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Skew Constacyclic Codes over a Family of Finite Rings
and Their Applications to LCD and Quantum Codes
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Abstract This paper studies skew constacyclic codes over a family of finite rings denoted
by By to obtain quantum codes over the fields F,~ and to construct Euclidean LCD skew
constacyclic codes. The author investigates the structural properties of skew constacyclic
codes over By using a decomposition approach, and also finds necessary and sufficient
conditions for skew constacyclic codes that contain their duals. Finally, the author gives
some examples of quantum codes obtained via the construction and LCD codes.
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1 Introduction

In the classical computer and digital platform, the classical error-correcting codes are de-
veloped in order to transmit information and to correct mistakes which occur in information.
Recently, instead of classical computers, the quantum computers are considered. Moreover,
quantum computers are known to be able to solve certain problems faster than classical com-
puters can. With the expected arrival of quantum computers which work with respect to
quantum mechanics basics in the near future, research into quantum information theory has
intensified significantly.

Quantum computers outrun the classical computers in their ability to solve complex prob-
lems. While the problem of factorizing a number into its primes is easily achievable for small
numbers, it takes months for larger numbers even with the best computers. It is believed that
a quantum computer can overcome the same problem within a few minutes if properly imple-
mented. Also, while no efficient algorithm is known for the integer factorization problem for
classical computers, an efficient (polynomial time) algorithm is known for quantum computers.

Quantum error-correcting codes (QECCs for short) are used in quantum computing and
communication to correct errors that occur during the transmission in a noisy channel and to
protect quantum information from decoherence. The application of error-correcting codes by

quantum computers can be labeled as one of the pivotal reasons for this efficiency.
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Effective techniques for quantum error-correction were first developed by Shor and indepen-
dently by Steane. They discovered quantum error-correcting codes (see [23—-24]). Calderbank
et al. presented a way of constructing quantum codes from classical codes (see [7]). Later,
Ketkar et al. generalized these results to a non-binary case (see [16]). Lately, quantum codes
are studied in [2, 10, 13-14, 19].

In classical coding theory, cyclic codes play a prominent role due to their algebraic structures.
There are many useful generalizations of cyclic codes. One important generalization of cyclic
codes that has received a lot of attention in recent years is the class of skew cyclic codes.
Boucher et al. [3] introduced skew cyclic codes as a generalization of cyclic codes using the
skew polynomial ring F[z, 0], where F' is a finite field and 6 is a non-trivial automorphism over
F'. Later, many researchers investigated skew codes over various finite rings (see [1, 4-5, 26]).

A linear complementary dual code (called LCD) is defined as a linear code C' whose dual
code O+ satisfies CNC* = {0}. LCD codes were introduced by Massey [21]. Yang and Massey
classified cyclic LCD codes over finite fields (see [27]). These codes have gained serious attention
due to their recent successful application in cryptography and are used in communications
systems, data storage and consumer electronics. LCD codes over Fy play an important role
in implementations against side channel attacks (SCA for short, which consists in passively
recording some leakage, and this is the source of information to retrieve the key) and fault
injection attacks (FIA for short, which consists in actively perturbing the computation so as to
obtain exploitable differences at the output) (see [8]). Tzeng and Hartmann proved that the
minimum distance of a class of LCD codes is greater than that given by the BCH bound (see
[25]). Sendrier showed that LCD codes meet the asymptotic Gilbert-Varshamov bound using
properties of the hull dimension spectrum of linear codes (see [22]). Dougherty et al. gave a
linear programming bound on the largest size of an LCD code of given length and minimum
distance (see [11]). Recently, LCD codes are studied in [6, 12, 17-18, 20].

Motivated by the previous works, we study quantum codes that are obtained from skew
constacyclic codes and Euclidean LCD skew constacyclic codes over an infinite family of the

finite rings denoted by Bjy.

2 Preliminaries

In [15], Irwansyah et al. introduced the family of finite rings By. We summarize some of
the relevant results from [15] in this section. The infinite family of the finite rings By, is a
generalization of the family of finite rings A (see [9]).

Let F,- be the finite field of order p" for a prime p and a positive integer r. The family of
the finite rings By is defined as

By, := Fpr|v1,vg, -+ ,vﬂ/(vf — ;, VU — VjV;)



Skew Constacyclic Codes over a Family of Finite Rings 939

for all ¢,5 = 1,2,---, k. We also define By = Fj,». If k = 1, then By = Fpr + v1Fpr, where
v% =wvy; if £ = 2, then By = Fyr + v1Fpr + vaFpr + v1v2F),-, where v% = v, v% = Vg, VU2 =
vov1. The rings in this family are finite commutative rings with cardinality (p’”)Qk and with
characteristic p.

Let B C {1,2,--- ,k} and vg = [] v;. In particular vy = 1. Each element of By is
i€B
of the form )" apvp, where ap € F,r, and P, is the power set of {1,2,---,k}. For
BePy
A,B C {1,2,---,k} we have that vavp = vaup which gives that Y apvp- >, Bcove =
BEP, CEPy
> (X aBc)vp. For more on the ring By, we refer the reader to [15].

DEP, BUC=D

A code C of length n over By is a subset of Bj}. A linear code C of length n over Bj

is a By-submodule of Bf. An element ¢ = (co,c1,- - ,cn—1) € C is called a codeword. Let A

be a unit in Bg. A linear code C of length n over By, is said to be Ag-constacyclic code if C' is in-

variant under the constacyclic shift operator vy, : By — B} defined by vy, (co,c1, -+ ,cn—1) =
(AkCn—1,€0,"** ,Cn—2). Note that the constacyclic code is a cyclic code for Ay = 1 and the
negacyclic code for A, = —1. By identifying each codeword ¢ = (cp,c1,- -+ ,cn—1) € B} with a

polynomial ¢(x) = co+crz+- - +cp_12" 1 in Bi[x]/(z™ — \), we see that a linear code C is a
Aj -constacyclic code of length n over By, if and only if it is an ideal of the ring By[z]/{ax™ — A\x).

Let x = (zo,21, - ,Tn—1) and ¥ = (Yo,Y1,- - ,Yn—1) be two elements of Bj}. Then the
Euclidean inner product of  and y is defined as -y = zoyo + z1y1 + - - - + Tn—1Yn—1. The dual
code C* of C' is defined as C+ = {z € B} | z-y = 0,Vy € C}. A code C is called self-orthogonal
if C C C* and self dual if C = C*. The reciprocal of a polynomial f(z) = ag+ajz+- - -+a,z" is
defined as f*(z) = x3°8(/(®) f(z=1). A polynomial f(z) is called self-reciprocal if f(z) = f*(z).

The skew reciprocal polynomial of g(z) = Xk: gix® of degree k is g*(z) = zk: 0 (gp_q)xt,
where @ is a non-trivial automorphism. If g dzo:e% not cancel, the left monic slgxgz reciprocal
polynomial of g is g°(x) = mg*(x). If a skew polynomial is equal to its left monic skew
reciprocal polynomial, then it is called self-reciprocal (see [6]).

We define

A1 DA @ - D Ay :{a1+a2+---+a2k ca; € Ag,i=1,2,- - ,Qk},
Al @A ® - ® Aok = {(a1, a2, - ,an):aieAi,izl,Z---,Qk}.

Let

vy =1+ (=1)P Z UB

BeEPy
and

e = vi+ (=D)IPFL Y wp

i€BEPy
|B|>2
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fori=1,2,---,k. The total number of e,,’s is (]1“) =k,

Coro; = V05 + (—1)1BI+2 E UB
<y i,jEBEP;
|B[>3

fori,5 =1,2,--- k. The total number of e,,,;’s is (]2“),

— B[+3
Cvpvjv, = ViljVs + (—1) Bl E vB
1<y<s i,j,s€EBEPy
|B|>4

for i,j,s =1,2,--- , k. The total number of e,,q,v,’s is (g),

evlw...vk = V102 V.

The number of ey, yy...v, 1S (]Z) =1
Then we have Y e,, =1, (ey,)? = vy and eype,, = 0if A # B forany A C {1,2,--- k},

BePy
BC{1,2,--- ,k}. Hence By = @D e,z B = @ ey, Fpr. Thus, we know that every element
BePy BePy
of By, can be uniquely expressed as z = Y aygz€yy, Where a,, € Fpr.
BePy

Example 2.1 Let k = 3. Then B3 = Fpr 4+ v1Fpr + vaFyr + v3Fpr + v102Fpr + v103Fr +
UQ’Ungr + U1U2U3Fp7‘. We have

€py=6€1=1—v1 —v2 — V3 +V1V2 + V1V3 + VaU3 — V10203,
€y, = V1 — V1V2 — V1V3 + U1V203,
€y, = V2 — V1V — V2V3 + V1V203,
€yy = VU3 — V1V3 — V2U3 + V1V203,

Evivy = V1V2 — V1V2V3,

€vyvg = V1V3 — V1V203,

Evyvgy = V2V3 — V1V203,

e’U1’U2U3 = U1U2'U3.
Hence, By, = e1Fpr @ ey, Fpr @ vy Fpr @ vy Fpr @ €410, Fpr @ €v10 Fpr @ €vpvs Fpr B €0y 0505 Fpr-
Let © € Aut(F,r). We define a non-trivial automorphism which is different from [15],

Ak:Bk%Bk

by Ak( Z anB) = Z Q(QB)UB.
BePy, BePy
The set of polynomials

Bk[:z:,Ak] = {a() +a1x+--- +an_1a:"_1 ra; € Bk,n S N}
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is the skew polynomial ring over Bj with the usual addition of polynomials and the non-

commutative multiplication given by
(az")(ba?) = aAl (b)x"H7
and extended to all polynomials with distributivity.

Definition 2.1 Let Ay be a non-trivial automorphism over By and A\, be a unit in B. C
is called skew \i-constacyclic code of length n over By, if the following conditions hold:

(i) C is a By-submodule of B},

(ii) of s = (0,81, "+, Sn—1) € C, then Ay, (s) = (Ar(Apsn—1), Di(s0),  + , Ar(sn—2)) € C.

As the ring By [z, Ag] is non-commutative, its ideal (™ — \g) is two sided only if n is even.
So if m is even, then the set By, n = By[z,Ap]/(z" — Ax) is a residue class ring. For an

arbitrary n, By, » is a left By [z, Ag]-module.

Theorem 2.1 A skew Ag-constacyclic code of length n over By, is defined as a left By|x, Ag]-
submodule of Bylz, Ag]/{x™ — \g).

Theorem 2.2 Let C = (f(z)) be a left B[z, Ag]-submodule of Bi[x, Ag]/{(x™ — Ar). Then

f(zx) is a right divisor of x™ — A\, where f(z) is a monic polynomial of minimum degree in C.
Note that a skew A\i-constacyclic code is a skew cyclic code for A\, = 1 and a skew negacyclic
code for \p = —1.
The Gray map ¥y is
\I/k : Bk — F;Tk

z = Z Qyzepy — Pr(z) =T,

BePy
where
T:( E Ay E Qyg E Aygy s E Qyp, E Ayp, E Aygy "y
B=z  BC{1}  BC{2} BC{k}  BC{12}  BC{13}
E av37 E a’u37"'7 E aUBa"'u E a‘vza)u
BC{i,j} BC{1,2,3} BC{i,j,s} BC{1,2,--,k}
i<j 1<j<s

Qyy € Fpr fori,j,s =1,2,--- k.
The Gray map V¥ can be extended from B} to Fif",

Example 2.2 Let £ = 3. Then

Uy : By — F;

z = Z Ay ey — Ps(z) =T,
BeP;
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where

T = (a1,01 + vy, Q1 + Quy, Q1 F oy, Q1 F Ay F Gy + Quyugs A1 F Gy + Quy + Qs
a1 F Ay + Ay + Qugvgs A1 + Quy + Quy + Gug + gy + Cuyos + Guavs + Goyvsvs)-
For any © = >, apvp € By, let the Lee weight be defined as wr(z) = wy(Vi(z)),

BeEPy
where wy is the Hamming weight. The Lee weight of a vector a = (a1, - ,a,) € Bg is

defined as wy(a) = > wr(a;). For any elements aj,a2 € C, the Lee distance is given by
i=1

dr(ai,a2) = wr(a; — ag). The minimum Lee distance of C' is defined as di, = dp(C) =

min{dy(c, é) : Ve, é € C,c # ¢é}.

Theorem 2.3 The Gray map Vi is a linear and distance preserving map.

Let C be a linear code of length n over Bi. We define

Coy=C1 = {avg :Ja,, € Fr, Z Ay ey, € C},
B#o BeP:

Cy, = {av1 :Ja, €Fy, Z Ay ey € C},

B#{1} BePy
Cyp, = {av2 :Ja, €, Z Ay ey € C},
B#{2} BePy,

Cy, = {avk 13 a,, €Fy, Z AypCyp € C},

B#{k} BePy
Corvs = {avw2 13 a, €, Z Ay € C’},
B#{1,2} BEP;,

. n
Corvgev, = {a'Ul'U2""Uk 23 ay, S E Ayg€yy € C’}.
B#{1,2,-- k} BeP,

The number of C,,, is 2*. Then C,,, is a linear code of length n over F),» and the linear code

C of length n over By, can be expressed uniquely as

C= P €w,Cop

BeEPy

such that dz,(C) = min{ds (Cy,)} and |O = ] |Conl-

BePy
Theorem 2.4 Let C = @ e,,Cy, be a linear code of length n over By. Then the dual
BePy
Ct= @ e,,Cy, is also a linear code of length n over By.

BeEPy
Let G be a generator matrix of C over By. If G,, is a generator matrix of C,,, then a

generator matrix of C' is G = [e,,G,;] and a generator matrix of Wi (C) is [k (e Goy)]-
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Theorem 2.5 If C is an (n, M,dr) linear code over By, then Wi (C) is a (2n, M, dg)

linear code over Fyr, where dp, = dpg.

Proof By Theorem 2.3, ¥ is a linear and distance preserving map. Hence d;, = dg.
Since Wy, is a bijection, |C| = [¥,(C)| = (pr)2". Also, the set ¥4(C) is a code of length 2¥n

over F,r. So, ¥ (C) is a linear (28n, M, dy) code over Fr.

Theorem 2.6 Let C be a code over By. Then C' is a self-orthogonal code over By if and

only if Cy, 1s a self-orthogonal code over Fyr.

Proof Let C be a self-orthogonal code over By, and x = > a,,e,, € C, where a,, €
BePy
Cyp- Since C' is a self-orthogonal code,

X X = ( Z avBeUB)( Z a'uBe’UB)

BePy BeP;,

— 2 —
= E a, ey, = 0.

BePy
We get a2 = 0. Hence a,, € C’ULB implying C,, is a self-orthogonal code over Fj-.

The other direction is obvious by the expression of C.

Theorem 2.7 Let C be a linear code C of length n over By. Then ¥ (Ct) = Ui(O)*.
Moreover, if C is a self-dual code, then so is Wi (C).

Proof This can be proved similarly to [10].

Theorem 2.8 Let C be a linear code C of length n over By. Then ¥i(C) = @ C,, and

BePy
[Uk(C) = TI |Cusl
BePy

Proof This can be proved similarly to [10].

3 Skew Constacyclic Codes over By

Let A\x € By be a unit. Then
M= Y Auyus,
BePy
where A, is a unit in Fj-. Since
A}’ce'uB = evB( Z AUB)J
BePy
we have

Ao = /\k( 3 evB)

BeEPy

Z Avg€og -

BePy
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Theorem 3.1 Let Ay, € B. Then A\ is a unit in By, if and only if > Ay, is a unit in
BePy
Fy. for B C{1,2,--- k}.

Proof By the Chinese Remainder Theorem, A is a unit in By, if and only if Y. A, is
BePy
a unit in £

Theorem 3.2 Let C = @ e,,C,, be a linear code of length n over By. Then C is a

BePy
skew Ai-constacyclic code over By, if and only if every Cy, is a skew A\, -constacyclic code over

Fyr.

Proof Let C = & e,,C,, be a skew Ag-constacyclic code of length n over By and

BePy
a = (ai,a2, - ,a,) € C, where a; = ) ez, and zj,, € Fpr fori = 1,2,--- ,n. Then
BePy
Xpp = (wb,, a2, al,) € Cypy, xh, € Fypr for i = 1,2,--- ,n. Since C is a skew \g-
constacyclic code, Ay, (a) € C. We have Apey, = €y (D vy ) and Ay, fixes v1, v, -+, vg.
BePy

Then Ay, (3 Aup) = 3 Auy. We have

BePy, BePy

Ay, (Agay) = Z evBQ( Z )\vaﬁB).
BePp, BeP,

Hence, Q( Y A\yai.) € Cpp fori =1,2,---,n. So, Cy, is a skew A, ,-constacyclic code

BePy

over Fyr.

The converse can be shown similarly.

Theorem 3.3 Let C = @ e,,Cy; be a skew \i-constacyclic code of length n over Bj,.

BePy
Then
C= <elf17 €y furs s €op Jors Corvg forves 761)11)2---’Uk;f1)1’l)2'”1)k>
an—dcg( > va)
and |C| = (p") BEPk , where f,, s a generator polynomial of C, .

Proposition 3.1 Suppose C is a skew Ag-constacyclic code of length n over By. Then there

is a unique polynomial f(x) such that C = (f(x)) and f(z) | 2" =g, where f(z) = > eyp fog-
BeP

Proposition 3.2 Suppose C is a skew M\g-constacyclic code of length n over By, then

Ct= @ e, CF, is a skew Ay t-constacyclic code of length n over By, and all Cy., are skew
BeP

( > /\UB)_I—constacyclic codes of length n over Fyr.
BePy

Proposition 3.3 If C = @ e,;Cy; 15 a skew A\g-constacyclic code of length n over By,
BeEPy

ot :< ) evBhT,B>

BePy,

then
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n dcg( > va) ) ' )
and |C+| = (p") BEPy , where 1" =\, = hyp, fo, and by is the skew reciprocal polynomial
of hyp -

4 Construction of LCD Skew Constacyclic Codes over By

Definition 4.1 The hull of the linear code C over Fy is defined to be Hull(C') = C' N C+.
When Hull(C) = {0}, the code C is called an LCD code.

It is clear that, Hull(C) is a linear code.

Theorem 4.1 (see [6]) Consider F, a finite field, 6 an automorphism of Fy of order p,
R = F,[z,0], n in N* and X € {1,—-1}. Consider a (0, \)-constacyclic code C with length n,
skew generator polynomial g and consider h in R such that ©™(h).g = 2™ — X. C is a Euclidean

LCD code if and only if gerd(g, h?) = 1, where h¥(z) = mm ().

Theorem 4.2 Let C = @ e,,Cy; be an LCD code over By, if and only if every C,, is

BePy
an LCD code over Fpr.

Proof A linear code C = @ e,,Cy, has dual code C+ = @ e,,C;.. We have
BEP, BEP,

Hull(C) = CNCY = @ ey, (Copy NCL ). Hull(C) = {0} if and only if C,, NCL = {0}
BePy

By Theorem 4.1, we can obtain the following theorem.

Theorem 4.3 Let C = @ e,,Cy, be a skew \g-constacyclic code over By, with length n.
BePy

C is an LCD code if and only if gerd(fo, (x), hS, (z)) = 1.
Lemma 4.1 Let C be a linear code over By with length n. Then ¥ (C NCL) = ¥ (C)N
U (C)*.

Theorem 4.4 IfC = @ e,,Cy, is an LCD code of length n over By, then Vi (C) is an
BePy

LCD code of length 2%n over Fyr.

Proof Let C be an LCD code. Then CNC*+ = {0}, so ¥, (CNC+) = {0}. From Lemma
4.1, ¥1,(C) N W (C)* = {0}. Therefore, Uy (C) is an LCD code.

Conversely, let Uz (C) be an LCD code. Then ¥y (C) N ¥ (C)t = {0}. From Lemma 4.1,
we have U, (C'NC+) = {0}. Since ¥}, is injective, C N C+ = {0}. Hence, C is an LCD code.

Remark 4.1 Let C be an [n,k,d] linear code. If it attains the Singleton bound, i.e.,

d=n—k+1, it is called a maximum distance separable code, or MDS code.

Example 4.1 Let k = 3, Fy = F3[¢] with €2 = £ + 1 and Q(0) = ¢® for any ¢ € Fy. Let
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n = 4. We have

1=+ Er+ 1)@+ €2+ 1) € Fylz, 9,
2t —1=(x+ 1)z +2)(x+&)(x+£) € Fylr, Q).

If g1(2) = gv, (%) = gu(¥) = guy(x) = = + §" and gy,0, (2) = G105 (T) = Gugus (¥) =
Gurvavs (1) = 22+ €670+ 1, then Cy = Cy, = Oy, = Oy, = (2 +£7) is a skew cyclic code of length
4 over Fy and Cy,, = Cuyvg = Copvs = Coyugws = (22 + €72 + 1) is a skew negacyclic code of
length 4 over Fy. The skew reciprocal polynomial of 23 +&x2 + 22+ &% is 23+ £%22 + 22+ €. The
skew reciprocal polynomial of 22 +&3z+1 is 22 +£z+1. By Theorem 4.1, C; = C,, = C,, = O,
is a Euclidean LCD MDS code with parameters [4,3,2] and Cy, v, = Cyios = Crovs = Cojvgos 18
a Euclidean LCD MDS code with parameters [4,2, 3]. Hence the code C is an LCD code over
Bj with length 4 and ¥3(C) is an LCD code with parameters [32, 20, 2].

It can be generalized for a suitable k.

Example 4.2 Let k = 2, Fy = F3[¢] with €2 = £ + 1 and Q(0) = ¢® for any ¢ € Fy. Let
n = 6. We have

2 +1=(z+E)@+¢)° € Fe,q

= (23 4+ 222 — x4+ 5)(2® + 222 —x + 3),
25— 1=+ (x+%(x+1)(z+2) € Fyz, Q)
(

=@ e v+ D)3+ + €Y.

If g1(2) = gun (1) = 2% + €72% + 2+ € and oy (¥) = goyra(z) = 2° + €22 — 2 + €2, then
C1 = C,, is a skew cyclic code of length 6 over Fy and C,, = Cy,,, is a skew negacyclic code
of length 6 over Fy. The skew reciprocal polynomial of 3 + £x2 4+ 2 4+ 1 is 2% + €22 + = + 1.
The skew reciprocal polynomial of x® 4 €222 — x + €% is o3 + €222 + "z + €. By Theorem
4.1, C; = C,, is a Euclidean LCD MDS code with parameters [6,3,4] and C,, = Cyy4, is a
Euclidean LCD MDS code with parameters [6, 3, 4]. Hence the code C' is an LCD code over By
with length 6 and ¥5(C) is an LCD code with parameters [24,12,4].

It can be generalized for a suitable k.

5 Quantum Codes from Skew Constacyclic Codes over By

Definition 5.1 A g-ary quantum code is a ¢¢ dimensional subspace of the Hilbert space
C9". A quantum code with length n, dimension t and minimum distance d over Fy is denoted
by [[n,t,d]]q-

In the sequel, we will construct quantum codes from dual containing skew constacyclic codes

over By.
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Lemma 5.1 Let C be an [n,t,d] linear code over F,. If Ct C C, then there exists a

quantum code of type [[n,2t —n,> d]] over F, (see [16]).

Lemma 5.2 Let C be a skew constacyclic code of length n over Iy with A € Fy. If Cctcc,
then A = A~ ! (see [26]).

Lemma 5.3 Let C = (f(x)) be a skew A-constacyclic code of length n over Fy such that
the order of automorphism ) divides n, where A\ = F1. Then C+ C C if and only if h*(x)h(x)
is divisible by =™ — X\ on the right (see [16]).

Theorem 5.1 Let C' = < > eup va> be a skew Ag-constacyclic code of length n over By,
BePy
such that the order of automorphism Ay, divides n and 5. A, = F1. Then C+ C C if and
BePy
only if hy_hyy is divisible by 2™ — >~ Ay, on the right.
BeP;

Proof Let C = < > eup va> be a skew A\p-constacyclic code of length n over By, where

BeEPy
fop € Cop. If B3 hyy, is divisible by 2 — 37 A, on the right, then by Lemma 5.3, we can get
BePy
Cy, C Cy,, which implies that e,,C;- C €,,Cy,. Therefore, @ €,,C: C P ey, Cop.
BeP;, BeP;,

So, C+ C C.

Conversely, if C+ C C, then @ €,,Cp, € @D ey, Coy. Hence, €,,Cy, = €,,C+ C

BePy BePy
vy Cop = €5, C. That is Cf-, C C,,. By Lemma 5.3, h}  h,,, is divisible by 2" — > X, on
BePy

the right.

By Lemma 5.1 and Theorems 2.6, 5.1, we can obtain quantum codes from skew Ag-constacyclic

codes over By.

Theorem 5.2 Let C = @ e,,Cy,; be a skew Ag-constacyclic code of length n over By,
BePy

such that the order of automorphism Ay divides n. If C+ C C, then there exists a quantum
error-correcting code with parameters [[2¥n, 2t — 2Fn, dr]], where dr, denotes the minimum Lee

distance of C and t is the dimension of the code Uy (C).

Remark 5.1 Let C be a quantum [[n, k,d]] code. If it attains the (quantum) Singleton
bound, i.e., 2d = n — k 4+ 2, it is called a maximum distance separable code or quantum MDS

code.

Example 5.1 Let k = 3, Fy = F3[¢] with €2 = £ + 1 and Q(p) = ¢® for any ¢ € Fy. Let
n = 6. We have

B +1= (4@ +¢)° € Bz,
25— 1=+ @+ x+1)(z+2) € Fylz, Q).

If fl(x) = fvl(x) = fvz(x) = fvs(x) = z? +§6x+1 and fmvz(x) = fv1U3(x) = fvzv?,(x) =
Jorvavs () = x4+, then Cy = Oy, = C,, = Cpy = (22 +E82+1) is a skew cyclic code of length 6
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over Fy and Cy, 4, = Cyyvs = Cugug = Coyuges = (+&) is a skew negacyclic code of length 6 over

Fy. Hence the code C = < > eup fUB> is a skew (1 + v1v2 + v1v3 + V2v3 4 V1V2v3)-constacyclic
BePs

code over Bz and ¥3(C') has parameters [48, 36, 3].

Since
hi(x) = ho, (2) = hyy () = hog () = ot + 52553 + 5653 + 2,
hi(x) = by, (x) = hy, () = By, (2) = 2" + £%2° + &2 + 2,
Py (T) = Ty g (7) = Py (T) = My ugug () = a® + 57554 +22° + 53552 +z+ 577
hzlvg (:,U) = hzlvg (:,U) = hzgvg (‘T) = hzlvg’ug (‘T) = x5 + 631.4 + 21’3 + §7x2 + &€ + 637

we have h}_(z)h,,(z) is divisible by 2° &1 on the right. Therefore, C*+ C C. Hence, by
Theorem 5.2, we obtain a quantum code with parameters [[48, 24, 3]].

Similarly, we obtain a quantum code with parameters [[3 - 28+ 3. 2% 3]] for a suitable k.

Example 5.2 Let Fy = F3[¢] with €2 = £ + 1 and Q(p) = 0® for any ¢ € Fy. Let n = 8.
We have

2% —1=(2? =€) (2? + .+ ) (x - ) (2? — Ex + 1) (2 + £°) € Fy[r, Q).

If fo,(x) = o+ &5, then C,, = (x + £°) is a skew cyclic code of length 8 over Fy with
parameters [8,7,2]. Since h}_(z)h,, (x) is divisible by 2® — 1 on the right, C;. C C,,. Hence
we obtain a quantum MDS code with parameters [[8, 6, 2]] over Fy.

Let Ay = 1. The code C' = ( 3 ey, (x4 £°)) is a skew Ap-constacyclic code over By, and
BePy

[2k+3 2k+3 — 9k 9] are the parameters of Wy (C). Since h}_ (z)hy,(x) is divisible by 2% — 1
on the right, C+ C C. Hence, by Theorem 5.2, we obtain a quantum code with parameters

[2k+3 2k+3 — 2k+1 9] for a suitable k.

Example 5.3 Let Fy F3[¢] with €2 = £+ 1 and Q(p) = o> for any o € Fy. Let
n =20, = 1. If f,,(x) = 2+ €2, then C,, = (x + £2) is a skew cyclic code of length 20

over Fy. Hence the code C = < S ey + 52)> is a skew Ag-constacyclic code over By, and
BePy

[5-2FF2 5.2FF2 _ 2% 4] are the parameters of ¥;(C). Since i} (x)hy, (z) is divisible by 2?0 —1
on the right, C+ C C. Hence, by Theorem 5.2, we obtain a quantum code with parameters
[5- 282 9. 2k+1 4]] for a suitable k.

Example 5.4 Let Fy; = F5[¢] with €2 = £ + 3 and Q(p) = ¢° for any ¢ € Fhs. Let
n =12, A\, = —=1. If f,,(z) = 2 + &t 4+ 823 4+ 212? + 1z + €' then Oy, = (fo, (7)) is a

skew negacyclic code of length 12 over Fy5. Hence the code C' = { Y ey, fo,(2)) is a skew
BePy,

Ag-constacyclic code over By and [3 - 2842 2F+3 _ 9k 4] are the parameters of Wy (C). Since
;. (@)hy, (@) is divisible by 2'? — 1 on the right, C+ € C. Hence, by Theorem 5.2, we obtain

a quantum code with parameters [[3 - 2842 2F+1 4]] for a suitable k.
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Example 5.5 Let Fy = F3[¢] with €2 = ¢ + 1 and Q(p) = o° for any o € Fy. Let
n =18, fi(z) = fo,(x) = -+ = fo,(x) = 2% + 42" — a5 + 25 — €023 4 522 — 22 — €% and
other f,,(z) = 2% — €225 + &32* — 023 + 2% — 204+ €5 then C, = C, = Cp, = -+ =
Cpy, = (28 + %27 — a0 + 25 — 52 + €522 — 22 — €2) is a skew cyclic code of length 18 over
Fy and other C,, = (f,,(z)) is a skew negacyclic code of length 18 over Fy. Hence the code

C = ( Y euvyfos) is a skew \j-constacyclic code over By and [9 - 28+1 11 - 2% 6] are the
BePy

parameters of Wy, (C). Since h}_ (z)hy, () is divisible by 2'® &1 on the right, C*+ C C. Hence,

by Theorem 5.2, we obtain a quantum code with parameters [[9 - 2+ 2k+2 §6]] for a suitable k.

6 Conclusion

In this paper, by using the skew constacyclic codes over the family of finite rings By, the
parameters of quantum codes and LCD codes were obtained, and some computations were
made. In the future, the asymmetric quantum codes can be obtained from skew constacyclic
codes, and entanglement-assisted quantum error-correcting codes can be obtained from LCD
skew constacyclic codes over the family of finite rings B. Also, codes with better parameters

can be found.
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