(r,c(z)) < m(r, %) + m(r, y(z(ij)l)) +m(r,a1(2))
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= O(r" %) 4 O(logr) = O(log 7).

Since w(z) has finitely many zeros, y(z) has finitely many poles. By this and (2.18), we

have

N(r,c(z)) < N(r,y') + N(r,a(z)) + N(r, ao(2))
< 2N(r,y) + O(logr) = O(log ). (2.20)

By (2.20) and m(r,c) = O(logr), we have
T(r,c(2)) =m(r,e(z)) + N(r,e(z)) = O(logr),

that is, ¢(z) is a rational function, and ¢*(z) = c(z) + a1(z) is a rational function, too. By
(2.19), we have

y(2) y(2) ()

yz+1)  y(z—1)

If y(z4+ 1) = y(z — 1), then y(z 4+ 2) = y(z), that is, y(z) is a nonconstant periodic function,

obviously o(y) > 1, a contradiction. So, y(z + 1) # y(z — 1). By this and (2.21), we have
c*(z) 0.

Set ¢*(z) = gg‘z;, where P(z), Q(z) are nonzero polynomials. By this and substituting

(2.21)

y(z) = ﬁ into (2.21), we have

and

Q)w(z+1)—Q(z)w(z —1) = P(z)w(z) = 0. (2.22)

In (2.22), the coefficients satisfy

Applying Lemma 2.4 to (2.22) yields a contradiction.

Lemma 2.7 (see [10, Lemma 1.9]) Let g;(2)(j = 1,2,---,n) be entire functions and

a;(2)(j =0,1,--- ,n) be meromorphic functions satisfying
n
T(r,aj) = O(ZT(r,eg")), r—oo, r¢E, j=0,1,---,n.
k=1
If
n
Zaj (2)e9 ) = ag(2),
j=1
then there exist constants cj,j = 1,2,--- ,n, at least one of them is not zero, such that

Z c;ia; (2)e% ) = 0.
j=1
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Lemma 2.8 (see [10, Theorem 1.50]) Suppose that fi(z), f2(2), -+, fn(n > 2) are mero-
morphic functions satisfying the following conditions:
(i) > C;fi(z) =0, where Cj(j =1,2,---,n) are constants;
j=1

(i) fi(z) £0(j =1,2,--- ,n), and ;;8 are not constants for 1 < j <k <mn;

(i) 3 (N f) + N (1 3)) = o(r(r)(r = 007 ¢ B), where 7(r) = min_ {T(r, 1)},

Then C; =0(j =1,2,--- ,n).

Lemma 2.9 (see [8, Lemma 3]) Suppose that h is a nonconstant meromorphic function

satisfying
N(r,h) + N(r, %) = S(r,h).

Let f = aph? +a,—1hP~ 1+ +ag and g = byh? +by_1h9=  + -+ by be polynomials in h with

coefficients ag,ai, -+ ,ap,bo, b1, , by being small functions of h and apbgag # 0. If ¢ < p,
then m(r, %) = S(r,h).
Lemma 2.10 Let w(z) = H(2)e"®), where H(z) is a nonzero small function of e"*),

P(z,w) and Q(z,w) be polynomials in w with coefficients being small functions of w and
Q(2,0) £0. If p= deg,, P < deg,, @ = g, then

m(r, gi::ﬁ%) = S(r,e") = S(r,w).

Proof Denote
Pz, w) = agu? + ap_yw?™ 4+ a,
Q(z,w) = bgw? +bg—1w? ™" + -+ + bo,

where a,(# 0),-- -, a0, bq(# 0), b1,--- , by are small functions of w.
)el ()

Substituting w(z) = H(2)e"*) into P(z,w) and Q(z,w) respectively, we obtain

P(z,w) = ay(2) HP(2)e?"® 4 ... 4 a1(2) H(2)e"® + ao(2)

= aj(2)e"" ) + -+ af(2)e") + ag(2) (2.23)
and
Q(z,w) = by(2)H(2)e™®) 4. 4 by (2)H (2)e") + by(2)
= b7 (2)e"®) 4 4 b7 (2)e"®) + b5 (2), (2.24)
where
aj(z) = aj(2)H'(2), bi(2) = be(2)H"(2), j=0,---,p, k=0,---,q. (2.25)

Obviously, for j =0,--- ,p, k=0,--- ,q,

T(r,a) = S(r,w) = S(r,e"), T(r,b}) = S(r,w) = S(r,e"). (2.26)

)
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We note that

1
N(r,eh) + N(r, e—h) —0. (2.27)
By (2.23)-(2.27), we see P(z,w) and Q(z,w) can also be regarded as polynomials in e with
coefficients ag, aj, -+, ay, bg, b7, -+, by being small functions of eh.

Since Q(z,0) # 0, we obtain bg(z) # 0. Thus,
ay(2)by (2)b5(2) = ap(2)bg(2)bo(2) HP () # 0.

Combining this with p < ¢ and Lemma 2.9, we have

m(r, SEZZ;) = S(r,e") = S(r,w).

3 Main Results

In the following, we give answers to Problems 1.1-1.2, and find interesting properties on

entire solutions of (1.1) depending on the degrees of P(z,w) and Q(z,w).

3.1 deg, P =deg,Q =0

(1.1) reduces into

w(z+1)—w(z—1)+a(z) = ap(z),

where a(z) and ag(z) are rational functions.

Halburd and Korhonen [5] pointed out if ag(z) = ikma(z)(k € N), then w(z) = Cel*™*, C # 0
is a one-parameter family of zero-free entire transcendental finite-order solution of (2.1) for any
rational function a(z). The following Theorems 3.1-3.2 deal with Problems 1.1-1.2 for (2.1),

respectively.

Theorem 3.1 Let w(z) be a transcendental meromorphic solution of delay differential e-

quation (2.1), where a(z),ao(z) are nonzero rational functions. Then o(w) > 1.
Proof Theorem 3.1 arrives quickly by Lemma 2.5.

Theorem 3.2 All transcendental entire solutions w(z) of (2.1) have the forms
w(z) = Ce*™, CeC\{0}, ke Z\{0}.

Proof Let w(z) be a transcendental entire solution of (2.1). If w(z) has infinitely many
zeros, then a(z)% has infinitely many poles, but w(z+1) —w(z — 1) — ag(2) has only finitely
many poles, a contradiction. So, w(z) has finitely many zeros. By this, w(z) has the following

form

w(z) = H(z)e"®), (3.1)
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where H(z) is a nonzero polynomial, h(z) is a nonconstant entire function.
Substituting (3.1) into (2.1), we have

H(z+ 1" — H(z — 1)Y= ¢(2), (3.2)
where
() = ) — a(e) (o +1(2) (3.3

Case 1 ¢(z) #Z0.
By (3.2), we have

H(z+2)e"+D) £ H(z 4+ 1)t — H(2)e"®) — H(z — 1)e"E™) = ¢(z + 1) + ¢(2).  (3.4)
By (3.3), we have
T(r,c(z)) = T(r,h'(2)) + O(logr) = S(r,e"?)).
So,
T(r,c(z + 1) + ¢(2)) = S(r, "CGTVY 4 §(r, M=), (3.5)

We note that T'(r, H(z +j — 1)) = O(logr), j = 0,1,2,3. We obtain from (3.4)-(3.5) and

Lemma 2.7 that there exist constants cg, ¢1, ¢2, c3, at least one of them is not zero, such that
csH(z 4 2)e"CF2 4o H(z + 1)+ — ¢  H(2)eM?) — cgH(z — 1)e"==Y = 0. (3.6)
Let
fi(z) = H(z+j— 1)1 j=0,1,2,3. (3.7)
By (3.6)—(3.7), we have
c3f3(z) + cafa(z) — e1fi(z) — cofo(2) = 0. (3.8)

Case 1.1 Suppose none of h(z+1) —h(z), h(z+2) —h(z), h(z+2) — h(z — 1) are constants.
Then

fi(z)  H(z+j— 1)eh(z+j)—h(z+k)

= , 0< 7 <k <3 are transcendental.
frlz)  Hz+k-—1) =7 -

Obviously,
. 1
S (NG £) +N(r.5)) = Ollogr) = o(r(r), (3.9)
=0 fi
— : i ; _
where 7(r) = ogrgn<1£§3 {r(r, fk)} Thus, we obtain from (3.8)—(3.9) and Lemma 2.8 that

c; =0, 7=0,1,2,3, a contradiction.
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Case 1.2 Suppose that h(z + 1) — h(z) = d is a constant. Then
hMz+1)=h(z)+d, h(z—1)=h(z)—d.
By (3.2) and ¢(z) # 0, we have
o(z) = (eH(z4+1) —e 9H(z —1))e"®) £ 0. (3.10)

Hence e?H(z +1) —e @H(z — 1) #0.
By (3.3) and (3.10), we obtain

T(r,e"®)) = T(r,c(2)) + O(logr) = T(r, K (2)) + O(logr) = S(r, ")),

a contradiction.
Case 1.3 Suppose that h(z + 2) — h(z) = d is a constant. Then

h(z+2)=h(z)+d, h(z+1)=h(z—1)+d.
Substituting the above equalities into (3.4), we have
(e?H(z+2) — H(2))e"® + (e?H (2 +1) — H(z — 1))e"*™D = ¢(z + 1) + ¢(2). (3.11)
By (3.2) and ¢(z) £ 0 , we have
e(z) = H(z+1)e"H) — H(z = 1)V = (e9H (2 + 1) — H(z — 1))e"*~1) £ 0,
and so,
eH(z4+1)—H(z—1)#0, e'H(z+2)—H(z)#0. (3.12)
By h(z +1) = h(z — 1) + d, we conclude
T(r,c(z 4+ 1) + ¢(z)) = S(r, ") + S(r, ") = §(r, ")) 4 (1, =71,

Applying Lemma 2.7 to (3.11), there exist constants ¢4, c5, at least one of them is not zero,
such that

ca(eH(z +2) — H(2))e"® + ¢5(e?H(z + 1) — H(z — 1))=Y = 0. (3.13)

By (3.12)—(3.13), ¢4 = 0 if and only if ¢5 = 0. So c¢4c5 # 0.
If h(z) — h(z — 1) is not constant, we have from (3.13) that

h(2)—h(z—1) _ _C5 H(z+1) - H(z 1)
ca eH(z+2)—H(z) ’

which yields

d
h(z)—h(z—1) _ € H(Z + 1) B H(Z B 1)
T(r.e )=7(r TH(z+2)— H(2)

) = O(logr),
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a contradiction.

Thus, h(z) — h(z — 1) is a constant, say h(z) — h(z — 1) = dy. Thus, h(z + 1) — h(z) = d;.
Together with Case 1.2, we again obtain a contradiction.

Case 1.4 Suppose that h(z+2) —h(z—1) = d is a constant. Then (3.4) can be written as

H(Z + l)eh(z+l) _ H(Z)eh(z) + (edH(z + 2) _ H(Z _ 1))eh(z—1)
=c(z+1)+ c(2). (3.14)

Case 1.4.1 ¢H(z+2) - H(z—1)=0.

(3.14) can be written as
H(z 41"t — H(2)eM?) = ¢(z + 1) + ¢(2). (3.15)

By (3.5), applying Lemma 2.7 to (3.15), there exist constants cg, c7, at least one of them is

not zero, such that
ceH(z 4 1)e"CT) — ¢, H(2)e"®) = 0. (3.16)

By (3.16), ¢ = 0 if and only if ¢z = 0. So, cger # 0.
If h(z + 1) — h(z) is not constant, by (3.16), we have

O e By
z

) = O(logr),

a contradiction.

Thus, h(z 4+ 1) — h(z) is a constant, say h(z + 1) — h(z) = dy. Together with Case 1.2, we
also obtain a contradiction.

Case 1.4.2 e’H(z+2)— H(z — 1) #0.

By (3.5) and applying Lemma 2.7 to (3.14), there exist constants cs, cg, c10, at least one of

them is not zero, such that
csH (z 4 1" — o H(2)e"®) 4 ¢19(e?H(z + 2) — H(z — 1))e"*~1) = 0. (3.17)

If one of h(z + 1) — h(z),h(z + 1) — h(z — 1) is a constant, by Case 1.2 and Case 1.3,
respectively, we obtain a contradiction.
So, neither h(z + 1) — h(z) nor h(z + 1) — h(z — 1) are constants. So is h(z) — h(z —1). Set

fi(z) = Hz+ 1" fo(2) = H(2)e"®), fa(z) = (e"H (2 +2) — H(z — 1))e"7 1,
Thus, (3.17) can be written as
csfi(2) — eofa(2) + crofs(2) = 0. (3.18)
Obviously,

fHi(z) _ H(z+ 1)eh(z+1)—h(z)

fa(z)  H(z)
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filz) H(z+1) hz+1)—h(z=1)
f3(z)  elH(z+2)— H(z—1) ’
f2(2) H(z) h(2)=h(z=1)
f3(2)  e@H(z+2)— H(z—1)
are transcendental, and so
3
1
N@r, )+ N(r,=)) = Ologr) = o(r(r)), 3.19
;(UfH () = Ottogr) = or(r) (3.19)
where 7(r) = 1§511<i£§3 {T(r, %)}

Applying Lemma 2.8 to (3.18), we have ¢; =0, j = 8,9,10, a contradiction.
Case 2 ¢(z) =0.

It follows (3.3) that h/(z2) = ‘Z)((Zz)) — 111;’((;))' Since h(z) is an entire function, h(z) must be a

polynomial. By (3.2), we have
Ch(s— H(z-1)
h(z+1)=h(z-1) — Z\= 7). 3.20
¢ H(z+1) (3:20)
So, H(z) must be a nonzero constant, otherwise, (3.20) shows
H(z-1)

T h(z+1)—h(z—1) —T
(rye ) (T’ H(z+1)

) = Ol1og),

a contradiction.

Thus, h(z 4+ 1) — h(z — 1) is also a constant and degh = 1. Set h(z) = dyz + dy, where
di(# 0), dy are constants. Substituting h(z) = dyz + dp into (3.20), we have e*?t = 1 and so
dy = ikw, k€ Z\ {0}. Thus,

w(z) = HeM?) = Helkmates — o™= ¢ e C\ {0}, k € Z\ {0}.

3.2 deg,P =1, deg, Q=0
Halburd and Korhonen [5] obtained the following theorem.

Theorem 3.3 (see [5, Lemma 3.2]) Let w(z) be a non-rational meromorphic solution of
equation
w'(2)

w(z+1)—w(z—1)+a(z) w2)

= P(z,w), (3.21)

where a(z) is rational in z and P(z,w) is a polynomial in w and rational in z. If the hyper-order

of w is less than one, then deg, P < 1.

By Theorem 3.3, (3.21) has the form

w(z+1) —w(z—1)+a(z) = a1(2)w(z) + ao(2),

where a(z),a1(2), ap(z) are rational functions.
Zhang and Huang [12] investigated the value distribution and representation of entire solu-

tion of (2.7) as follows.
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Theorem 3.4 (see [12, Theorem 3.1]) Let a(z),ao(z) and a1(z) be rational functions with
a1(z) Z 0 orag(z) # 0, and let w(z) be a transcendental entire solution of (2.7) with oa(w) < 1.

(i) If a(2) =0, then o(w) > 1;

(ii) If a(z) # 0, then w(z) = H(z)e?*, where H(z) is a polynomial, and d # 0 is a complex
number. Especially, if a1(z) is a polynomial with ay(z) # +2i, then w(z) = Ce?*, where
C e C\{0}; if ay(z) = £2i, then w(z) = (Crz + Co)e**D)™= where k is an integer and
C1,Cy € C with |Cy] + |Co| # 0.

Thus, we deal with Problems 1.1-1.2 for (2.7), and obtain the following theorem.

Theorem 3.5 Let w(z) be a transcendental meromorphic solution of (2.7), where a(z),
a1(2), ao(z) are nonzero rational functions such that %(ZZ)) is not a constant. Then o(w) > 1.

Proof Theorem 3.5 arrives quickly by Lemma 2.6.

satisfies delay differential equation

w'(2)

w(z)

1
eimz 1

Example 3.1 The function w(z) =

w(z+1) —w(z—1)+

= —imzw(z) —inz,

which satisfies conditions and results of Theorem 3.5.

Theorem 3.6 All transcendental entire solutions w(z) of (2.7) have the form
w(z) = H(z)e?, deC\{0}.

Here, H(z) is a nonzero polynomial, and

L )

01(2) = eH(z+1) B e H(z—1)
a(z) H(z)» H(z) H(z)

Proof Let w(z) be a transcendental entire solution of (2.7). If w(z) has infinitely many

zeros, then a(z) TUI((ZZ)) has infinitely many poles, but w(z+ 1) —w(z — 1) — a1 (2)w(z) — ap(z) has

only finitely many poles, a contradiction. So, w(z) has finitely many zeros and can be written

as
w(z) = H(z)e"?), (3.22)

where H(z) is a nonzero polynomial, h(z) is a transcendental entire function.
Substituting (3.22) into (2.7), we have

H(z+ 1)t — H(z —1)e"*™Y — gy (2)H(2)e"?)

= ag(z) — a(z) (}1{1((5)) n h’(z)). (3.23)

We assert that
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Otherwise, if ag(2) — a(z)(Z&) + h'(= # 0. We have from (3.23) that
H(z)

H N / _ h()
T(T,ao—a(ﬁ—i—h))—T(r,h)—i—O(logr)—S(r,e ),
T(r,H(z+1)) = O(logr), T(r,H(z—1))=0(logr), (3.24)
T(r,a1(z)H(z)) = O(logr).
Applying Lemma 2.7 to (3.23), there exist constants cy, ¢, 3, at least one of them is not

zero, such that

e H(z +1)ehC) — ey H(z — 1) — ¢3a,(2) H(2)e"®) = 0. (3.25)
Case 1 c¢; #0.
By (3.25), we have
H(z+1)eh=tD) = Z—2H(z —1)eh=D) 4 Z—Sal(z)H(z)eh(z). (3.26)
1 1

Substituting (3.26) into (3.23), we have

(2-1)HE- 1 4+ (2 = Dar(2) H(z)e"

c1 &1
= ao(2) — a(2) (1;[[((3 + h’(z)). (3.27)

If 2 —1=0, then (3.27) can be written as

1'(2)

(0_3 _ 1)a1(z)H(z)eh(Z) = ag(z) — a(z)(

C1

+ h’(z)).

By ap(z) — a(z)(g/((;)) + W'(z)) # 0, we have 2 —1+#0. By (3.24) and the last equality, we

obtain
H'(2)
H(z)

T(r,e"?)) = T(r, ap(z) — a(z)( + h'(z))) +O(logr) = S(r, "),

a contradiction. So, g—f —1=£0.
If £ —1=0, then (3.27) shows

© Z= Hl(z) /
(&~ 1)HE =D = an(e) —ale) (5 +4(:) (3.28)
By (3.23) and (3.28), we have
H(z+ 1)) — gy (2)H(2)e"®)
-5 c_2 o (ao(Z) - a(Z)(g((ZZ)) + h'(z))) (3.29)

Applying Lemma 2.7 to (3.29), there exist constants ¢4 and c¢5, at least one of them is not zero,
such that

caH(z 4 1)e"GY — cay(2)H(2)e® = 0. (3.30)
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By (3.30), ¢4 = 0 if and only if ¢5 = 0. So, csc5 # 0. By (3.30), we have

h(z+1)—h(z) _ Cs01(2)H(2) 1
e SHETD) (3.31)

If h(z + 1) — h(z) is not a constant, then (3.31) shows
T (r, "FD=ME) = O(log ),
a contradiction.
So, h(z + 1) — h(z) is a constant, say h(z + 1) — h(z) = d. Hence, h(z — 1) = h(z) — d,
together with (3.28), we have

H'(2)

(C—2 — 1)e_dH(z —1)e"®) = ag(2) — a(z)(

C1

+ h’(z)).
Combining this with (3.24),
T(ﬁ eh(z)) = T('r, h/(Z)) + O(lOg ’I”) _ S(T, eh(z))’

a contradiction. So, i—j —1#£0.
Applying Lemma 2.7 to (3.27), there exist constants ¢ and c7, at least one of them is not
zero, such that
Cﬁ(c_2 - 1)H(2 —1)eh==h 4 07(6—3 - 1)a1(2)H(z)eh(z) =0. (3.32)
(&1 C1
By % —1+#0, 2—‘;’ —1#0, in (3.32), if ¢g¢ = 0, then ¢ = 0, and vice versa. So, ¢g # 0,
cr # 0. By (3.32), we have

H(z—1)eM=1 = — & a1 (2)H (z)eM?)
29
CG(Cl )
Substituting the last equality into (3.27), we have
e o h(z) _ N H'(z)
(01 1) (1 Cﬁ)al(z)H(z)e ao(z) a(z)( ) +h (z)) (3.33)
By aop(z) — a(z)(g((;)) +h'(2)) #0,1— <2 # 0 holds in (3.33). However, (3.24) and (3.33) show
that T'(r,e"®)) = S(r,e"*)), a contradiction.
Case 2 ¢y #0.

Using a same method similar to Case 1, we also obtain a contradiction.

Case 3 c3 # 0.

We see from (3.25) that at least one of ¢; and ¢y is not zero. If not, ¢ = ¢2 = 0, then
(3.25) can be written as cza1(2)H(2)e"*) = 0, a contradiction. By Cases 1-2, we may obtain
a contradiction.

Thus, from above three cases, we have
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and so h(z) is a polynomial.
(3.23) shows

H(z + 1)elEHD=hE+TRE=hGED _ o) () H(2)e"®~hED _ gz —1)=0.
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(3.34)

If deg h(z) > 2, then deg(h(z) — h(z — 1)) > 1. Set y(z) = "*)="(==1 then (3.34) can be

written as
H(z+1Dy(z+1)y(z) —ar1(z)H(2)y(z) — H(z — 1) = 0.
Set
P(z,y) = H(z+ 1y(z + Dy(2) —a1(2)H(2)y(z) — H(z — 1) =
Obviously, P(z,0) = —H(z — 1) # 0. By Lemma 2.3, we have
1
—~ V-5
m(r ) =500,
which yields
1 _ h(z)—=h(z—1) h(z)—h(z—1)
N(T, m) —T(T,e )"‘S(T,e ),

a contradiction.

Thus, degh(z) =1 and h/(z) = d is a nonzero constant, and so

By this and (3.29), we may assume w(z) = H(z)e?*. Substituting these into (2.7), we have

elH(z+1)e® — e H(z — 1)e® — a1(2)H(z)e?

0,

which yields

:edH(Z+1) _e—dH(Z_ )
H(z) H(z)

a1(z)

3.3 deg,P >2, deg,Q =0

Theorem 3.3 also shows if deg,, P > 2, then all transcendental meromorphic solutions w

of (3.21) with rational coefficients satisfy oa(w) > 1. So, we only need to solve the existence

problem of transcendental entire solutions of (3.21), and we obtain the following theorem.

Theorem 3.7 Let a(z) be a nonzero rational function, P(z,w) be a polynomial in w with

rational coefficients and deg,, P > 2, then (3.21) has no transcendental entire solution.

Proof Denote

P(z,w) = ap(2)wP(2) + ap—1(2)wP™(2) + -+ + a1 (2)w(2) + ao(2),

(3.35)
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where p(> 2) is a positive integer, a,(2)(£0), ap—1(2),---,a1(2),ao(z) are rational functions.

Suppose w(z) is a transcendental entire solution of (3.21), then w(z) must have finitely
w'(z)
w(z)

many zeros. Otherwise, w(z + 1) —w(z — 1) — P(z,w) has finitely many poles, while a(z)

has infinitely many poles, it is a contradiction. So, w(z) has the form
w(z) = H(z)e"®), (3.36)

where H(z) is a nonzero polynomial, and h(z) is a nonconstant entire function.
Substituting (3.36) into (3.21), we have

H(z + 1)) — H(z — 1)ehED 4 a(z) (Ié((j)) + h'(z))
= ap(2)HP(2)e!" ) + .- a1 (2)H(2)e"® 4 ag(2) (3.37)
or

H(z41)e"HY — H(z —1)eM== — ij aj(z)H? (2)e/"3) = a3 (2), (3.38)

where

* H/(Z) /
at(2) = ao(z) — a(z)( i (z)). (3.39)
Obviously,

T(r,a(2)) = T(r,h(2)) + O(log r) = S(r,e"?)). (3.40)

Case 1 Suppose that none of h(z+1)—h(z—1), h(z+1)—jh(z), h(z—=1)—jh(2), j=1,---,p
are constants.
Applying Lemma 2.7 to (3.38), there exist constants dy,- - ,dpt2, at least one of them is

not zero, such that

p
dpoH(z + 1)) —d, H(z — 1)1 — Z dja;(z)H? (2)e?*) = 0. (3.41)
j=1
Set
{f](z):aJ(Z)HJ(Z)eJh(Z)a ]:1727 2 (3 42)
foto(z)=H(z+ 1)eh(z+1)7 fpr1(z) = H(z — 1)eh(z_1).

Thus, (3.41) can be rewritten as

dp+2fp+2(2) = dpi1 fpr1(2) = dpfp(z) — -+ —difi(z) = 0. (3.43)
Obviously,

i) _ 05 ik )o6ne) 1< <k <,

fe(z)  ar(2)
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fiz)  _ aj(z)H’ () eIh()=h(+1)
fora(z)  H(z+1)
fi(z) _ a;(2)H’(2) Ih(2)—h(z=1)

) j:1727"'7p7
for1(z) — H(z—1)
foriz)  H(z— 1)eh(z—1)—h(z+1)
fora(z)  H(z+1)
are transcendental, and so
p+2 1
N(r,fi(z))+ N{(r,——)) = O(logr) = o(7(r)),
;( 015 + N (1, 575) ) = Ollog ) = ofr(r)
_ . fi
where 7(r) = o {T(r, )}

Applying Lemma 2.8 to (3.43), we have d; =0(j =1,2,---,p+ 2), a contradiction.

Case 2 Suppose that h(z + 1) — h(z) = d is a constant. Then
h(z+1)=h(z)+d, h(z—1)=h(z)—d.

Substituting this into (3.37), we have

(elH(z+1) —e ?H(z — 1)) + a(z)(% ) Zaj

Applying Valiron Monho’ko Lemma to (3.45), we obtain
pT(r,e"®) =1 (r, Z a; () H) ()" ) ) + ()
< T(r,e"®) + S(r, M),

which yields p < 1, contradicting p > 2.
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(3.44)

(3.45)

Case 3 Suppose that h(z + 1) — joh(z) is a constant, say h(z + 1) — joh(z) = d, for some

2 <jo <p, jo € N. Then
. 1 d
hz+1)=joh(z)+d, h(z—1)=—h(z)— —.
Jo Jo

Substituting this into (3.37), we have

. s 1 H'
(e D — (e - ) o) (EE w2
P
Z Jh(Z)
7=0

or

P
—e_%H(z - 1)e%h(’z) = Z a;(2)H? (2)e?) — el H (2 + 1)efoh(2) — a(z)(
j=0
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Thus

T(r,eM=)) = 1(r, (e_%H(z - 1)e%h(z))j0) + O(logr)
= joT(r, e_%H(z - 1)6%}1(2)) + O(logr)
= njoT(r,e"2)) + S(r, "), (3.46)

where 0 <n <p, neN.

By (3.46), njo = 1. Thus, jo = n = 1, contradicting jo > 2.

Case 4 Suppose that h(z — 1) — h(z) = —d is a constant. Clearly, h(z +1) — h(z) = d is
also a constant. By Case 2, we obtain a contradiction.

Case 5 Suppose that h(z — 1) — j1h(z) = d is a constant for some 2 < j; < p, j; € N.
Then

he+1) = ~h(z) =L Bz —1) = jih(z) +d.
J1 J1

Substituting this into (3.37), we have

e H(z 4 1)t lB( — 1)) 4 a2) (1;[1 ((3 FH(2) = ij a;(2) HY (2)e)

j=0
or
2 j H'
e T H(z+1)emn ) = Za 2)e") 4 el H (2 — 1)e M=) — a(z)( H((ZZ)) + hl(z))-
Thus
T(r,e"?)) = T(r, (e—%H(z +1)e7 ")) 1 O(log )
=51 T(r,e” 7 TH(z + 1)e71 "&)) 4 O(log 1)
= nji1T(r,e"®)) 4 S(r, e, (3.47)
where 0 <n <p, née€N.
By (3.47), nj; = 1. Thus, j; =n = 1, contradicting j; > 2.
Case 6 Suppose that h(z 4+ 1) — h(z — 1) = d is a constant.
Substituting this into (3.38), we have
(“H(z+1)— H(z — 1))~ — Zaj 2)e"M®) = a3 (2). (3.48)

If e?H(z+ 1) — H(z — 1) = 0, then (3.38) can be written as
—Zaj 2)e!2) = g5 (2).

Together with (3.39), we obtain
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= T(r,a}(2)) + S(r,e"®)
= 5(r,e"?),

which yields p = 0, a contradiction.
If elH(z+1)— H(z—1) # 0, by (3.39), applying Lemma 2.7 to (3.48), there exist constants
¢(i=12--,p+ 1), at least one of them is not zero, such that

P
cpr1(ePH(z 4+ 1) — H(z —1))e"==1) — chaj(z)Hj(z)ejh(Z) =0. (3.49)
j=1

If there exists some j1,1 < j3 < p such that h(z — 1) — j1h(2) is a constant, then by Cases
4-5, we obtain a contradiction.
Thus, h(z — 1) — jh(z)(j = 1,2,--- ,p) is not constant. Set

fra(2) = (©H( 4 1) = Hz = 1), fi(2) = a; (Y (), j =1, p.
(3.49) can be written as
Cor1fp1(2) = pfp(2) = —afi(z) = 0. (3.50)
For1<j<k<p,i=1,2,---, p, we obtain

f](z) _ aj(Z) I_Ij—lc(Z)e(j—k)h(z)7

fe(z)  ar(z)
filz) a;(2)H'(2) oih(2)~h(z—1)
for1(2)  elH(z+1)—H(z—1)

are transcendental, and so

p+1

1
; (N 520 + N (r, m)) = O(logr) = o(7(r)), (3.51)
where 7(r) = 1§j2nkh§1p+l {T(r, %)}

Applying Lemma 2.8 to (3.50), we have ¢; =0 (j = 1,2,--- ,p+ 1), a contradiction.

In conclusion, (3.21) has no transcendental entire solution.

3.4 deg,Q>1

Theorem 1.1 shows that if deg, P > deg, Q + 2 or deg,, @ > 2, deg,, P = 0, then all
transcendental meromorphic solutions w of (1.1) with rational coefficients satisfy oo(w) > 1.

We further obtain the following theorem.

Theorem 3.8 Let a(z) be a nonzero rational function, P(z,w) and Q(z,w) be prime poly-
nomials in w with rational coefficients. If deg,, Q(z,w) > 1 and Q(2,0) # 0, then (1.1) has no

transcendental entire solution.
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Proof Denote

{ P(z,w) = ap(2)w”(z) + - - + a1(z)w(2) + ao(z),
(3.52)
Q(z,w) = bg(2)w(2) + - -+ + bi(2)w(z) + bo(2),

where a,(2)(# 0), -+ ,a0(2),bq(2)(# 0),- - ,bo(2) are rational functions.
Suppose w(z) is a transcendental entire solution of (1.1), then w(z) must have finitely many

zeros. Otherwise, suppose w(z) has infinitely many zeros, the zeros of w(z) are simple poles
a(z)%, except finitely many, so a(z)L(z)) has infinitely many poles. By Q(z,0) = bo(z) Z 0,

w(z

the zeros of w(z) are not poles of

_ wp@uP(R) + -+ a(z)w(z) +ao(z)

wE ) mwle =1 =g ) h@)u(e) + bo()

except finitely many. It is a contradiction. So, w(z) has the form
w(z) = H(z)e"®), (3.53)

where H(z) is a nonzero polynomial, and h(z) is a nonconstant entire function.

Case 1 p < q. Denote
Pz, w) w'(2)

c(z) = G =w(z+1)—w(z—1)+a(z) w2) (3.54)
By p < g, ap(2)bg(2)bo(z) # 0, (3.53) and Lemma 2.10, we have
m(r,c(z)) =m(r Pz w) = S(r, ") = S(r,w
(r,c(2) = m(r, ) = S ) = St w) (3.55)

By (3.54), we see the poles of ¢(z) come from the poles of a(z), zeros of w(z), both have the

finite number. Thus
N(r,e(z)) = Ologr) = S(r, w). (3.56)
By (3.55)—(3.56), we have
T(r,e(2)) = m(r,¢(2)) + N(r,e(2)) = S(r, w).

So, ¢(z) is a nonzero small function of w(z).
By (3.52) and (3.54), we have

ap(2)wP(2) + -+ + a1 (2)w(2) + ao(2) = c(2)(bg(2)w(2) + - - - + br(2)w(z) + bo(2)),

thus,

and so
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which contradicts the fact that P(z,w), Q(z,w) are prime polynomials in w.
Case 2 p > q.
By p > ¢, we have

P(z,w) = Pi(z,w)Q(z,w) + Py(z,w),

where P;(z,w) (i = 1,2) are polynomials in w with rational coefficients and deg,, P; = p; (i =
1,2) such that p1 =p—¢>1,1 <py < gq.

Thus, (1.1) can be written as

(s — als w'(z) _ Pi(z,w)Q(z,w) + Pa(z,w) _ . w Py(z,w)
w(z+1) —w(z—1)+a( )w(z) Q) Pi(z, )+7Q(z,w)
Denote

* —M:wz —w(z — azwl(z)— Z,W
() = ] = e+ 1) = wlz = 1)+ o) T — Puew) (357)
By p2 < ¢, Q(z,0) #Z 0, (3.53) and Lemma 2.10, we have
m(r,c*(z)) = S(r,w). (3.58)

By (3.57), the poles of ¢*(z) come from the poles of a(z), zeros of w(z) and the poles of
coefficients of P;(z,w). Since w(z) has finitely many zeros, a(z) and the coefficients of P (z, w)

are rational functions. So,
N(r,c*(z)) = O(logr) = S(r,w). (3.59)
By (3.58)—(3.59), we have
T(r,c*(z)) = m(r,c*(z)) + N(r,c"(2)) = S(r,w),

thus, ¢*(z) is a nonzero small function of w(z).
By (3.57), we obtain

paT(r,w) =T(r, Py(z,w)) + S(r,w)
=T(r,c*(2)Q(z,w)) + S(r,w)
=qT(r,w) 4+ S(r,w).

Hence, ps = ¢, contradicting ps < q.

Remark 3.1 The condition “Q(z,0) # 0” in Theorem 3.8 is to ensure that meromorphic

solutions of (1.1) have finitely many zeros.
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