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1 Introduction

Let M be a Kähler surface, ω be the Kähler form on M and J be a complex structure

compatible with ω. For vector fields U, V on M, the Riemannian metric g on M is defined by

g(U, V ) = ω(U, JV ).

For a compact oriented real surface Σ which is smoothly immersed in M , the Kähler angle α

of Σ was defined by [4],

ω|Σ = cosαdµΣ, (1.1)

where dµΣ is the area element of the induced metric on Σ. We say that Σ is a symplectic surface

if cosα > 0 and Σ is a holomorphic curve if cosα ≡ 1.

The existence of holomorphic curves is a fundamental problem in differential geometry. By

Wirtinger’s inequality, holomorphic curves are always area-minimizing in its homological class,

thus must be symplectic stable minimal surface. On the other hand, Wolfson [11] showed that

any symplectic minimal surface in Kähler-Einstein surface with nonnegative scalar curvature

must be holomorphic curve. Hence, it is natural to consider the existence problem for symplectic

minimal surfaces. One important idea is to use the mean curvature flow, which is the negative

gradient flow for the area functional. The other way is to use variational method (see [6]).
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Fortunately, Chen-Li [2] and Wang [10] independently proved that “symplectic” property is

preserved by the mean curvature flow, in which case we call it “symplectic mean curvature

flow (SMCF for short)”. The symplectic mean curvature flow exists globally and converges at

infinity in graphic cases (see [3]). Han-Li [5] proved that, in a Kähler-Einstein surface with

positive scalar curvature, if the initial surface is sufficiently close to a holomorphic curve, then

the symplectic mean curvature flow exists globally and converges to a holomorphic curve at

infinity. In the space CP
2 with constant holomorphic sectional curvature k > 0, Han-Li-Yang

[8] proved that if the Kähler angle of the initial surface has a certain lower bound and satisfies

certain pinching estimate, then the symplectic mean curvature flow exists for a long time and

converges to a holomorphic curve.

Furthermore, Chen-Li [2] and Wang [10] proved that there is no finite time Type I singularity

for symplectic mean curvature flow. Therefore, it is important to study Type II singularities

for the symplectic mean curvature flow, which are always eternal solutions. An important type

of eternal solutions to the mean curvature flow is translating solitons. There are many rigidity

results on symplectic translating solitons. For instance, together with Han, the second author

(see [9]) showed that any symplectic translating soliton with nonpositive normal curvature

cannot arise as blow up limit of symplectic mean curvature flow. On the other hand, for general

blow up flow, we (see [7]) proved that any eternal mean curvature flow which is normally flat

cannot arise as blow up limit for symplectic mean curvature flow. So we are interested in the

symplectic mean curvature flow with normal curvature pinched. Recently, Baker-Nguyen [1]

studied codimension two surfaces pinched by normal curvature evolving by mean curvature flow,

they proved that codimension two surfaces satisfying a nonlinear curvature condition depending

on normal curvature smoothly evolve by mean curvature flow to round points.

In this paper, we mainly study the symplectic mean curvature flow in space CP
2. We use

common notations, such as H for mean curvature, A for the second fundamental form and K⊥

for normal curvature. We show that the symplectic mean curvature flow with normal curvature

pinched exists for a long time and converges to a holomorphic curve, i.e., the following theorem.

Theorem 1.1 Suppose Σ is a symplectic surface in CP
2 with constant holomorphic sectional

curvature k > 0. Taking µ ∈ [0, 1], assume that

|A|2 + 2µγ|K⊥| ≤ λ|H |2 + 160λ+ 4 + 2µ− 6µ cos2 α

40λ+ 1

2λ− 1

4λ
k,

where γ = 1
40λ+1 and

cosα ≥ max{S1(λ, µ), S2(λ, µ), S3(λ, µ)}

holds on the initial surface for any 1
2 < λ ≤ 2

3 − 1
12µ, then it remains true along the symplectic

mean curvature flow. Furthermore, under this assumption, the symplectic mean curvature flow

exists for a long time and converges to a holomorphic curve.
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Remark 1.1 Here we need to point out that S1(λ, µ), S2(λ, µ) and S3(λ, µ) are polynomials

with respect to λ and µ, in the following forms:

S1(µ, λ)
.
=

√

11− 4λ

12(λ+ 1)
,

S2(µ, λ)
.
=

√

472λ− 320λ2 + 12 + 6µ

6(160λ2 + 4λ+ 3µ)

and

S3(µ, λ)
.
=

√

400λ2(7λ− 3)(2λ− 1)(40λ+ 1)2 + µ(J2(µ, λ) − J1(µ, λ))

1200λ3(2λ− 1)(40λ+ 1)2 + µJ2(µ, λ)
,

where

J1(µ, λ) = 4λ(2λ− 1)(40λ+ 1)[(30− 40λ)(40λ+ 1)− (40λ+ µ)(40λ+ 1)

− (30− 40− µ)(40λ+ µ)]

and

J2(µ, λ) = λ(40λ+ 1)[240λ2(40λ+ 1)− 6(2λ− 1)(30− 40λ− µ)(40λ+ µ)].

And we know by numerical calculation that

1

3
< max{S1(λ, µ), S2(λ, µ), S3(λ, µ)} ≤ 1.

Remark 1.2 S1(λ, µ), S2(λ, µ) and S3(λ, µ) look very complicated in terms of how they

are expressed, and that is because we are thinking about normal curvature pinched condition.

This condition is valuable because submanifolds with non-flat normal bundle are more general.

Remark 1.3 When µ = 0, the inequality (3.7) does not exist and then (3.12)–(3.14) are

meaningless. At this time, the pinching condition reduces to

|A|2 ≤ λ|H |2 + 2λ− 1

λ
k

and

cosα ≥ S3(0, λ) =

√

7λ− 3

3λ
,

where 1
2 < λ ≤ 2

3 . This is exactly the assumptions of the main result of Han-Li-Yang [8].

Note that the holomorphic sectional curvature of CP2 is k > 0. Using a similar method, we

can consider the case of flat torus T4. We have the following result.

Theorem 1.2 Suppose Σ is a symplectic surface in the flat torus T4. Assume that |A|2 +
2µγ|K⊥| ≤ λ|H |2, where µ ∈ [0, 1], γ = 1

40λ+1 and cosα ≥ δ (0 < δ ≤ 1 is a constant) holds on

the initial surface for any 1
2 < λ ≤ 2

3 , then it remains true along the symplectic mean curvature

flow. Furthermore, under this assumption, the symplectic mean curvature flow exists for a long

time and converges to a holomorphic curve.



954 X. Li and J. Sun

Unfortunately, we do not know whether the symplectic curvature flow has long-time exis-

tence and convergence in manifolds with negative curvature.

Throughout this paper we will adopt the following ranges of indices:

A,B, · · · = 1, · · · , 4,

α, β, γ, · · · = 3, 4,

i, j, k, · · · = 1, 2.

2 Preliminaries

In this section, we adhere to the notation of [8]. Now suppose M is a Kähler surface with

constant holomorphic sectional curvature k, then from [12, Theorems 2.1 and 2.3], we have the

following results.

Lemma 2.1 M has a curvature tensor of the form

Kkjih = −k

4
[(gkhgji − gjhgki) + (JkhJji − JjhJki)− 2JkjJih].

Thus M is symmetric. Furthermore, M is Einstein

Kji =
3

2
kgij .

Suppose that Σ is a submanifold in a Riemannian manifold M, we choose an orthonormal

basis {ei} for TΣ and {eα} for NΣ. Recall the evolution equation for the second fundamental

form hα
ij and |A|2 along the mean curvature flow (see [2, 10]).

Lemma 2.2 For a mean curvature flow F : Σ× [0, t0) → M , the second fundamental form

hα
ij satisfies the following equation

∂

∂t
hα
ij = ∆hα

ij + (∇∂k
K)αijk + (∇∂j

K)αkik

− 2Klijkh
α
lk + 2Kαβjkh

β
ik + 2Kαβikh

β
jk

−Klkikh
α
lj −Klkjkh

α
il +Kαkβkh

β
ij

−Hβ(hβ
ikh

α
jk + h

β
jkh

α
ik) + hα

imh
β
mkh

β
kj

− 2hβ
imhα

mkh
β
kj + hα

mjh
β
mkh

β
ik

+ hα
kmh

β
mkh

β
ij + h

β
ij〈eβ,∇Heα〉, (2.1)

where KABCD is the curvature tensor of M and ∇ is the covariant derivative of M . Therefore

∂

∂t
|A|2 = ∆|A|2 − 2|∇A|2 + [(∇∂k

K)αijk + (∇∂j
K)αkik]h

α
ij

− 4Klijkh
α
lkh

α
ij + 8Kαβjkh

β
ikh

α
ij − 4Klkikh

α
ljh

α
ij + 2Kαkβkh

β
ijh

α
ij

+ 2
∑

α,β,i,j

(

∑

k

(hα
ikh

β
jk − hα

jkh
β
ik)

)2

+ 2
∑

α,β

(

∑

i,j

hα
ijh

β
ij

)2

.
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Corollary 2.1 Along the mean curvature flow, the length of the mean curvature vector

satisfies

∂

∂t
|H |2 = ∆|H |2 − 2|∇H |2 + 2KαkβkH

αHβ + 2
∑

i,j

(

∑

α

Hαhα
ij

)2

.

Using Lemmas 2.1–2.2 and Corollary 2.1, Han-Li-Yang [8] computed the evolution equation

of the length of the second fundamental form and the length of the mean curvature vector in

CP
2 as follows.

Corollary 2.2 For a mean curvature flow F : Σ2 × [0, t0) → CP
2, the length of the second

fundamental form and the length of the mean curvature vector satisfy

∂

∂t
|A|2 = ∆|A|2 − 2|∇A|2 − k|A|2 − k

2
(3 cos2 α+ 1)|A|2

+ k(3 cos2 α+ 1)|H |2 − 2k(3 cos2 α− 1)|∇JΣt
|2

+ 2
∑

α,β,i,j

(

∑

k

(hα
ikh

β
jk − hα

jkh
β
ik)

)2

+ 2
∑

α,β

(

∑

i,j

hα
ijh

β
ij

)2

. (2.2)

Similarly,

∂

∂t
|H |2 = ∆|H |2 − 2|∇H |2 + 3k|H |2 − k

2
(3 cos2 α+ 1)|H |2

+ 2
∑

i,j

(

∑

α

Hαhα
ij

)2

. (2.3)

Suppose that M is a compact Kähler surface. Let Σ be a smooth surface in M. The Kähler

angle of Σ in M is defined by (1.1). Recall the evolution equation of cosα (see [2]).

Lemma 2.3 Along the symplectic mean curvature flow, cosα satisfies

∂

∂t
cosα = ∆cosα+ |∇JΣt

|2 cosα+Ric(Je1, e2) sin
2 α, (2.4)

where |∇JΣt
|2 = |h3

1k − h4
2k|2 + |h3

2k + h4
1k|2, {e1, e2, e3, e4} is any orthonormal basis for TM

such that {e1, e2} is the basis for TΣ and {e3, e4} is the basis for NΣ.

It is easy to see that |∇JΣt
|2 is independent of the choice of the frame and only depends on

the orientation of the frame.

By Ricci equation, we have

Rijαβ −Kijαβ = hα
iph

β
jp − hα

jph
β
ip.

Now let Σ be a surface in a Kähler surface M . Then the normal curvature is

K⊥ := R1234 −K1234 = h3
1ph

4
2p − h3

2ph
4
1p. (2.5)

We will choose a special frame for M . Actually, at the point where |H | 6= 0, we will choose

local orthonormal normal frame {ν3, ν4} with ν3 = H
|H| . It is also possible to choose the tangent
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frame {e1, e2} to diagonalize A1, where A1 is the second fundamental form corresponding to ν3.

Therefore, there exist functions a, b, c so that the second fundamental form can be expressed as

A =







|H |
2

+ a 0

0
|H |
2

− a






ν3 +

(

b c

c −b

)

ν4. (2.6)

Then we have

h3
11 =

|H |
2

+ a, h3
22 =

|H |
2

− a, h3
12 = h3

21 = 0, h4
11 = b, h4

22 = −b, h4
12 = h4

21 = c.

The mean curvature vector is given by H = H3ν3 +H4ν4 with H3 = |H | and H4 = 0.

In this local frame, we see by direct computation that

K⊥ = h3
1ph

4
2p − h3

2ph
4
1p = h3

11h
4
21 + h3

12h
4
22 − h3

21h
4
11 − h3

22h
4
12 = 2ac, (2.7)

|Å|2 = 2(a2 + b2 + c2), (2.8)

|A|2 =
|H |2
2

+ 2(a2 + b2 + c2) (2.9)

and

|∇JΣt
|2 = |h3

1k − h4
2k|2 + |h3

2k + h4
1k|2 =

1

2
|H |2 + 2[b2 + (a− c)2] = |A|2 − 2K⊥. (2.10)

Here, Å denotes the trace-free part of the second fundamental form.

Next, we would like to compute the evolution equation for the normal curvature.

Lemma 2.4 For a mean curvature flow F : Σ2 × [0, t0) → CP
2, the normal curvature

satisfies the equation

∂

∂t
K⊥ = ∆K⊥ − 2∇evolK

⊥ + |Å|2k(3 cos2 α− 1) +
1

2
kK⊥(1− 15 cos2 α)

+K⊥(|A|2 + 2|Å|2).

Proof From (2.5), we calculate

( ∂

∂t
−∆

)

K⊥ = −2(∇qh
3
1p∇qh

4
2p −∇qh

3
2p∇qh

4
1p) + h4

2p

( ∂

∂t
−∆

)

h3
1p

+ h3
1p

( ∂

∂t
−∆

)

h4
2p − h4

1p

( ∂

∂t
−∆

)

h3
2p − h3

2p

( ∂

∂t
−∆

)

h4
1p.

We denote

∇evolK
⊥ := ∇qh

3
1p∇qh

4
2p −∇qh

3
2p∇qh

4
1p. (2.11)

Notice that CP2 is locally symmetric. Using (2.1) and our choice of frame, we compute

(

∂

∂t
−∆

)

K⊥ = −2∇evolK
⊥

+ h4
2p[−2Kl1pkh

3
lk + 2K3βpkh

β
1k + 2K3β1kh

β
pk −Klk1kh

3
lp −Klkpkh

3
1l
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+K3kβkh
β
1p −Hβ(hβ

1kh
3
pk + h

β
pkh

3
1k) + h3

1mh
β
mkh

β
kp − 2hβ

1mh3
mkh

β
kp

+ h
β
1kh

β
kmh3

mp + h3
kmh

β
mkh

β
1p + h

β
1p〈eβ,∇He3〉]

+ h3
1p[−2Kl2pkh

4
lk + 2K4βpkh

β
2k + 2K4β2kh

β
pk −Klk2kh

4
lp −Klkpkh

4
2l

+K4kβkh
β
2p −Hβ(hβ

2kh
4
pk + h

β
pkh

4
2k) + h4

2mh
β
mkh

β
kp − 2hβ

2mh4
mkh

β
kp

+ h
β
2kh

β
kmh4

mp + h4
kmh

β
mkh

β
2p + h

β
2p〈eβ,∇He4〉]

− h4
1p[−2Kl2pkh

3
lk + 2K3βpkh

β
2k + 2K3β2kh

β
pk −Klk2kh

3
lp −Klkpkh

3
2l

+K3kβkh
β
2p −Hβ(hβ

2kh
3
pk + h

β
pkh

3
2k) + h3

2mh
β
mkh

β
kp − 2hβ

2mh3
mkh

β
kp

+ h
β
2kh

β
kmh3

mp + h3
kmh

β
mkh

β
2p + h

β
2p〈eβ,∇He3〉]

− h3
2p[−2Kl1pkh

4
lk + 2K4βpkh

β
1k + 2K4β1kh

β
pk −Klk1kh

4
lp −Klkpkh

4
1l

+K4kβkh
β
1p −Hβ(hβ

1kh
4
pk + h

β
pkh

4
1k) + h4

1mh
β
mkh

β
kp − 2hβ

1mh4
mkh

β
kp

+ h
β
1kh

β
kmh4

mp + h4
kmh

β
mkh

β
1p + h

β
1p〈eβ,∇He4〉]

= −2∇evolK
⊥

+ [−2K2112h
3
22h

4
21 + 2K34pkh

4
1kh

4
2p + 2K3412h

4
p2h

4
2p −K1212h

3
11h

4
21

−K1212h
3
11h

4
21 +K3kβkh

β
1ph

4
2p − |H |(h3

11h
3
11h

4
21 + h3

11h
3
11h

4
21)

+ h3
11h

β
1kh

β
kph

4
2p − 2hβ

1mh3
mkh

β
kph

4
2p + h

β
1kh

β
kmh3

mph
4
2p

+ h3
kmh

β
mkh

β
1ph

4
2p + h4

2ph
4
1p〈e4,∇He3〉]

+ [−2K1212h
4
12h

3
11 + 2K4312h

3
22h

3
11 + 2K4321h

3
11h

3
11 −K2121h

4
21h

3
11

−K1212h
4
21h

3
11 +K4kβkh

β
21h

3
11 − |H |(h3

22h
4
12h

3
11 + h3

11h
4
21h

3
11)

+ h4
2mh

β
mkh

β
k1h

3
11 − 2hβ

2mh4
mkh

β
k1h

3
11 + h

β
2kh

β
kmh4

m1h
3
11

+ h4
kmh

β
mkh

β
21h

3
11]

− [−2K1221h
3
11h

4
12 + 2K34pkh

4
2kh

4
1p + 2K3421h

4
p1h

4
1p −K2121h

3
22h

4
12

−K2121h
3
22h

4
12 +K3kβkh

β
2ph

4
1p − |H |(h3

22h
3
22h

4
12 + h3

22h
3
22h

4
12)

+ h3
22h

β
2kh

β
kph

4
1p − 2hβ

2mh3
mkh

β
kph

4
1p + h

β
2kh

β
kmh3

mph
4
1p + h3

kmh
β
mkh

β
2ph

4
1p

+ h4
1ph

4
2p〈e4,∇He3〉]

− [−2K2121h
4
21h

3
22 + 2K4321h

3
11h

3
22 + 2K4312h

3
22h

3
22 −K1212h

4
12h

3
22

−K2121h
4
12h

3
22 +K4kβkh

β
12h

3
22 − |H |(h3

11h
4
21h

3
22 + h3

22h
4
12h

3
22)

+ h4
1mh

β
mkh

β
k2h

3
22 − 2hβ

1mh4
mkh

β
k2h

3
22 + h

β
1kh

β
kmh4

m2h
3
22

+ h4
kmh

β
mkh

β
12h

3
22]

= −2∇evolK
⊥ − 8K1212(h

3
11 − h3

22)h
4
12 + (K3k3k +K4k4k)(h

3
11 − h3

22)h
4
12

+ 2K1234[|A|2 + 2(h4
12)

2 − 2h4
11h

4
22 − 2h3

11h
3
22]

+ [2|A|2 + 2(h3
11)

2 ++2(h3
22)

2 + 2(h4
12)

2 − 2h4
11h

4
22

− 3|H |2](h3
11 − h3

22)h
4
12.
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It is known that

K1212 = K3434 =
k

4
(3 cos2 α+ 1), K1234 =

k

4
(3 cos2 α− 1), Kij =

3

2
kgij .

Therefore, we have

− 8K1212(h
3
11 − h3

22)h
4
12 + (K3k3k +K4k4k)(h

3
11 − h3

22)h
4
12

+ 2K1234[|A|2 + 2(h4
12)

2 − 2h4
11h

4
22 − 2h3

11h
3
22]

= [K33 +K44 − 2K3434 − 8K1212](h
3
11 − h3

22)h
4
12

+ 2K1234

[

|A|2 + 2c2 + 2b2 − 1

2
|H |2 + 2a2

]

= 2ac
[

3k − 10 · k
4
(3 cos2 α+ 1)

]

+ 4|Å|2 · k
4
(3 cos2 α− 1)

= |Å|2k(3 cos2 α− 1) + ack(1− 15 cos2 α).

Corollary 2.3 For a mean curvature flow F : Σ2 × [0, t0) → CP
2, the length of the normal

curvature satisfies the inequality

∂

∂t
|K⊥| ≤ ∆|K⊥|+ 2|∇evolK

⊥|+ |Å|2k|3 cos2 α− 1|

+
1

2
k|K⊥|(1− 15 cos2 α) + |K⊥|(|A|2 + 2|Å|2). (2.12)

Proof At the point |K⊥| 6= 0, we notice that

∆|K⊥| = ∆〈K⊥,K⊥〉 1
2 = gij∇i∇j〈K⊥,K⊥〉 1

2

= gij∇i

〈K⊥,∇jK
⊥〉

〈K⊥,K⊥〉 1
2

=
|∇K⊥|2

〈K⊥,K⊥〉 1
2

+
〈K⊥,∆K⊥〉
〈K⊥,K⊥〉 1

2

− |∇K⊥|2
〈K⊥,K⊥〉 1

2

=
〈K⊥,∆K⊥〉
〈K⊥,K⊥〉 1

2

.

Consequently, we infer that

∂

∂t
|K⊥| = ∂

∂t
〈K⊥,K⊥〉 1

2 =
〈 ∂
∂t
K⊥,K⊥〉

〈K⊥,K⊥〉 1
2

= ∆|K⊥| − 2
K⊥

|K⊥|∇evolK
⊥ +

K⊥

|K⊥| |Å|
2k(3 cos2 α− 1)

+
1

2
k|K⊥|(1− 15 cos2 α) + |K⊥|(|A|2 + 2|Å|2)

≤ ∆|K⊥|+ 2|∇evolK
⊥|+ |Å|2k|3 cos2 α− 1|

+
1

2
k|K⊥|(1− 15 cos2 α) + |K⊥|(|A|2 + 2|Å|2).

At the point |K⊥| = 0, we can compute ∂
∂t

√

|K⊥|2 + ε, then we can take ε → 0 and we will

end up with the same result.
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3 Pinching Estimate

In order to prove the long-time existence of symplectic mean curvature flow, we need an

important pinching condition.

The following lemma is necessary when we estimate the gradient term in the evolution

equation.

Lemma 3.1 (1) For any η > 0, we have the inequality

|∇A|2 ≥
(3

4
− η

)

|∇H |2 −
( 1

4η
− 1

)

|w|2, (3.1)

where wα
i =

∑

l

Kαlil, |wα|2 =
∑

i

|wα
i |2 and |w|2 =

∑

α

|wα|2 = 9k2

8 cos2 α sin2 α.

(2) |∇A|2 ≥ 2|∇evolK
⊥| ≥ 2∇evolK

⊥, if n = 2.

Proof For (1), see [8, Lemma 3.1].

Using Cauchy inequality, we can easily get (2).

Lemma 3.2 Suppose Σ is a symplectic surface in CP
2 with constant holomorphic sectional

curvature k > 0. Taking µ ∈ [0, 1], assume that

|A|2 + 2µγ|K⊥| ≤ λ|H |2 + 160λ+ 4 + 2µ− 6µ cos2 α

40λ+ 1

2λ− 1

4λ
k,

where γ = 1
40λ+1 and

cosα ≥ max{S1(λ, µ), S2(λ, µ), S3(λ, µ)}

holds on the initial surface for any 1
2 < λ ≤ 2

3 − 1
12µ, then it remains true along the symplectic

mean curvature flow. Here S1(λ, µ), S2(λ, µ) and S3(λ, µ) are defined in Remark 1.1.

Proof From Lemma 2.1 and Lemma 2.3, we know that

∂

∂t
cosα = ∆cosα+ |∇JΣt

|2 cosα+
3k

2
sin2 α cosα.

Thus at any time t,

cosα ≥ max{S1(λ, µ), S2(λ, µ), S3(λ, µ)},

if it holds on the initial surface.

Let us first define Q = |A|2 + 2µγ|K⊥| − λ|H |2 − dk. Using (2.2)–(2.3) and (2.12), we can

compute

∂

∂t
Q

≤ ∆Q − 2(|∇A|2 − 2µγ|∇evolK
⊥| − λ|∇H |2)− k

2
(3 cos2 α+ 1)Q− dk2

2
(3 cos2 α+ 1)

− k|A|2 + 2k|H |2 + 2µγ|Å|2k(3 cos2 α− 1) + µγk|K⊥|(1− 15 cos2 α)− 3λk|H |2
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+ µγk|K⊥|(3 cos2 α+ 1) + 2µγ|K⊥|(|A|2 + 2|Å|2)− 4k(3 cos2 α− 1)[b2 + (a− c)2]

+ 2
∑

α,β,i,j

(

∑

k

(hα
ikh

β
jk − hα

jkh
β
ik)

)2

+ 2
∑

α,β

(

∑

i,j

hα
ijh

β
ij

)2

− 2λ
∑

i,j

(

∑

α

Hαhα
ij

)2

≤ ∆Q +
(

− 2 + 2µγ +
2λ

3
4 − η

)

|∇A|2 + 2λ
3
4 − η

1− 4η

4η

9k2

8
cos2 α sin2 α− k

2
(3 cos2 α+ 1)Q

− dk2

2
(3 cos2 α+ 1)− k|A|2 + (2 − 3λ)k|H |2 + 2µγ|Å|2k(3 cos2 α− 1)

+ µγk|K⊥|(1− 15 cos2 α) + µγk|K⊥|(3 cos2 α+ 1) + 2µγ|K⊥|(|A|2 + 2|Å|2)

− 4k(3 cos2 α− 1)[b2 + (a− c)2]

+ 2
∑

α,β,i,j

(

∑

k

(hα
ikh

β
jk − hα

jkh
β
ik)

)2

+ 2
∑

α,β

(

∑

i,j

hα
ijh

β
ij

)2

− 2λ
∑

i,j

(

∑

α

Hαhα
ij

)2

≤ ∆Q +
(

− 2 + 2µγ +
2λ

3
4 − η

)

|∇A|2 + 2λ
3
4 − η

1− 4η

4η

9k2

8
cos2 α sin2 α− k

2
(3 cos2 α+ 1)Q

− dk2

2
(3 cos2 α+ 1)− k|A|2 + (2 − 3λ)k|H |2 + 2µγ|Å|2k(3 cos2 α− 1)

+ µγk|K⊥|(1− 15 cos2 α) + µγk|K⊥|(3 cos2 α+ 1) + 2µγ|K⊥|(|A|2 + 2|Å|2)

+ 2|̊h3|4 + 2|̊h4|4 + (2− 2λ)|̊h3|2|H |2 − 2λ− 1

2
|H |4 + 4|̊h3|2 |̊h4|2 + 16a2c2. (3.2)

The first inequality in (3.2) used (2.10) and

cosα ≥ max{S1(λ, µ), S2(λ, µ), S3(λ, µ)} ≥ 1

3
,

the second inequality used Lemma 3.1, and the third inequality used

cosα ≥ max{S1(λ, µ), S2(λ, µ), S3(λ, µ)} ≥ 1

3

and the fact that

2
∑

α,β,i,j

(

∑

k

(hα
ikh

β
jk − hα

jkh
β
ik)

)2

+ 2
∑

α,β

(

∑

i,j

hα
ijh

β
ij

)2

− 2λ
∑

i,j

(

∑

α

Hαhα
ij

)2

= 2|̊h3|4 + 2|̊h4|4 + (2− 2λ)|̊h3|2|H |2 − 2λ− 1

2
|H |4 + 4|̊h3|2 |̊h4|2 + 16a2c2

computed by using (2.6).

Since |H |2 = 2
2λ−1 (|̊h3|2+ |̊h4|2+2µγ|K⊥|−Q−dk), substituting it into the above inequality,

we obtain that

∂

∂t
Q ≤ ∆Q− 2

2λ− 1
Q2 +

[

− k

2
(3 cos2 α+ 1) + 3k − 2µγ

2λ− 1
|K⊥| − 2(2− 2λ)

2λ− 1
|̊h3|2

+
2

2λ− 1
|̊h3|2 +

2

2λ− 1
|̊h4|2 +

4µγ

2λ− 1
|K⊥| − 2

2λ− 1
dk +

2

2λ− 1
|̊h3|2

+
2

2λ− 1
|̊h4|2 +

4µγ

2λ− 1
|K⊥| − 2

2λ− 1
dk

]

Q+
2λ

3
4 − η

1− 4η

4η

9k2

8
cos2 α sin2 α

− 3dk2

2
cos2 α+ 6µγ|Å|2k cos2 α− 12µγ|K⊥|k cos2 α− dk2

2
+ 3dk2
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− 4k(|̊h3|2 + |̊h4|2)− 6µγ|K⊥|k − 2µγ(|̊h3|2 + |̊h4|2)k + µγ|K⊥|k + µγ|K⊥|k

+ 6µγ|K⊥|(|̊h3|2 + |̊h4|2) +
2

2λ− 1
µγ|K⊥|(|̊h3|2 + |̊h4|2 + 2µγ|K⊥| − dk) + 2|̊h3|4

+ 2|̊h4|4 +
2(2− 2λ)

2λ− 1
|̊h3|2(|̊h3|2 + |̊h4|2 + 2µγ|K⊥| − dk) + 4|̊h3|2 |̊h4|2 + 16a2c2

− 2

2λ− 1
|̊h3|4 −

4

2λ− 1
|̊h3|2 |̊h4|2 −

4

2λ− 1
2µγ |̊h3|2|K⊥|+ 4

2λ− 1
dk|̊h3|2

− 2

2λ− 1
|̊h4|4 −

4

2λ− 1
2µγ |̊h4|2|K⊥|+ 4

2λ− 1
dk|̊h4|2 −

8

2λ− 1
µ2γ2|K⊥|2

+
4

2λ− 1
2µγdk|K⊥| − 2

2λ− 1
d2k2,

where we assume that

0 ≤ µγ ≤ 1− λ
3
4 − η

.

For convenience, let us define a new function

P = − 2

2λ− 1
Q2 +

2λ
3
4 − η

1− 4η

4η

9k2

8
cos2 α sin2 α− 3dk2

2
cos2 α+ 6µγ|Å|2k cos2 α

− 12µγ|K⊥|k cos2 α− dk2

2
+ 3dk2 − 4k(|̊h3|2 + |̊h4|2)− 6µγ|K⊥|k + µγ|K⊥|k

− 2µγ(|̊h3|2 + |̊h4|2)k + µγ|K⊥|k +
2

2λ− 1
µγ|K⊥|(|̊h3|2 + |̊h4|2 + 2µγ|K⊥| − dk)

+ 6µγ|K⊥|(|̊h3|2 + |̊h4|2) + 2|̊h3|4 +
4

2λ− 1
2µγdk|K⊥| − 2

2λ− 1
d2k2

+ 2|̊h4|4 +
2(2− 2λ)

2λ− 1
|̊h3|2(|̊h3|2 + |̊h4|2 + 2µγ|K⊥| − dk) + 4|̊h3|2 |̊h4|2 + 16a2c2

− 2

2λ− 1
|̊h3|4 −

4

2λ− 1
|̊h3|2 |̊h4|2 −

4

2λ− 1
2µγ |̊h3|2|K⊥|+ 4

2λ− 1
dk|̊h3|2

− 2

2λ− 1
|̊h4|4 −

4

2λ− 1
2µγ |̊h4|2|K⊥|+ 4

2λ− 1
dk|̊h4|2 −

8

2λ− 1
µ2γ2|K⊥|2

= − 2

2λ− 1
Q2 +

2λ
3
4 − η

1− 4η

4η

9k2

8
cos2 α sin2 α− 3dk2

2
cos2 α− 12µγ|K⊥|k cos2 α

+
5

2
dk2 − 4µγ|K⊥|k +

(

− 4− 2µγ +
4dλ

2λ− 1
+ 6µγ cos2 α

)

k|̊h3|2

+
(

2− 2

2λ− 1

)

µγ|K⊥||̊h3|2 +
(

4− 4λ

2λ− 1

)

|̊h3|2 |̊h4|2 +
(

2− 2

2λ− 1

)

(|̊h4|2 −
1

2
dk)2

+
(

− 4− 2µγ +
4dλ

2λ− 1
+ 6µγ cos2 α

)

k|̊h4|2 +
(

6− 6

2λ− 1

)

µγ |̊h4|2|K⊥|

− 4

2λ− 1
µ2γ2|K⊥|2 + 6

2λ− 1
µγ|K⊥|dk − λ+ 1

2λ− 1
d2k2 + 16a2c2.

In order to apply the maximum principle for parabolic equation, our goal is to show

P ≤ 0. (3.3)

We estimate P as follows

P ≤ − 2

2λ− 1
Q2 +

2λ
3
4 − η

1− 4η

4η

9k2

8
cos2 α sin2 α− 3dk2

2
cos2 α− 12µγ|K⊥|k cos2 α
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+
5

2
dk2 − 4µγ|K⊥|k +

(

− 4− 2µγ +
4dλ

2λ− 1
+ 6µγ cos2 α

)

k|̊h3|2

+
(

2− 2

2λ− 1

)

µγ|K⊥||̊h3|2 +
(

8− 4λ

2λ− 1

)

|̊h3|2 |̊h4|2 +
(

2− 2

2λ− 1

)(

|̊h4|2 −
1

2
dk

)2

+
(

− 4− 2µγ +
4dλ

2λ− 1
+ 6µγ cos2 α

)

k|̊h4|2 +
(

6− 6

2λ− 1

)

µγ |̊h4|2|K⊥|

− 4

2λ− 1
µ2γ2|K⊥|2 + 6

2λ− 1
µγ|K⊥|dk − λ+ 1

2λ− 1
d2k2

≤ − 2

2λ− 1
Q2 +

( 2λ
3
4 − η

1− 4η

4η

9

8
sin2 α− 3d

2

)

k2 cos2 α+
(

2− 2

2λ− 1

)

µγ|K⊥||̊h3|2

+
( 6

2λ− 1
d− 12 cos2 α− 4

)

µγ|K⊥|k +
(

2− 2

2λ− 1

)(

|̊h4|2 −
1

2
dk

)2

+
(

− 4− 2µγ +
4dλ

2λ− 1
+ 6µγ cos2 α

)

k|̊h3|2 +
(

6− 6

2λ− 1

)

µγ |̊h4|2|K⊥|

+
(

− 4− 2µγ +
4dλ

2λ− 1
+ 6µγ cos2 α

)

k|̊h4|2 +
(

8− 4λ

2λ− 1

)

|̊h3|2 |̊h4|2

+
(5

2
− λ+ 1

2λ− 1
d
)

dk2, (3.4)

where we used the fact that

16a2c2 ≤ 4|̊h3|2 |̊h4|2.

We have assumed that

0 ≤ µγ ≤ 1− λ
3
4 − η

⇒ 0 < η ≤ 3

4
− λ,

so we can take

η =
3

4

(

1− 1

30
µ
)

− λ,

γ =
1

40λ+ 1
.

And then we want the coefficients on the right-hand side of (3.4) to be less than or equal to 0,

i.e.,

2λ
3
4 − η

1− 4η

4η

9

8
sin2 α− 3d

2
≤ 0, (3.5)

6− 6

2λ− 1
≤ 0, 2− 2

2λ− 1
≤ 0, 8− 4λ

2λ− 1
≤ 0, (3.6)

6

2λ− 1
d− 4− 12 cos2 α ≤ 0, (3.7)

− 4− 2µγ +
4λ

2λ− 1
d+ 6µγ cos2 α ≤ 0 (3.8)

and

5

2
− λ+ 1

2λ− 1
d ≤ 0. (3.9)
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From (3.6), we can obtain

1

2
< λ ≤ 2

3
.

From (3.7)–(3.9), we can obtain

5(2λ− 1)

2(λ+ 1)
≤ d ≤ 160λ+ 4 + 2µ− 6µ cos2 α

40λ+ 1

2λ− 1

4λ
,

5(2λ− 1)

2(λ+ 1)
≤ d ≤ (4 + 12 cos2 α)(2λ− 1)

6
.

(3.10)

We need to find out the right conditions to ensure that (3.10) is reasonable. That is

160λ+ 4 + 2µ− 6µ cos2 α

40λ+ 1

2λ− 1

4λ
− 5(2λ− 1)

2(λ+ 1)
≥ 0

⇔ 2(λ+ 1)(160λ+ 4 + 2µ− 6µ cos2 α) − 5(160λ2 + 4λ) ≥ 0

⇔ − 480λ2 + (308 + 4µ− 12µ cos2 α)λ + 8 + 4µ− 12µ cos2 α ≥ 0 (3.11)

and

(4 + 12 cos2 α)(2λ− 1)

6
− 5(2λ− 1)

2(λ+ 1)
≥ 0

⇔ 2(4 + 12 cos2 α)(λ + 1)− 30 ≥ 0

⇔ cos2 α ≥ 11− 4λ

12(λ+ 1)

⇔ cosα ≥
√

11− 4λ

12(λ+ 1)

.
= S1(µ, λ). (3.12)

We have to deal with (3.11) carefully. Let us define

f(λ) = −480λ2 + (308 + 4µ− 12µ cos2 α)λ+ 8 + 4µ− 12µ cos2 α,

then the two roots of the equation f(λ) = 0 are

λ1 =
12µ cos2 α− 4µ− 308 +

√

(308 + 4µ− 12µ cos2 α)2 − 4(−480)(8 + 4µ− 12µ cos2 α)

−960

<
1

2

and

λ2 =
12µ cos2 α− 4µ− 308−

√

(308 + 4µ− 12µ cos2 α)2 − 4(−480)(8 + 4µ− 12µ cos2 α)

−960
.

Noting that λ2 is monotonically decreasing with respect to cos2 α, we take cosα = 1 to obtain

λ2 ≥ 2
3 − 1

12µ. What we need to note is that the cos2 α here is only a parameter, not our

final cos2 α range. Therefore, (3.10) is reasonable when λ and cosα satisfy the following two

conditions:

1

2
< λ ≤ 2

3
− 1

12
µ
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and

cosα ≥
√

11− 4λ

12(λ+ 1)
.

Furthermore, we notice that when

cosα ≥
√

472λ− 320λ2 + 12 + 6µ

6(160λ2 + 4λ+ 3µ)

.
= S2(µ, λ), (3.13)

we have

(4 + 12 cos2 α)(2λ − 1)

6
− 160λ+ 4 + 2µ− 6µ cos2 α

40λ+ 1

2λ− 1

4λ
≥ 0. (3.14)

Then we can take d = 160λ+4+2µ−6µ cos2 α
40λ+1

2λ−1
4λ in (3.5), thus

cosα ≥
√

1− 400λ2(3− 4λ)(2λ− 1)(40λ+ 1)2 + µJ1(µ, λ)

1200λ3(2λ− 1)(40λ+ 1)2 + µJ2(µ, λ)

=

√

400λ2(7λ− 3)(2λ− 1)(40λ+ 1)2 + µ(J2(µ, λ)− J1(µ, λ))

1200λ3(2λ− 1)(40λ+ 1)2 + µJ2(µ, λ)

.
= S3(µ, λ), (3.15)

where J1(µ, λ) and J2(µ, λ) are polynomials with respect to µ and λ, in the following forms:

J1(µ, λ) = 4λ(2λ− 1)(40λ+ 1)[(30− 40λ)(40λ+ 1)

− (40λ+ µ)(40λ+ 1)− (30− 40− µ)(40λ+ µ)]

and

J2(µ, λ) = λ(40λ+ 1)[240λ2(40λ+ 1)− 6(2λ− 1)(30− 40λ− µ)(40λ+ µ)].

From (3.12)–(3.13) and (3.15), we can get that Kähler angle α satisfies

cosα ≥ max{S1(µ, λ), S2(µ, λ), S3(µ, λ)}.

Finally, under assumptions

1

2
< λ ≤ 2

3
− 1

12
µ

and

cosα ≥ max{S1(µ, λ), S2(µ, λ), S3(µ, λ)},

we show that (3.3) is correct.

At the point |H | = 0, we use the following inequality (see [8]):

2
∑

α,β,i,j

(

∑

k

(hα
ikh

β
jk − hα

jkh
β
ik)

)2

+ 2
∑

α,β

(

∑

i,j

hα
ijh

β
ij

)2

≤ 3|A|2.
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The proof of case of |H | = 0 is equal to that given earlier for case of |H | 6= 0 and so is omitted.

Applying the maximum principle for parabolic equation to

∂

∂t
Q ≤ ∆Q+ CQ,

we know that

Q ≤ 0

along the flow, if it is true on initial surface for 1
2 < λ ≤ 2

3 − 1
12µ and

cosα ≥ max{S1(µ, λ), S2(µ, λ), S3(µ, λ)}.

This completes the proof of Lemma 3.2.

4 Long Time Existence and Convergence

In this section we prove the long time existence and convergence of the symplectic mean

curvature flow.

For convenience, we consider the case of µ = 1, and the other cases are similar to µ = 1.

Theorem 4.1 When µ = 1, under the assumption of Lemma 3.2 and the initial surface

satisfies cosα ≥
√
1− δ, where

√
1− δ = max

{

S1(λ, 1), S2(λ, 1), S3(λ, 1)},

then the symplectic mean curvature flow exists for long time. Here S1(λ, µ), S2(λ, µ) and S3(λ, µ)

are defined in Remark 1.1.

Proof Suppose f is a positive increasing function which will be determined later. Now we

compute the evolution equation of |H |2f
(

1
cosα

)

,

( ∂

∂t
−∆

)(

|H |2f
( 1

cosα

))

=
( ∂

∂t
−∆

)

|H |2f
( 1

cosα

)

+ |H |2
( ∂

∂t
−∆

)

f
( 1

cosα

)

− 2∇|H |2 · ∇f
( 1

cosα

)

.

It follows that

( ∂

∂t
−∆

)

cosα = |∇JΣt
|2 cosα+

3

2
k sin2 α cosα

≥ |∇JΣt
|2 cosα.

And, we also have

( ∂

∂t
−∆

)

|H |2 ≤ −2|∇H |2 +
(

1 +
3δ

2

)

k|H |2 + 2|H |2|A|2

≤ −2|∇H |2 +
(

1 +
3δ

2

)

k|H |2 + 2|H |2
(

λ|H |2 − 2

40λ+ 1
|K⊥|
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+
160λ+ 4 + 2µ− 6µ cos2 α

40λ+ 1

2λ− 1

4λ
k
)

= −2|∇H |2 +
(

1 +
3δ

2
+

160λ+ 4 + 2µ− 6µ cos2 α

40λ+ 1

2λ− 1

2λ

)

k|H |2 + 2λ|H |4.

Putting the above inequality into the evolution equation of |H |2f
(

1
cosα

)

, we get that

( ∂

∂t
−∆

)(

|H |2f
( 1

cosα

))

≤ f
(

− 2|∇H |2 +
(

1 +
3δ

2
+

160λ+ 4 + 2µ− 6µ cos2 α

40λ+ 1

2λ− 1

2λ

)

k|H |2 + 2λ|H |4
)

− |H |2
(

f ′ |∇JΣt
|2

cosα
+ 2f ′ |∇ cosα|2

cos3 α
+ f ′′ |∇ cosα|2

cos4 α

)

− 2
∇(f |H |2)− |H |2∇f

f
∇f

( 1

cosα

)

= |H |2f
(

2λ|H |2 − 2
|∇H |2
|H |2 − f ′

f

|∇JΣt
|2

cosα

)

− 2|H |2∇(f |H |2)
f |H |2 ∇f

( 1

cosα

)

+ |H |2
(

− f ′′ + 2
(f ′)2

f
− 2f ′ cosα

) |∇ cosα|2
cos4 α

+
(

1 +
3δ

2
+

160λ+ 4 + 2µ− 6µ cos2 α

40λ+ 1

2λ− 1

2λ

)

k|H |2f.

Set φ = f |H |2. At the point where φ 6= 0, it is easy to see that

∇φ = f∇|H |2 + |H |2∇f = f∇|H |2 − |H |2f ′∇ cosα

cos2 α
,

i.e.,

∇ cosα

cos2 α
=

f

f ′

(∇|H |2
|H |2 − ∇φ

φ

)

.

Then we have inequality as follows:

( ∂

∂t
−∆

)

φ

≤
(

1 +
3δ

2
+

160λ+ 4 + 2µ− 6µ cos2 α

40λ+ 1

2λ− 1

2λ

)

kφ+ φ
(

2λ|H |2 − 2
|∇H |2
|H |2 − f ′

f

|∇JΣt
|2

cosα

)

+ 2|H |2f ′∇φ

φ

∇ cosα

cos2 α
+

φf

(f ′)2

(

− f ′′ + 2
(f ′)2

f
− 2f ′ cosα

)( |∇|H |2|2
|H |4

− 2
∇|H |2
|H |2

∇φ

φ
+

|∇φ|2
φ2

)

≤
(

1 +
3δ

2
+

160λ+ 4 + 2µ− 6µ cos2 α

40λ+ 1

2λ− 1

2λ

)

kφ+ φ
(

− f ′

2f

|H |2
cosα

+ 2λ|H |2
)

+ φ
(

− 2
|∇H |2
|H |2 − 4

ff ′′

(f ′)2
|∇|H ||2
|H |2 + 8

|∇|H ||2
|H |2 − 8

f

f ′ cosα
|∇|H ||2
|H |2

)

+
φf

(f ′)2

(

− f ′′ + 2
(f ′)2

f
− 2f ′ cosα

)( |∇|H |2|2
|H |4 − 2

∇|H |2
|H |2

∇φ

φ

)

+ 2|H |2f ′∇φ

φ

∇ cosα

cos2 α

=
(

1 +
3δ

2
+

160λ+ 4 + 2µ− 6µ cos2 α

40λ+ 1

2λ− 1

2λ

)

kφ+ φ
(

− f ′

2f

1

cosα
+ 2λ

)

|H |2
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+ φ
(

2− ff ′′

(f ′)2
− 2

f

f ′ cosα
)(

− 2
∇|H |2
|H |2

∇φ

φ
+

|∇φ|2
φ2

)

+ φ
(

6− 4
ff ′′

(f ′)2
− 8

f

f ′ cosα
) |∇|H ||2

|H |2 + 2|H |2f ′∇φ

φ

∇ cosα

cos2 α
.

Setting f
f ′

= g, we choose g such that for x ∈
[

1, 1√
1−δ

]

,

x

g
≥ 4λ,

−4g′ +
8g

x
− 2 = 0.

Let g(x) = xp(x); then p(x) needs to satisfy

0 < p(x) ≤ 1

4λ
,

− 2xp′ = 1− 2p.

We choose p(x) = 1
2 − qx by solving the last equation, where q will be defined later. It reduces

to solve the inequality

0 <
1

2
− qx ≤ 1

4λ
, x ∈

[

1,
1√
1− δ

]

,

i.e.,
(1

2
− 1

4λ

) 1

x
≤ q ≤ 1

2x
, x ∈

[

1,
1√
1− δ

]

.

Thus if
√
1− δ > 1− 1

2λ , we can choose q = 1
2 − 1

4λ . Then

g = x
(1

2
− qx

)

=
x

2
−
(1

2
− 1

4λ

)

x2

and

f(x) =
(1− 2q)2x2

(1− 2qx)2
=

x2

(2λ− (2λ− 1)x)2
, x ∈

[

1,
1√
1− δ

]

.

It is evident that for x ∈
[

1, 1√
1−δ

]

,

1 ≤ f(x) ≤ 1

(2λ
√
1− δ − (2λ− 1))2

.

So, we have

( ∂

∂t
−∆

)

φ ≤
(

1 +
3δ

2
+

160λ+ 4 + 2µ− 6µ cos2 α

40λ+ 1

2λ− 1

2λ

)

kφ+ 2|H |2f ′∇φ

φ

∇ cosα

cos2 α

+ φ
(

2− ff ′′

(f ′)2
− 2

f

f ′ cosα
)(

− 2
∇|H |2
|H |2

∇φ

φ
+

|∇φ|2
φ2

)

.

Applying the maximum principle, we get that

|H |2 ≤ |H |2f
( 1

cosα

)

≤ e(1+
3δ
2
+ 160λ+4+2µ−6µ cos2 α

40λ+1

2λ−1

2λ
)kt|H |2(0)f

( 1

cosα

)

(0).

So pinching inequality implies

|A|2 ≤ C0e
C1t +

160λ+ 4 + 2µ− 6µ cos2 α

40λ+ 1

2λ− 1

2λ
k,

where C0 depends only on max
Σ0

|H |2 and λ. Therefore the flow exists for all time. The proof is

completed.
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Theorem 4.2 Under the assumption of Lemma 3.2, the symplectic mean curvature flow

converges to a holomorphic curve.

Proof We can rewrite the evolution equation of cosα

∂

∂t
cosα = ∆cosα+ |∇JΣt

|2 cosα+
3k

2
sin2 α cosα

as

∂

∂t
sin2

(α

2

)

= −∆cosα+ |∇JΣt
|2 cosα− 3k sin2

(α

2

)

cos2
(α

2

)

cosα

≤ −c sin2
(α

2

)

,

where c > 0 depends only on k and the lower bound of cosα. Applying the maximum principle,

we get that sin2(α2 ) ≤ e−ct. From [5, Proposition 2.1], we know that

∫

Σt

sin2 α

cosα
dµt ≤ C0e

−Kt,

where C0 is a constant which depends only on the initial surface, i.e., C0 =
∫

Σ0

sin2 α
cosα dµ0, and

K is scalar curvature of CP2. As t → +∞, C0e
−Kt is sufficiently small. So we can apply [5,

Theorem 2.5] to obtain that the mean curvature flow with the initial surface Σ0 exists globally

and it converges to a holomorphic curve. The proof of the theorem is completed.

Thus we can summarize what we have proved as the following theorem.

Theorem 4.3 Suppose Σ is a symplectic surface in CP
2 with constant holomorphic sectional

curvature k > 0. Taking µ ∈ [0, 1], assume that

|A|2 + 2µγ|K⊥| ≤ λ|H |2 + 160λ+ 4 + 2µ− 6µ cos2 α

40λ+ 1

2λ− 1

4λ
k,

where γ = 1
40λ+1 and

cosα ≥ max{S1(λ, µ), S2(λ, µ), S3(λ, µ)}

holds on the initial surface for any 1
2 < λ ≤ 2

3 − 1
12µ, then it remains true along the symplectic

mean curvature flow. Furthermore, under this assumption, the symplectic mean curvature flow

exists for a long time and converges to a holomorphic curve. Here S1(λ, µ), S2(λ, µ) and S3(λ, µ)

are defined in Remark 1.1.

5 A Special Case

When our objective manifold is a flat torus T4, using a similar method, the above Theorem

1.1 can be greatly simplified.

Lemma 5.1 If a solution F : Σ× [0, t0) → T4 of SMCF satisfies |A|2 + 2µγ|K⊥| ≤ λ|H |2,
where µ ∈ [0, 1], γ = 1

40λ+1 and 1
2 < λ ≤ 2

3 , then this remains true for all 0 ≤ t < t0.
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Proof In the space T
4, we can get the following formula:

∂

∂t
|A|2 = ∆|A|2 − 2|∇A|2 + 2

∑

α,β,i,j

(

∑

k

(hα
ikh

β
jk − hα

jkh
β
ik)

)2

+ 2
∑

α,β

(

∑

i,j

hα
ijh

β
ij

)2

,

∂

∂t
|H |2 = ∆|H |2 − 2|∇H |2 + 2

∑

i,j

(

∑

α

Hαhα
ij

)2

and

∂

∂t
|K⊥| ≤∆|K⊥|+ 2|∇evolK

⊥|+ |K⊥|(|A|2 + 2|Å|2).

Using the same argument as in the proof of Lemma 3.2, we can easily carry out the proof of

this Lemma.

Since the space T4 is flat, the formulas (3.5), (3.7)–(3.9) are meaningless. So we just have

to set Σ0 to be symplectic, i.e., cosα ≥ δ (0 < δ ≤ 1 is a constant).

Theorem 5.1 Under the assumption of Lemma 5.1 and the condition that the initial surface

satisfies cosα ≥ δ, where 0 < δ ≤ 1 is a constant, the symplectic mean curvature flow exists for

a long time and converges to a minimal surface, which is a holomorphic curve with respect to

some compatible complex structure on the flat torus.

Proof Notice that the space T4 is flat, so we just have to set Σ0 to be symplectic, i.e.,

cosα ≥ δ, where 0 < δ ≤ 1 is a constant. The proof of this theorem can be proved by the same

method as employed in the last section. Finally, we can get the following inequality

|H |2 ≤ |H |2f
( 1

cosα

)

≤ |H |2(0)f
( 1

cosα

)

(0).

So pinching inequality implies |A|2 ≤ |H |2(0)f
(

1
cosα

)

(0) < +∞. This implies that the mean

curvature flow exists for a long time and converges to a minimal surface at infinity. It is known

that a symplectic minimal surface in a Calabi-Yau surface is holomorphic with respect to some

compatible complex structure. The proof of the theorem is completed.
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