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Abstract This paper studies skew constacyclic codes over a family of finite rings denoted

by Bk to obtain quantum codes over the fields Fpr and to construct Euclidean LCD skew

constacyclic codes. The author investigates the structural properties of skew constacyclic

codes over Bk using a decomposition approach, and also finds necessary and sufficient

conditions for skew constacyclic codes that contain their duals. Finally, the author gives

some examples of quantum codes obtained via the construction and LCD codes.
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1 Introduction

In the classical computer and digital platform, the classical error-correcting codes are de-

veloped in order to transmit information and to correct mistakes which occur in information.

Recently, instead of classical computers, the quantum computers are considered. Moreover,

quantum computers are known to be able to solve certain problems faster than classical com-

puters can. With the expected arrival of quantum computers which work with respect to

quantum mechanics basics in the near future, research into quantum information theory has

intensified significantly.

Quantum computers outrun the classical computers in their ability to solve complex prob-

lems. While the problem of factorizing a number into its primes is easily achievable for small

numbers, it takes months for larger numbers even with the best computers. It is believed that

a quantum computer can overcome the same problem within a few minutes if properly imple-

mented. Also, while no efficient algorithm is known for the integer factorization problem for

classical computers, an efficient (polynomial time) algorithm is known for quantum computers.

Quantum error-correcting codes (QECCs for short) are used in quantum computing and

communication to correct errors that occur during the transmission in a noisy channel and to

protect quantum information from decoherence. The application of error-correcting codes by

quantum computers can be labeled as one of the pivotal reasons for this efficiency.
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Effective techniques for quantum error-correction were first developed by Shor and indepen-

dently by Steane. They discovered quantum error-correcting codes (see [23–24]). Calderbank

et al. presented a way of constructing quantum codes from classical codes (see [7]). Later,

Ketkar et al. generalized these results to a non-binary case (see [16]). Lately, quantum codes

are studied in [2, 10, 13–14, 19].

In classical coding theory, cyclic codes play a prominent role due to their algebraic structures.

There are many useful generalizations of cyclic codes. One important generalization of cyclic

codes that has received a lot of attention in recent years is the class of skew cyclic codes.

Boucher et al. [3] introduced skew cyclic codes as a generalization of cyclic codes using the

skew polynomial ring F [x, θ], where F is a finite field and θ is a non-trivial automorphism over

F . Later, many researchers investigated skew codes over various finite rings (see [1, 4–5, 26]).

A linear complementary dual code (called LCD) is defined as a linear code C whose dual

code C⊥ satisfies C ∩C⊥ = {0}. LCD codes were introduced by Massey [21]. Yang and Massey

classified cyclic LCD codes over finite fields (see [27]). These codes have gained serious attention

due to their recent successful application in cryptography and are used in communications

systems, data storage and consumer electronics. LCD codes over F2 play an important role

in implementations against side channel attacks (SCA for short, which consists in passively

recording some leakage, and this is the source of information to retrieve the key) and fault

injection attacks (FIA for short, which consists in actively perturbing the computation so as to

obtain exploitable differences at the output) (see [8]). Tzeng and Hartmann proved that the

minimum distance of a class of LCD codes is greater than that given by the BCH bound (see

[25]). Sendrier showed that LCD codes meet the asymptotic Gilbert-Varshamov bound using

properties of the hull dimension spectrum of linear codes (see [22]). Dougherty et al. gave a

linear programming bound on the largest size of an LCD code of given length and minimum

distance (see [11]). Recently, LCD codes are studied in [6, 12, 17–18, 20].

Motivated by the previous works, we study quantum codes that are obtained from skew

constacyclic codes and Euclidean LCD skew constacyclic codes over an infinite family of the

finite rings denoted by Bk.

2 Preliminaries

In [15], Irwansyah et al. introduced the family of finite rings Bk. We summarize some of

the relevant results from [15] in this section. The infinite family of the finite rings Bk is a

generalization of the family of finite rings Ak (see [9]).

Let Fpr be the finite field of order pr for a prime p and a positive integer r. The family of

the finite rings Bk is defined as

Bk := Fpr [v1, v2, · · · , vk]/〈v
2
i − vi, vivj − vjvi〉
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for all i, j = 1, 2, · · · , k. We also define B0 = Fpr . If k = 1, then B1 = Fpr + v1Fpr , where

v21 = v1; if k = 2, then B2 = Fpr + v1Fpr + v2Fpr + v1v2Fpr , where v21 = v1, v22 = v2, v1v2 =

v2v1. The rings in this family are finite commutative rings with cardinality (pr)2
k

and with

characteristic p.

Let B ⊆ {1, 2, · · · , k} and vB =
∏

i∈B

vi. In particular v∅ = 1. Each element of Bk is

of the form
∑

B∈Pk

αBvB, where αB ∈ Fpr , and Pk is the power set of {1, 2, · · · , k}. For

A,B ⊆ {1, 2, · · · , k} we have that vAvB = vA∪B which gives that
∑

B∈Pk

αBvB ·
∑

C∈Pk

βCvC =

∑

D∈Pk

(
∑

B∪C=D

αBβC

)

vD. For more on the ring Bk we refer the reader to [15].

A code C of length n over Bk is a subset of Bn
k . A linear code C of length n over Bk

is a Bk-submodule of Bn
k . An element c = (c0, c1, · · · , cn−1) ∈ C is called a codeword. Let λk

be a unit in Bk. A linear code C of length n over Bk is said to be λk-constacyclic code if C is in-

variant under the constacyclic shift operator υλk
: Bn

k → Bn
k defined by υλk

(c0, c1, · · · , cn−1) =

(λkcn−1, c0, · · · , cn−2). Note that the constacyclic code is a cyclic code for λk = 1 and the

negacyclic code for λk = −1. By identifying each codeword c = (c0, c1, · · · , cn−1) ∈ Bn
k with a

polynomial c(x) = c0+ c1x+ · · ·+ cn−1x
n−1 in Bk[x]/〈x

n−λk〉, we see that a linear code C is a

λk -constacyclic code of length n over Bk if and only if it is an ideal of the ring Bk[x]/〈x
n−λk〉.

Let x = (x0, x1, · · · , xn−1) and y = (y0, y1, · · · , yn−1) be two elements of Bn
k . Then the

Euclidean inner product of x and y is defined as x · y = x0y0+x1y1+ · · ·+xn−1yn−1. The dual

code C⊥ of C is defined as C⊥ = {x ∈ Bn
k | x·y = 0, ∀y ∈ C}. A code C is called self-orthogonal

if C ⊆ C⊥ and self dual if C = C⊥. The reciprocal of a polynomial f(x) = a0+a1x+· · ·+anx
n is

defined as f∗(x) = xdeg(f(x))f(x−1). A polynomial f(x) is called self-reciprocal if f(x) = f∗(x).

The skew reciprocal polynomial of g(x) =
k
∑

i=0

gix
i of degree k is g∗(x) =

k
∑

i=0

θi(gk−i)x
i,

where θ is a non-trivial automorphism. If g0 does not cancel, the left monic skew reciprocal

polynomial of g is g♮(x) = 1
θk(g0)

g∗(x). If a skew polynomial is equal to its left monic skew

reciprocal polynomial, then it is called self-reciprocal (see [6]).

We define

A1 ⊕A2 ⊕ · · · ⊕A2k = {a1 + a2 + · · ·+ a2k : ai ∈ Ai, i = 1, 2, · · · , 2k},

A1 ⊗A2 ⊗ · · · ⊗A2k = {(a1, a2, · · · , a2k) : ai ∈ Ai, i = 1, 2, · · · , 2k}.

Let

ev∅ = 1 + (−1)|B|
∑

B∈Pk

vB

and

evi = vi + (−1)|B|+1
∑

i∈B∈Pk

|B|≥2

vB
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for i = 1, 2, · · · , k. The total number of evi ’s is
(

k
1

)

= k,

evivj = vivj
i<j

+ (−1)|B|+2
∑

i,j∈B∈Pk

|B|≥3

vB

for i, j = 1, 2, · · · , k. The total number of evivj ’s is
(

k
2

)

,

evivjvs = vivjvs
i<j<s

+ (−1)|B|+3
∑

i,j,s∈B∈Pk

|B|≥4

vB

for i, j, s = 1, 2, · · · , k. The total number of evivjvs ’s is
(

k
3

)

,

...

ev1v2···vk = v1v2 · · · vk.

The number of ev1v2···vk is
(

k
k

)

= 1.

Then we have
∑

B∈Pk

evB = 1, (evB )
2 = evB and evBevA = 0 if A 6= B for any A ⊆ {1, 2,· · · ,k},

B ⊆ {1, 2, · · · , k}. Hence Bk =
⊕

B∈Pk

evBBk
∼=

⊕

B∈Pk

evBFpr . Thus, we know that every element

of Bk can be uniquely expressed as z =
∑

B∈Pk

avBevB , where avB ∈ Fpr .

Example 2.1 Let k = 3. Then B3 = Fpr + v1Fpr + v2Fpr + v3Fpr + v1v2Fpr + v1v3Fpr +

v2v3Fpr + v1v2v3Fpr . We have

ev∅ = e1 = 1− v1 − v2 − v3 + v1v2 + v1v3 + v2v3 − v1v2v3,

ev1 = v1 − v1v2 − v1v3 + v1v2v3,

ev2 = v2 − v1v2 − v2v3 + v1v2v3,

ev3 = v3 − v1v3 − v2v3 + v1v2v3,

ev1v2 = v1v2 − v1v2v3,

ev1v3 = v1v3 − v1v2v3,

ev2v3 = v2v3 − v1v2v3,

ev1v2v3 = v1v2v3.

Hence, Bk = e1Fpr ⊕ ev1Fpr ⊕ ev2Fpr ⊕ ev3Fpr ⊕ ev1v2Fpr ⊕ ev1v3Fpr ⊕ ev2v3Fpr ⊕ ev1v2v3Fpr .

Let Ω ∈ Aut(Fpr ). We define a non-trivial automorphism which is different from [15],

∆k : Bk → Bk

by ∆k

(
∑

B∈Pk

αBvB
)

=
∑

B∈Pk

Ω(αB)vB .

The set of polynomials

Bk[x,∆k] = {a0 + a1x+ · · ·+ an−1x
n−1 : ai ∈ Bk, n ∈ N}



Skew Constacyclic Codes over a Family of Finite Rings 941

is the skew polynomial ring over Bk with the usual addition of polynomials and the non-

commutative multiplication given by

(axi)(bxj) = a∆i
k(b)x

i+j

and extended to all polynomials with distributivity.

Definition 2.1 Let ∆k be a non-trivial automorphism over Bk and λk be a unit in Bk. C

is called skew λk-constacyclic code of length n over Bk if the following conditions hold :

(i) C is a Bk-submodule of Bn
k ,

(ii) if s = (s0, s1, · · · , sn−1) ∈ C, then ∆λk
(s) = (∆k(λksn−1),∆k(s0), · · · ,∆k(sn−2)) ∈ C.

As the ring Bk[x,∆k] is non-commutative, its ideal 〈xn − λk〉 is two sided only if n is even.

So if n is even, then the set Bk∆k
,n = Bk[x,∆k]/〈x

n − λk〉 is a residue class ring. For an

arbitrary n, Bk∆k
,n is a left Bk[x,∆k]-module.

Theorem 2.1 A skew λk-constacyclic code of length n over Bk is defined as a left Bk[x,∆k]-

submodule of Bk[x,∆k]/〈x
n − λk〉.

Theorem 2.2 Let C = 〈f(x)〉 be a left Bk[x,∆k]-submodule of Bk[x,∆k]/〈x
n − λk〉. Then

f(x) is a right divisor of xn − λk, where f(x) is a monic polynomial of minimum degree in C.

Note that a skew λk-constacyclic code is a skew cyclic code for λk = 1 and a skew negacyclic

code for λk = −1.

The Gray map Ψk is

Ψk : Bk → F 2k

pr

z =
∑

B∈Pk

avBevB 7→ Ψk(z) = Υ,

where

Υ =
(

∑

B=∅

avB ,
∑

B⊆{1}

avB ,
∑

B⊆{2}

avB , · · · ,
∑

B⊆{k}

avB ,
∑

B⊆{1,2}

avB ,
∑

B⊆{1,3}

avB , · · · ,

∑

B⊆{i,j}
i<j

avB ,
∑

B⊆{1,2,3}

avB , · · · ,
∑

B⊆{i,j,s}
i<j<s

avB , · · · ,
∑

B⊆{1,2,··· ,k}

avB

)

,

avB ∈ Fpr for i, j, s = 1, 2, · · · , k.

The Gray map Ψk can be extended from Bn
k to F 2kn

pr .

Example 2.2 Let k = 3. Then

Ψ3 : B3 → F 8
pr

z =
∑

B∈P3

avBevB 7→ Ψ3(z) = Υ,



942 A. Dertli

where

Υ = (a1, a1 + av1 , a1 + av2 , a1 + av3 , a1 + av1 + av2 + av1v2 , a1 + av1 + av3 + av1v3 ,

a1 + av2 + av3 + av2v3 , a1 + av1 + av2 + av3 + av1v2 + av1v3 + av2v3 + av1v2v3).

For any x =
∑

B∈Pk

αBvB ∈ Bk, let the Lee weight be defined as wL(x) = wH(Ψk(x)),

where wH is the Hamming weight. The Lee weight of a vector a = (a1, · · · , an) ∈ Bk is

defined as wL(a) =
n
∑

i=1

wL(ai). For any elements a1, a2 ∈ C, the Lee distance is given by

dL(a1, a2) = wL(a1 − a2). The minimum Lee distance of C is defined as dL = dL(C) =

min{dL(c, ć) : ∀c, ć ∈ C, c 6= ć}.

Theorem 2.3 The Gray map Ψk is a linear and distance preserving map.

Let C be a linear code of length n over Bk. We define

Cv∅ = C1 =
{

a
v∅

: ∃avB
B 6=∅

∈ Fn
pr ,

∑

B∈Pk

avBevB ∈ C
}

,

Cv1 =
{

av1 : ∃ avB
B 6={1}

∈ Fn
pr ,

∑

B∈Pk

avBevB ∈ C
}

,

Cv2 =
{

av2 : ∃ avB
B 6={2}

∈ Fn
pr ,

∑

B∈Pk

avBevB ∈ C
}

,

...

Cvk =
{

avk : ∃ avB
B 6={k}

∈ Fn
pr ,

∑

B∈Pk

avBevB ∈ C
}

,

Cv1v2 =
{

av1v2 : ∃ avB
B 6={1,2}

∈ Fn
pr ,

∑

B∈Pk

avBevB ∈ C
}

,

...

Cv1v2···vk =
{

av1v2···vk : ∃ avB
B 6={1,2,··· ,k}

∈ Fn
pr ,

∑

B∈Pk

avBevB ∈ C
}

.

The number of CvB is 2k. Then CvB is a linear code of length n over Fpr and the linear code

C of length n over Bk can be expressed uniquely as

C =
⊕

B∈Pk

evBCvB

such that dL(C) = min{dH(CvB )} and |C| =
∏

B∈Pk

|CvB |.

Theorem 2.4 Let C =
⊕

B∈Pk

evBCvB be a linear code of length n over Bk. Then the dual

C⊥ =
⊕

B∈Pk

evBC
⊥
vB

is also a linear code of length n over Bk.

Let G be a generator matrix of C over Bk. If GvB is a generator matrix of CvB , then a

generator matrix of C is G = [evBGvB ] and a generator matrix of Ψk(C) is [Ψk(evBGvB )].
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Theorem 2.5 If C is an (n,M, dL) linear code over Bk, then Ψk(C) is a (2kn,M, dH)

linear code over Fpr , where dL = dH .

Proof By Theorem 2.3, Ψk is a linear and distance preserving map. Hence dL = dH .

Since Ψk is a bijection, |C| = |Ψk(C)| = (pr)2
k

. Also, the set Ψk(C) is a code of length 2kn

over Fpr . So, Ψk(C) is a linear (2kn,M, dH) code over Fpr .

Theorem 2.6 Let C be a code over Bk. Then C is a self-orthogonal code over Bk if and

only if CvB is a self-orthogonal code over Fpr .

Proof Let C be a self-orthogonal code over Bk and x =
∑

B∈Pk

avBevB ∈ C, where avB ∈

CvB . Since C is a self-orthogonal code,

x · x =
(

∑

B∈Pk

avBevB

)(

∑

B∈Pk

avBevB

)

=
∑

B∈Pk

a2vBevB = 0.

We get a2vB = 0. Hence avB ∈ C⊥
vB

implying CvB is a self-orthogonal code over Fpr .

The other direction is obvious by the expression of C.

Theorem 2.7 Let C be a linear code C of length n over Bk. Then Ψk(C
⊥) = Ψk(C)⊥.

Moreover, if C is a self-dual code, then so is Ψk(C).

Proof This can be proved similarly to [10].

Theorem 2.8 Let C be a linear code C of length n over Bk. Then Ψk(C) =
⊗

B∈Pk

CvB and

|Ψk(C)| =
∏

B∈Pk

|CvB |.

Proof This can be proved similarly to [10].

3 Skew Constacyclic Codes over Bk

Let λk ∈ Bk be a unit. Then

λk =
∑

B∈Pk

λvBvB ,

where λvB is a unit in Fpr . Since

λkevB = evB

(

∑

B∈Pk

λvB

)

,

we have

λk = λk

(

∑

B∈Pk

evB

)

=
∑

B∈Pk

λvBevB .
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Theorem 3.1 Let λk ∈ Bk. Then λk is a unit in Bk if and only if
∑

B∈Pk

λvB is a unit in

F ∗
pr for B ⊆ {1, 2, · · · , k}.

Proof By the Chinese Remainder Theorem, λk is a unit in Bk if and only if
∑

B∈Pk

λvB is

a unit in F ∗
pr .

Theorem 3.2 Let C =
⊕

B∈Pk

evBCvB be a linear code of length n over Bk. Then C is a

skew λk-constacyclic code over Bk if and only if every CvB is a skew λvB -constacyclic code over

Fpr .

Proof Let C =
⊕

B∈Pk

evBCvB be a skew λk-constacyclic code of length n over Bk and

a = (a1, a2, · · · , an) ∈ C, where ai =
∑

B∈Pk

evBx
i
vB

and xi
vB

∈ Fpr for i = 1, 2, · · · , n. Then

xvB = (x1
vB

, x2
vB

, · · · , xn
vB

) ∈ CvB , xi
vB

∈ Fpr for i = 1, 2, · · · , n. Since C is a skew λk-

constacyclic code, ∆λk
(a) ∈ C. We have λkevB = evB

(
∑

B∈Pk

λvB

)

and ∆λk
fixes v1, v2, · · · , vk.

Then ∆λk

(
∑

B∈Pk

λvB

)

=
∑

B∈Pk

λvB . We have

∆λk
(λkan) =

∑

B∈Pk

evBΩ
(

∑

B∈Pk

λvBx
n
vB

)

.

Hence, Ω
(

∑

B∈Pk

λvBx
i
vB

)

∈ CvB for i = 1, 2, · · · , n. So, CvB is a skew λvB -constacyclic code

over Fpr .

The converse can be shown similarly.

Theorem 3.3 Let C =
⊕

B∈Pk

evBCvB be a skew λk-constacyclic code of length n over Bk.

Then

C = 〈e1f1, ev1fv1 , · · · , evkfvk , ev1v2fv1v2 , · · · , ev1v2···vkfv1v2···vk〉

and |C| = (pr)
2kn−deg

( ∑

B∈Pk

fvB

)

, where fvB is a generator polynomial of CvB .

Proposition 3.1 Suppose C is a skew λk-constacyclic code of length n over Bk. Then there

is a unique polynomial f(x) such that C = 〈f(x)〉 and f(x) | xn−λk, where f(x) =
∑

B∈Pk

evBfvB .

Proposition 3.2 Suppose C is a skew λk-constacyclic code of length n over Bk, then

C⊥ =
⊕

B∈Pk

evBC
⊥
vB

is a skew λ−1
k -constacyclic code of length n over Bk and all C⊥

vB
are skew

(
∑

B∈Pk

λvB

)−1
-constacyclic codes of length n over Fpr .

Proposition 3.3 If C =
⊕

B∈Pk

evBCvB is a skew λk-constacyclic code of length n over Bk,

then

C⊥ =
〈

∑

B∈Pk

evBh
∗
vB

〉
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and |C⊥| = (pr)
deg

( ∑

B∈Pk

fvB

)

, where xn−λk = hvBfvB and h∗
vB

is the skew reciprocal polynomial

of hvB .

4 Construction of LCD Skew Constacyclic Codes over Bk

Definition 4.1 The hull of the linear code C over Fq is defined to be Hull(C) = C ∩ C⊥.

When Hull(C) = {0}, the code C is called an LCD code.

It is clear that, Hull(C) is a linear code.

Theorem 4.1 (see [6]) Consider Fq a finite field, θ an automorphism of Fq of order µ,

R = Fq[x, θ], n in N∗ and λ ∈ {1,−1}. Consider a (θ, λ)-constacyclic code C with length n,

skew generator polynomial g and consider h in R such that Θn(h).g = xn−λ. C is a Euclidean

LCD code if and only if gcrd(g, h♮) = 1, where h♮(x) = 1
θk(h0)

h∗(x).

Theorem 4.2 Let C =
⊕

B∈Pk

evBCvB be an LCD code over Bk if and only if every CvB is

an LCD code over Fpr .

Proof A linear code C =
⊕

B∈Pk

evBCvB has dual code C⊥ =
⊕

B∈Pk

evBC
⊥
vB

. We have

Hull(C) = C ∩ C⊥ =
⊕

B∈Pk

evB (CvB ∩ C⊥
vB

). Hull(C) = {0} if and only if CvB ∩C⊥
vB

= {0}.

By Theorem 4.1, we can obtain the following theorem.

Theorem 4.3 Let C =
⊕

B∈Pk

evBCvB be a skew λk-constacyclic code over Bk with length n.

C is an LCD code if and only if gcrd(fvB (x), h
♮
vB

(x)) = 1.

Lemma 4.1 Let C be a linear code over Bk with length n. Then Ψk(C ∩ C⊥) = Ψk(C) ∩

Ψk(C)⊥.

Theorem 4.4 If C =
⊕

B∈Pk

evBCvB is an LCD code of length n over Bk, then Ψk(C) is an

LCD code of length 2kn over Fpr .

Proof Let C be an LCD code. Then C ∩C⊥ = {0}, so Ψk(C ∩C⊥) = {0}. From Lemma

4.1, Ψk(C) ∩Ψk(C)⊥ = {0}. Therefore, Ψk(C) is an LCD code.

Conversely, let Ψk(C) be an LCD code. Then Ψk(C) ∩ Ψk(C)⊥ = {0}. From Lemma 4.1,

we have Ψk(C ∩C⊥) = {0}. Since Ψk is injective, C ∩ C⊥ = {0}. Hence, C is an LCD code.

Remark 4.1 Let C be an [n, k, d] linear code. If it attains the Singleton bound, i.e.,

d = n− k + 1, it is called a maximum distance separable code, or MDS code.

Example 4.1 Let k = 3, F9 = F3[ξ] with ξ2 = ξ + 1 and Ω(̺) = ̺3 for any ̺ ∈ F9. Let
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n = 4. We have

x4 + 1 = (x2 + ξ3x+ 1)(x2 + ξ7x+ 1) ∈ F9[x,Ω],

x4 − 1 = (x + 1)(x+ 2)(x+ ξ)(x+ ξ7) ∈ F9[x,Ω].

If g1(x) = gv1(x) = gv2(x) = gv3(x) = x + ξ7 and gv1v2(x) = gv1v3(x) = gv2v3(x) =

gv1v2v3(x) = x2+ ξ7x+1, then C1 = Cv1 = Cv2 = Cv3 = 〈x+ ξ7〉 is a skew cyclic code of length

4 over F9 and Cv1v2 = Cv1v3 = Cv2v3 = Cv1v2v3 = 〈x2 + ξ7x + 1〉 is a skew negacyclic code of

length 4 over F9. The skew reciprocal polynomial of x3+ξx2+2x+ξ5 is x3+ξ5x2+2x+ξ. The

skew reciprocal polynomial of x2+ξ3x+1 is x2+ξx+1. By Theorem 4.1, C1 = Cv1 = Cv2 = Cv3

is a Euclidean LCD MDS code with parameters [4, 3, 2] and Cv1v2 = Cv1v3 = Cv2v3 = Cv1v2v3 is

a Euclidean LCD MDS code with parameters [4, 2, 3]. Hence the code C is an LCD code over

B3 with length 4 and Ψ3(C) is an LCD code with parameters [32, 20, 2].

It can be generalized for a suitable k.

Example 4.2 Let k = 2, F9 = F3[ξ] with ξ2 = ξ + 1 and Ω(̺) = ̺3 for any ̺ ∈ F9. Let

n = 6. We have

x6 + 1 = (x+ ξ7)3(x+ ξ)3 ∈ F9[x,Ω]

= (x3 + ξ2x2 − x+ ξ5)(x3 + ξ2x2 − x+ ξ3),

x6 − 1 = (x+ ξ2)2(x+ ξ6)2(x+ 1)(x+ 2) ∈ F9[x,Ω]

= (x3 + ξx2 + x+ 1)(x3 + ξ7x2 + x+ ξ4).

If g1(x) = gv1(x) = x3 + ξ7x2 + x + ξ4 and gv2(x) = gv1v2(x) = x3 + ξ2x2 − x + ξ3, then

C1 = Cv1 is a skew cyclic code of length 6 over F9 and Cv2 = Cv1v2 is a skew negacyclic code

of length 6 over F9. The skew reciprocal polynomial of x3 + ξx2 + x + 1 is x3 + ξx2 + x + 1.

The skew reciprocal polynomial of x3 + ξ2x2 − x + ξ5 is x3 + ξ5x2 + ξ7x + ξ. By Theorem

4.1, C1 = Cv1 is a Euclidean LCD MDS code with parameters [6, 3, 4] and Cv2 = Cv1v2 is a

Euclidean LCD MDS code with parameters [6, 3, 4]. Hence the code C is an LCD code over B2

with length 6 and Ψ2(C) is an LCD code with parameters [24, 12, 4].

It can be generalized for a suitable k.

5 Quantum Codes from Skew Constacyclic Codes over Bk

Definition 5.1 A q-ary quantum code is a qt dimensional subspace of the Hilbert space

C
qn . A quantum code with length n, dimension t and minimum distance d over Fq is denoted

by [[n, t, d]]q.

In the sequel, we will construct quantum codes from dual containing skew constacyclic codes

over Bk.
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Lemma 5.1 Let C be an [n, t, d] linear code over Fq. If C⊥ ⊆ C, then there exists a

quantum code of type [[n, 2t− n,≥ d]] over Fq (see [16]).

Lemma 5.2 Let C be a skew constacyclic code of length n over Fq with λ ∈ F ∗
q . If C

⊥ ⊆ C,

then λ = λ−1 (see [26]).

Lemma 5.3 Let C = 〈f(x)〉 be a skew λ-constacyclic code of length n over Fq such that

the order of automorphism Ω divides n, where λ = ∓1. Then C⊥ ⊆ C if and only if h∗(x)h(x)

is divisible by xn − λ on the right (see [16]).

Theorem 5.1 Let C =
〈

∑

B∈Pk

evBfvB
〉

be a skew λk-constacyclic code of length n over Bk

such that the order of automorphism ∆k divides n and
∑

B∈Pk

λvB = ∓1. Then C⊥ ⊆ C if and

only if h∗
vB

hvB is divisible by xn −
∑

B∈Pk

λvB on the right.

Proof Let C =
〈

∑

B∈Pk

evBfvB
〉

be a skew λk-constacyclic code of length n over Bk, where

fvB ∈ CvB . If h
∗
vB

hvB is divisible by xn−
∑

B∈Pk

λvB on the right, then by Lemma 5.3, we can get

C⊥
vB

⊆ CvB , which implies that evBC
⊥
vB

⊆ evBCvB . Therefore,
⊕

B∈Pk

evBC
⊥
vB

⊆
⊕

B∈Pk

evBCvB .

So, C⊥ ⊆ C.

Conversely, if C⊥ ⊆ C, then
⊕

B∈Pk

evBC
⊥
vB

⊆
⊕

B∈Pk

evBCvB . Hence, evBC
⊥
vB

= evBC
⊥ ⊆

evBCvB = evBC. That is C⊥
vB

⊆ CvB . By Lemma 5.3, h∗
vB

hvB is divisible by xn −
∑

B∈Pk

λvB on

the right.

By Lemma 5.1 and Theorems 2.6, 5.1, we can obtain quantum codes from skew λk-constacyclic

codes over Bk.

Theorem 5.2 Let C =
⊕

B∈Pk

evBCvB be a skew λk-constacyclic code of length n over Bk

such that the order of automorphism ∆k divides n. If C⊥ ⊆ C, then there exists a quantum

error-correcting code with parameters [[2kn, 2t− 2kn, dL]], where dL denotes the minimum Lee

distance of C and t is the dimension of the code Ψk(C).

Remark 5.1 Let C be a quantum [[n, k, d]] code. If it attains the (quantum) Singleton

bound, i.e., 2d = n− k + 2, it is called a maximum distance separable code or quantum MDS

code.

Example 5.1 Let k = 3, F9 = F3[ξ] with ξ2 = ξ + 1 and Ω(̺) = ̺3 for any ̺ ∈ F9. Let

n = 6. We have

x6 + 1 = (x + ξ7)3(x+ ξ)3 ∈ F9[x,Ω],

x6 − 1 = (x + ξ2)2(x+ ξ6)2(x+ 1)(x+ 2) ∈ F9[x,Ω].

If f1(x) = fv1(x) = fv2(x) = fv3(x) = x2 + ξ6x + 1 and fv1v2(x) = fv1v3(x) = fv2v3(x) =

fv1v2v3(x) = x+ξ, then C1 = Cv1 = Cv2 = Cv3 = 〈x2+ξ6x+1〉 is a skew cyclic code of length 6
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over F9 and Cv1v2 = Cv1v3 = Cv2v3 = Cv1v2v3 = 〈x+ξ〉 is a skew negacyclic code of length 6 over

F9. Hence the code C =
〈

∑

B∈P3

evBfvB
〉

is a skew (1+ v1v2 + v1v3 + v2v3 + v1v2v3)-constacyclic

code over B3 and Ψ3(C) has parameters [48, 36, 3].

Since

h1(x) = hv1(x) = hv2(x) = hv3(x) = x4 + ξ2x3 + ξ6x+ 2,

h∗
1(x) = h∗

v1
(x) = h∗

v2
(x) = h∗

v3
(x) = x4 + ξ6x3 + ξ2x+ 2,

hv1v2(x) = hv1v3(x) = hv2v3(x) = hv1v2v3(x) = x5 + ξ7x4 + 2x3 + ξ3x2 + x+ ξ7,

h∗
v1v2

(x) = h∗
v1v3

(x) = h∗
v2v3

(x) = h∗
v1v2v3

(x) = x5 + ξ3x4 + 2x3 + ξ7x2 + x+ ξ3,

we have h∗
vB

(x)hvB (x) is divisible by x6 ± 1 on the right. Therefore, C⊥ ⊆ C. Hence, by

Theorem 5.2, we obtain a quantum code with parameters [[48, 24, 3]].

Similarly, we obtain a quantum code with parameters [[3 · 2k+1, 3 · 2k, 3]] for a suitable k.

Example 5.2 Let F9 = F3[ξ] with ξ2 = ξ + 1 and Ω(̺) = ̺3 for any ̺ ∈ F9. Let n = 8.

We have

x8 − 1 = (x2 − ξ6)(x2 + ξ6x+ ξ3)(x − ξ5)(x2 − ξ3x+ 1)(x+ ξ6) ∈ F9[x,Ω].

If fvB (x) = x + ξ6, then CvB = 〈x + ξ6〉 is a skew cyclic code of length 8 over F9 with

parameters [8, 7, 2]. Since h∗
vB

(x)hvB (x) is divisible by x8 − 1 on the right, C⊥
vB

⊆ CvB . Hence

we obtain a quantum MDS code with parameters [[8, 6, 2]] over F9.

Let λk = 1. The code C =
〈

∑

B∈Pk

evB (x+ ξ6)
〉

is a skew λk-constacyclic code over Bk and

[2k+3, 2k+3 − 2k, 2] are the parameters of Ψk(C). Since h∗
vB

(x)hvB (x) is divisible by x8 − 1

on the right, C⊥ ⊆ C. Hence, by Theorem 5.2, we obtain a quantum code with parameters

[[2k+3, 2k+3 − 2k+1, 2]] for a suitable k.

Example 5.3 Let F9 = F3[ξ] with ξ2 = ξ + 1 and Ω(̺) = ̺3 for any ̺ ∈ F9. Let

n = 20, λk = 1. If fvB (x) = x + ξ2, then CvB = 〈x + ξ2〉 is a skew cyclic code of length 20

over F9. Hence the code C =
〈

∑

B∈Pk

evB (x + ξ2)
〉

is a skew λk-constacyclic code over Bk and

[5 ·2k+2, 5 ·2k+2−2k, 4] are the parameters of Ψk(C). Since h∗
vB

(x)hvB (x) is divisible by x20−1

on the right, C⊥ ⊆ C. Hence, by Theorem 5.2, we obtain a quantum code with parameters

[[5 · 2k+2, 9 · 2k+1, 4]] for a suitable k.

Example 5.4 Let F25 = F5[ξ] with ξ2 = ξ + 3 and Ω(̺) = ̺5 for any ̺ ∈ F25. Let

n = 12, λk = −1. If fvB (x) = x5 + ξx4 + ξ8x3 + ξ21x2 + ξ21x + ξ11, then CvB = 〈fvB (x)〉 is a

skew negacyclic code of length 12 over F25. Hence the code C =
〈

∑

B∈Pk

evBfvB (x)
〉

is a skew

λk-constacyclic code over Bk and [3 · 2k+2, 2k+3 − 2k, 4] are the parameters of Ψk(C). Since

h∗
vB

(x)hvB (x) is divisible by x12 − 1 on the right, C⊥ ⊆ C. Hence, by Theorem 5.2, we obtain

a quantum code with parameters [[3 · 2k+2, 2k+1, 4]] for a suitable k.



Skew Constacyclic Codes over a Family of Finite Rings 949

Example 5.5 Let F9 = F3[ξ] with ξ2 = ξ + 1 and Ω(̺) = ̺3 for any ̺ ∈ F9. Let

n = 18, f1(x) = fv1(x) = · · · = fvk(x) = x8 + ξ4x7 − ξx6 + x5 − ξ6x3 + ξ5x2 − ξ2x − ξ2 and

other fvB (x) = x6 − ξ2x5 + ξ3x4 − ξ6x3 + ξ7x2 − ξ2x + ξ6, then C1 = Cv1 = Cv2 = · · · =

Cvk = 〈x8 + ξ4x7 − ξx6 + x5 − ξ6x3 + ξ5x2 − ξ2x− ξ2〉 is a skew cyclic code of length 18 over

F9 and other CvB = 〈fvB (x)〉 is a skew negacyclic code of length 18 over F9. Hence the code

C =
〈

∑

B∈Pk

evBfvB
〉

is a skew λk-constacyclic code over Bk and [9 · 2k+1, 11 · 2k, 6] are the

parameters of Ψk(C). Since h∗
vB

(x)hvB (x) is divisible by x18 ± 1 on the right, C⊥ ⊆ C. Hence,

by Theorem 5.2, we obtain a quantum code with parameters [[9 · 2k+1, 2k+2, 6]] for a suitable k.

6 Conclusion

In this paper, by using the skew constacyclic codes over the family of finite rings Bk, the

parameters of quantum codes and LCD codes were obtained, and some computations were

made. In the future, the asymmetric quantum codes can be obtained from skew constacyclic

codes, and entanglement-assisted quantum error-correcting codes can be obtained from LCD

skew constacyclic codes over the family of finite rings Bk. Also, codes with better parameters

can be found.
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