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1 Introduction

Let M be a Kahler surface, w be the Kahler form on M and J be a complex structure

compatible with w. For vector fields U, V on M, the Riemannian metric g on M is defined by
(U, V) =w(U,JV).

For a compact oriented real surface ¥ which is smoothly immersed in M, the Kéahler angle «
of X was defined by [4],

w|y = cosadusy, (1.1)

where duy; is the area element of the induced metric on . We say that X is a symplectic surface
if cosa > 0 and X is a holomorphic curve if cosa = 1.

The existence of holomorphic curves is a fundamental problem in differential geometry. By
Wirtinger’s inequality, holomorphic curves are always area-minimizing in its homological class,
thus must be symplectic stable minimal surface. On the other hand, Wolfson [11] showed that
any symplectic minimal surface in K&hler-Einstein surface with nonnegative scalar curvature
must be holomorphic curve. Hence, it is natural to consider the existence problem for symplectic
minimal surfaces. One important idea is to use the mean curvature flow, which is the negative

gradient flow for the area functional. The other way is to use variational method (see [6]).
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Fortunately, Chen-Li [2] and Wang [10] independently proved that “symplectic” property is
preserved by the mean curvature flow, in which case we call it “symplectic mean curvature
flow (SMCF for short)”. The symplectic mean curvature flow exists globally and converges at
infinity in graphic cases (see [3]). Han-Li [5] proved that, in a K&hler-Einstein surface with
positive scalar curvature, if the initial surface is sufficiently close to a holomorphic curve, then
the symplectic mean curvature flow exists globally and converges to a holomorphic curve at
infinity. In the space CP? with constant holomorphic sectional curvature & > 0, Han-Li-Yang
[8] proved that if the Kéhler angle of the initial surface has a certain lower bound and satisfies
certain pinching estimate, then the symplectic mean curvature flow exists for a long time and
converges to a holomorphic curve.

Furthermore, Chen-Li [2] and Wang [10] proved that there is no finite time Type I singularity
for symplectic mean curvature flow. Therefore, it is important to study Type II singularities
for the symplectic mean curvature flow, which are always eternal solutions. An important type
of eternal solutions to the mean curvature flow is translating solitons. There are many rigidity
results on symplectic translating solitons. For instance, together with Han, the second author
(see [9]) showed that any symplectic translating soliton with nonpositive normal curvature
cannot arise as blow up limit of symplectic mean curvature flow. On the other hand, for general
blow up flow, we (see [7]) proved that any eternal mean curvature flow which is normally flat
cannot arise as blow up limit for symplectic mean curvature flow. So we are interested in the
symplectic mean curvature flow with normal curvature pinched. Recently, Baker-Nguyen [1]
studied codimension two surfaces pinched by normal curvature evolving by mean curvature flow,
they proved that codimension two surfaces satisfying a nonlinear curvature condition depending
on normal curvature smoothly evolve by mean curvature flow to round points.

In this paper, we mainly study the symplectic mean curvature flow in space CP?%. We use
common notations, such as H for mean curvature, A for the second fundamental form and K+
for normal curvature. We show that the symplectic mean curvature flow with normal curvature

pinched exists for a long time and converges to a holomorphic curve, i.e., the following theorem.

Theorem 1.1 Suppose X is a symplectic surface in CP? with constant holomorphic sectional

curvature k > 0. Taking p € [0, 1], assume that

160X + 4 + 21 — 6 cos® a 2\ — 1
40\ + 1 D)

|A]? + 2py| K| < A H|? + k,

where v = and

_1
10M+1
cos a > max{ Sy (A, i), Sa(A, ), Ss(A, ) }

holds on the initial surface for any % <A< % — 1—12u, then it remains true along the symplectic

mean curvature flow. Furthermore, under this assumption, the symplectic mean curvature flow

ezists for a long time and converges to a holomorphic curve.
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Remark 1.1 Here we need to point out that Sy (X, i), So(X, 1) and S5(\, i) are polynomials

with respect to A and p, in the following forms:

51000 =\ [ T3y
S2(pA) = \/473@0?:\220?24; Jlr23:)6u
and
SJMAFEVMM%WA_a@A_1XMA+U2+MQAMA)_ﬁOMMX
120003 (2 — 1) (40X + 1)2 + iz (1, \)
where
J1 (16, A) = 4M(2A — 1)(40\ + 1)[(30 — 40X) (40X + 1) — (40X + 12)(40A + 1)
— (30 — 40 — 12)(40A + )]
and

Jo (1, X) = A(40X + 1)[24002 (40X + 1) — 6(2X — 1)(30 — 40X — 1) (40X + p)].
And we know by numerical calculation that

1
3 < max{Si(\, ), S2(A, i), Ss (A, )} < 1.

Remark 1.2 S7(\ p), Sa(\, p) and S5(\, 1) look very complicated in terms of how they
are expressed, and that is because we are thinking about normal curvature pinched condition.

This condition is valuable because submanifolds with non-flat normal bundle are more general.

Remark 1.3 When p = 0, the inequality (3.7) does not exist and then (3.12)—(3.14) are
meaningless. At this time, the pinching condition reduces to

20 —1
k
A

|A? < MH|? +
and
-3
3N

where % <A< % This is exactly the assumptions of the main result of Han-Li-Yang [§].

cosa > S3(0,\) =

Note that the holomorphic sectional curvature of CP? is k > 0. Using a similar method, we

can consider the case of flat torus T%. We have the following result.

Theorem 1.2 Suppose ¥ is a symplectic surface in the flat torus T*. Assume that |A|*> +
20y | K+ < AH|?, where u € [0,1], v = 40A—1+1 and cosa > 6 (0 < d <1 is a constant) holds on
the initial surface for any % <A< %, then it remains true along the symplectic mean curvature
flow. Furthermore, under this assumption, the symplectic mean curvature flow exists for a long

time and converges to a holomorphic curve.
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Unfortunately, we do not know whether the symplectic curvature flow has long-time exis-
tence and convergence in manifolds with negative curvature.

Throughout this paper we will adopt the following ranges of indices:

A’B’...:L...74’
0[75777"':3747
ik =1,2.

2 Preliminaries

In this section, we adhere to the notation of [8]. Now suppose M is a Kéhler surface with
constant holomorphic sectional curvature k, then from [12, Theorems 2.1 and 2.3], we have the

following results.

Lemma 2.1 M has a curvature tensor of the form

k
Kijin = _Z[(gkhgji — gingki) + (Jrndji — Jjndri) — 2JkjJin].

Thus M s symmetric. Furthermore, M is Finstein

3 _
Suppose that ¥ is a submanifold in a Riemannian manifold M, we choose an orthonormal
basis {e;} for TS and {e,} for NX. Recall the evolution equation for the second fundamental

form hg; and |A[* along the mean curvature flow (see [2, 10]).

Lemma 2.2 For a mean curvature flow F : ¥ x [0,t0) — M, the second fundamental form

hi; satisfies the following equation

o . . _
ahij = AR+ (Vo K)aijk + (Vo, K)akik

— 2Kj1hyy, + 2K0tﬁjkhfk + 2Ka5ikh?k
— Kigirhi; — Kigjrhg + Kakﬁkh?j
— H'B(hf}kh?k + hfk ?k) + h?mhﬁmkhfj

— 2, Wby + hoh b

im'“mk mj''mk
+ B hl B+ B (es, Viea), (2.1)
where Kapcp is the curvature tensor of M and V is the covariant derivative of M. Therefore
) _ _
alz‘ll2 = AAP? = 2|VAP? + [(Vo, K)aiji + (Vo, K)akir] S
— 4Klijkhﬁ€h?j + 8Ka,3jkhi6kh% — 4Klkikh?;' ?j + QKngkhith%

2 8 (S0 ) X (S
a,B i,

a,Bij  k
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Corollary 2.1 Along the mean curvature flow, the length of the mean curvature vector

satisfies
2|H|2 = A[H]> = 2|VH + 2K g H*HP +2> (> Hh, ’
ot B akBk A\~ ij) -
Using Lemmas 2.1-2.2 and Corollary 2.1, Han-Li-Yang [8] computed the evolution equation

of the length of the second fundamental form and the length of the mean curvature vector in
CP? as follows.

Corollary 2.2 For a mean curvature flow F : X2 x [0,t9) — CP?, the length of the second
fundamental form and the length of the mean curvature vector satisfy
k
|A|2 A|AP? —2|VAP? — k|A]? — 5(3cos2a +1)|A?
+ k(3cos® a + 1)|H|* — 2k(3cos® a — 1)V Jyg, |?

+2 ) (Z B S, — RS ) +2Z(Zh;‘;h§j) . (2.2)

a,B,i,j

Similarly,
k
|H|2 A|H> —2|VH? + 3k|H|* — 53 cos® a+ 1)|H|?
+23) (ZH%;;) . (2.3)
1,9 «
Suppose that M is a compact Kéhler surface. Let ¥ be a smooth surface in M. The Kéahler

angle of ¥ in M is defined by (1.1). Recall the evolution equation of cos«a (see [2]).

Lemma 2.3 Along the symplectic mean curvature flow, cos « satisfies

0 _
5 cosa = Acosa + [VJs,|? cosa + Ric(Jeq, e) sin® a, (2.4)

where |VJs,|> = |h3, — h3,|? + |h3, + h]L|?, {e1,e2,e3,e4} is any orthonormal basis for T M
such that {e1,e2} is the basis for TS and {es, e} is the basis for NX.

It is easy to see that |V.Jx,|? is independent of the choice of the frame and only depends on
the orientation of the frame.

By Ricci equation, we have

Rijop — Kijas = WS 02 —he P

wpIp Jp ip*
Now let ¥ be a surface in a Kéahler surface M. Then the normal curvature is
KL = R1234 - K1234 == h?ph%p - hgph%p (25)

We will choose a special frame for M. Actually, at the point where |H| # 0, we will choose

local orthonormal normal frame {vs, v4} with v5 = % It is also possible to choose the tangent
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frame {ey, e2} to diagonalize A;, where A; is the second fundamental form corresponding to vs.

Therefore, there exist functions a, b, ¢ so that the second fundamental form can be expressed as

H|

— +a O b
_ 2 ¢
A— 0 @_a V3+ (C _b> Vy. (26)
2
Then we have
|H| |H|
hi = T hg2:7_aa hiy =h31 =0, hi;=bhyy=—b, hiy=hy =c

The mean curvature vector is given by H = H3v3 + H*vy with H® = |H| and H* = 0.

In this local frame, we see by direct computation that

K+ = hi,hy, — hi,hiy, = hithyy + hisha, — B3 hiy — hishis = 2ac, (2.7)

|A]? = 2(a® 4+ b% + 2), (2.8)
o |HP? 2.2 2

AP = B+ 2@+ 17 + ) (2.9)

and
_ 1
VI, [? = |hiy — hag|* + B3y, + b1y, * = §|H|2 +200° + (a—¢)’] = |[A? —2K*.  (2.10)

Here, A denotes the trace-free part of the second fundamental form.

Next, we would like to compute the evolution equation for the normal curvature.

Lemma 2.4 For a mean curvature flow F : ¥2 x [0,tg) — CP?, the normal curvature

satisfies the equation

) 1
— Kt = AK' — 2V K+ + |APk(3cos? a — 1) + 51&&(1 — 15cos® a)

ot
+ K(JA]” +2|AP).
Proof From (2.5), we calculate

)
(— - A)KL — (Vo hd Vhi, — Vb3 Vi) + hgp(

ot o A) h,

= -
) . ) )
n hf{’p(& - A) hi — hi‘p(E . A) h3, - hgp(g . A) ni .
‘We denote
Vevol K 1= Vb3 Vo by, — Vb3, Vhi,. (2.11)

Notice that CP? is locally symmetric. Using (2.1) and our choice of frame, we compute

d
— —A)K*+ = -2V g K+

+ h%p[—ZKllpkhlgk + 2K3ﬁpkhfk + 2K3ﬁ1kh§k — Klklkhlgp — Kipih?,
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+ Karght, — HO (b, + WO B3y) + B b, = 200,18,
+ hfkhgmhfnp + hzmhfnkhfp + hfp<eﬂ7 Vues)]

+ h:{’p[—QKlzpkh?k + 2K4ﬁpkh§k + 2K4ﬁ2kh§k — szzkh?p — Kpprhiy,
+ Kurpehly, — HP (hgy b + hDy b)) + i, B2 b — 2R b hy
+ Ry Wb+ B kD R+ Ry (es, Vied)]

— hi,[—2Kppkhi), + 2K 35,1l + 2K3,82kh§k — Kikorhi, — Kigprh3,
+ K3k,6’kh§p - Hﬁ(hgkh;zs;k + hﬁkhgk) + hgmhgmkhgp - 2h§mh13nkhgp

+ hgkhgmhgnp + himhgmhgp + h§p<63, Vies)|

— hgp[_QKllpkh?k + 2K4,8pkhfk + 2K4,81kh§k — szlkh?p — Kiprhy
+ K4kﬁkhfp - Hﬂ(hfki#k: + h;fk:hzllk:) + h%mhfnkhgp - 2hfmh;lnkhgp

p
+ hfkhgmhfnp + himhfnkhfp + hfp <eﬂ7 vH64>]
= _2vcvolKJ_

+ [~2K2112h3,h3, + 2Ksapihiyhs, + 2Ksaiahpghs, — K212kt hyy
- K1212h§1h31 + KBkBk?h€ph%p - |H|(h?1hi’1h31 + h?lhilhél)

+ h?lh?khgphgp - Qh'?mhimkhgphép + hfkhgmh?nphgp

+ W B W R, + R R (e, Vires))]

+ [-2K1212h15h%, + 2Ka312h35h71 + 2Kagorhiy by — Ko h bty
— Kio1oh3, b3y + Kurprh by — [H|(h3,h15h%, + by hd b))

- Ry By = 205, T By 1y R B By

+ himhfnkhglhil]

— [~2K1921h%, Ry + 2K34pkh3khilp + 2K3421h21h411p — Ko121h3,h1,
— Koia1hiyhly + Kskarhl hi, — [H|(h32h3,h1, + hish3shis)

P

+ hSthkhgph%p - 2h§mh13nkh£ph411p + hgkhﬁ h3 h%p + himhgmkhgph%p

km "mp
+ hilphép(ezl,v}qe@]
— [~2Ka191h5,h35 + 2Kazo1hi B3y + 2Kaziohishly — Kioiohishds
— Koio1hiyh3y + Kapprhishdy — [H|(h3 h3, b3, + hihishdy)
+ WP i hs = 2R b3 + RO R Hoahy

+ P hfnkth his)

= —2Vevol K- — 8K1212(h3) — h3y)hiy + (Ksksk + Kagar) () — h3y)hiy

+ 2K1234[|A|2 + 2(h£112)2 - Qh%lh%Q - 2h?1h§2]
+ 2147 + 2(h3))? + +2(h3,)* + 2(h1y)? — 2h1,hay
— 3|H|*|(h?, — h3a)his.

957
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It is known that

k k 3
K1212 = K3434 = Z(3COSQ o+ 1), K1234 = Z(3COSQ o — 1), Kij = §k§1]

Therefore, we have
— 8Ki212(hy — hp)hiy + (Kskak + Kapar) (b — h3s)his
+ 2K 1034[|A|* + 2(h1y)? — 2h1, hay — 2131 h3,)]
= [K33 + Kus — 2K3434 — 8K1212](h$, — hdy)hiy
1
+2K1234 {|A|2 +2¢% + 2% — §|H|2 + Qaﬂ
k <o k
= 2ac{3k —10- Z(3cos2a + 1)} + 4| A% - Z(3cos2a -1)
= |A]PE(3 cos® a — 1) + ack(1 — 15 cos® a).
Corollary 2.3 For a mean curvature flow F : 2 x [0,t9) — CP?, the length of the normal
curvature satisfies the inequality
0
a|Kl| < AIKH| 4 2|Vevol K| + |APk|3 cos® o — 1]
1
+ 51€|Kl|(1 —15cos® a) + |K*|(JA]? + 2|4]?). (2.12)
Proof At the point |K*| # 0, we notice that

AIKY = A(KT KNY2 = giv, V(K- K13
(K, V;K+)

(KL KL)3

VKL (KL, AKL) VKL

T (KL KD (KL KD)E (KL KL

B (Kt AK™L)
(K K
Consequently, we infer that
O gl €
O gt = e, rys = K E)
ot ot (KL, K1)z
K+ Kt .
_ 1 1 2 2
=A|K |—2WV6VO1K +W|A| k(3cos® o — 1)

1 .
+ 5k|KL|(1 —15cos® a) + |K*[(JA]? + 2|A]?)
< AIKH 4 2|Veya K| + |APE[3 cos® a — 1]
1 .
+ 51<:|KL|(1 —15cos® a) + |K*|(JA]? + 2|A)?).

At the point |[K*| = 0, we can compute %\/ | K12 + €, then we can take ¢ — 0 and we will

end up with the same result.
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3 Pinching Estimate

In order to prove the long-time existence of symplectic mean curvature flow, we need an
important pinching condition.

The following lemma is necessary when we estimate the gradient term in the evolution

equation.

Lemma 3.1 (1) For any n > 0, we have the inequality
VAP > (3 - n)ivaP - (- 1)|w|2 (3.1)
- 4 477 ) N

where w* ZKam, |lw|? = Z lwe|? and |w|* = Z |we|? = cos2 asin? a.
(2) [VA|? > 2|V evol K| > 2Vev01K ,ifn=2.
Proof For (1), see [8, Lemma 3.1].
Using Cauchy inequality, we can easily get (2).

Lemma 3.2 Suppose X is a symplectic surface in CP? with constant holomorphic sectional
curvature k > 0. Taking p € [0,1], assume that

160X + 4 + 21 — 6 cos® a 2\ — 1

A2 4+ 2u~y| K < M H|?
|A]" + 2py | K| < ANH|” + 0N 1 5\

k,
where v = Wl_ﬂ and
cos a > max{ Sy (A, i), Sa(A, ), Ss(A, )

holds on the initial surface for any % <A< % — 1—12u, then it remains true along the symplectic

mean curvature flow. Here S1(A\, p), So(\, ) and S3(\, 1) are defined in Remark 1.1.
Proof From Lemma 2.1 and Lemma 2.3, we know that

0 = 3k
—cosa = Acosa+ |VJs,|* cosa + > sin? v cos av.

ot

Thus at any time ¢,
cosa > max{S1 (A, p), S2(A, p), S3(A, )},

if it holds on the initial surface.
Let us first define Q = |A|? + 2uy|K*| — A H|? — dk. Using (2.2)-(2.3) and (2.12), we can

compute

9
ot
2 L oy _k 2 dk® 2
<AQ —2(|VA]® = 27| Veva K~ | = AM[VH|?) — 5(3005 a+1)Q — 7(3005 a+1)

— kAP 4 2k|H|? 4 27| APk(3 cos? a — 1) + pyk| K *|(1 — 15 cos® o) — 3Mk|H|?
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+ pyk| K+ |(3cos® o+ 1) + 2/w|Kl|(|A|2 +2|A]?) — 4k(3cos® o — 1)[b* + (a — ¢)?]

vz 3 (0w 2 () - 5 (S
o,3,1,7 2%} 9 a
2N 1—4n9k?

k
g —g cos a51n2a—§(3cos a+1)Q

2
SAQ+( 2+2m+3 )|VA|2
-n 4 -
dk? o
— 7(3 cos? o+ 1) — k| A|? 4 (2 = 3N)k|H|? + 2uy| A|*k(3 cos® a — 1)

+ uyk| K|(1 = 15 cos® ) + pyk| K[ (3 cos® a + 1) + 2u~y| K[ (|A]? + 2|A]?)
—4k(3cos’ a — 1)[b* + (a — ¢)?]

+2 % (Z hfk—h?khzk) +2Z(Zh;§hg) 2/\Z(ZH%%)2
a,3,1,7 i, «
j 2)\ 1— 4ok, j

k
T?cos asin? o — 5(3(:05 a+1)Q

gAQ+(

2
)IvAP +
-n 4 -
dk? 2 2 2 P2 2
- 7(3 cos*a+ 1) — k|A]” 4+ (2 = 3NEk|H|” + 2uvy|A|*k(3 cos” o — 1)

+ pyk|K+|(1 = 15 cos® a) + pyk| K| (3cos® a + 1) + 2uy| K[ (JA]? + 2|A]?)

. . o 2)\
+ 2|hs|* 4 2|ha]* 4 (2 — 2))|hs|?|H|? — |H|4+4|h3| |ha)? + 16a>c>. (3.2)
The first inequality in (3.2) used (2.10) and
1
cosa > max{Si(\, u), So (A, ), Ss(A\, )} > 3

the second inequality used Lemma 3.1, and the third inequality used

cosa > max{Si (A, p), S2(A, p), S3(A, 1)} >

Wl =

and the fact that

2 3" (Z(h?khfk—hj‘khfk) +2Z(Zh;‘;hfj) —2AZ(ZH%;;)2
B4,k i.j a

2/\

= 2|ha|* + 2/hal* + (2 — 2)\) | ha|?|H|? — —_|H|4 + 4] hs|?|ha)? + 16a2¢?

computed by using (2.6).

Since |H|? = (|h3|2—|— |ha|2 4207 K+|—Q—dk), substituting it into the above inequality,
we obtain that

0 k PY et 222200
Q<A 3 1) + 3k — —7h
%= +[ gBeostat )t 2/\ P D= ol
4 2
+2A |h3|2 LK = gk + g [hal?
4,wy n 2)\ 1—4n9k2 9
hal® + K- dk =
* oyl + gy I - gy }Q“Lg_n s oo sina

k2 . dk?
cos? o + 6uy| A%k cos® oo — 12py| K|k cos® a — 3 + 3dk?
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— 4k(|ha|* + |hal®) = 6uy K|k — 2py(|hal* + [hal*)k + py| K| + py| K|k
+ 6y K[ (|hsl? + |hal?) +

sV (a2 + af? + 209 K = ) + 2l

° 2(2 o . . R
+2mu4+—%;——JMﬂ<ma2+VMP+2wﬂK¢w—ﬂ»+4maﬂmP+wﬁf&
2 74 2 72 1 72

- 2 K
2)\_1|h?>| 2/\ |h3| |hal® — N1 1ylhs|7| |+2)\ 1dk|h3|
2 . o 8
_ h4— 2 hQKL dkh 2_—22Kl2
sl — o P okl haf? — S
1) 27.2
+ gy 2ndk|K| 2/\_1dl~c

where we assume that

A
0<puy<1l-5

1N
For convenience, let us define a new function
2 2X 1 —4n9k? 3dk? .
P=- Q*+ 3 127 cos?asin®a — cos® a + 6y A|?k cos® a
2N — 1 S 4p 8 2

dk? o o
— 1247y | K|k cos? o — -+ 3dk? — 4k(|hs|? 4 |ha|?) — 6| K+ |k + py| K+ |k

= 2y (|hal” + [ha )k + py | Kk + | K| (s + I;MI2 + 2| K| — dk)

2
22 -1

+ 6y K- |(|hal® + [hal?) + 2] hs]* +

22 -2)) s
2 —

|h3|4 — 1|h3|2|h4|2 -

4
2 dk| K+ — d2k2
o 12 | K| A

+ 2|E4|4 + |h3| (|hs|? + |hal?® + 2py| K| — dk) + 4|i013|2|ioz4|2 + 16a2c>

20y |hs 2| |+ N 1dk|}°L3|2

2)\ 2\ — 1
2 .
2 ha|?| K+
oy 1 2Pl IE T [+ o

21
2 9 2\ 1—4779k2 9 9 3dk?
2—2/\_162 +%—77 n —g cos asin® a —

|ha* —

: 8
dk|h4|2 - m#272|KL|2

cos® a — 12py| K+ |k cos® a

5 .
+§dk2—4;w|KJ‘|k+ (—4—2u7+ + 6y cos? oz)k|h3|2

4d\
220 —1

) . 4N s g0 2 7 1

5 _ ) KL (a2 (4_ )h 21,12 (2_ )hQ——de
+ (2= g K el + (4= 5 s Plhal? + (2 = 557 ) Uhal? = 5ab)
+(_4_2 + 2 +6 cosQa)kVDL |2+(6— 0 ) ||| K|

Sy ! ox— 1M

4 o oipeLp2 6 1 A+l oo
_ K™ |dk — 3—=d’k 164’

oI P K . + 1ba

In order to apply the maximum principle for parabolic equation, our goal is to show
P <0. (3.3)

We estimate P as follows

2 2X 1 —4n 9k? 3dk?
PS—Q)\_1QQ+Z_77 4nn?cos asin? a —

cos? oo — 12p7y| Kt |k cos? a
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5
+—M3—4MﬂKHk+(—4—2ww+

5 + 641y cos® a)k|foL3|2

4d\
220 —1

(2 g il (3= gy Wl (2= g ) (P - k)’
+ (—4 — 2uy + 2§(ij\1 +6M’7COS204)/€|;L4|2 + (6 - 2)\6_ 1)/1/7|f0L4|2|KJ‘|
_ %#272|KL|2 o 1#7|Kl|dk _ ;/\tlldzkz

<@ (1o, g g g eestat (3 gy Ak
+(2)\ d—12cos® o — )ufy|KL|k+(2—2/\2_1)(|iz4|2—%dk)2
+( 4—2uy + id/\ +6m<308204)/€|ﬁ3|2+(6— 2/\6 )mlfDL4|2IKL|
+( 4 —2uy + 2/\ +6,wycos2o¢)k|;z4|2+ (8— 2)\4 )|h3| |ha)?
(AT oo

where we used the fact that
16a2¢* < 4)hs)?|hal?.

We have assumed that

3
O<py<l-s5 =>0<77§Z—/\,
.

so we can take

1= 59 -
1

40N+ 17

’y:

And then we want the coefficients on the right-hand side of (3.4) to be less than or equal to 0,

i.e.,

20 1—-4n9 3d
. 17 in%a — 22 <0, (3.5)
S 4y 8 2
6 2 4N
— < 2 — < — < .
2)\—1_0’ 2)\—1_0’ 8 2)\—1_0 (36)
6 2
2/\_1d 4 —12cos* a <0, (3.7)
4
—4—2uy+ d+6uycos®a <0 (3.8)
220 —1
and
) A+1
3 o 1d=0 (39)
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From (3.6), we can obtain

N | =
wl o

From (3.7)—(3.9), we can obtain

521 —1) d 160X + 4 + 21 — 6pcos? a 2\ — 1
20 +1) 401 +1 an
521 —1) d (44 12cos? a)(2X — 1)
2\ + 1) 6

IN
IN

(3.10)

IN
IN

We need to find out the right conditions to ensure that (3.10) is reasonable. That is
160A +4 +2p — 6pucos®a2A =1 5(2A - 1)
40N+ 1 M 200+1) ©
& 2(A+ 1)(160\ + 4 + 21 — 6 cos® ) — 5(160A% + 4)) > 0

& — 48077 + (308 + 4y — 121 cos® )\ + 8 + 4y — 12pcos® a > 0 (3.11)

and

(4+12cos’a)(2A —1)  5(2A—1)
6 20 +1) T
& 2(4+12cos? a)(A+1) =30 >0
o cosa > 2
~ 12004 1)

11 — 4\
1200+ 1)

& cosa > = S1(p, A). (3.12)

We have to deal with (3.11) carefully. Let us define
F(A) = —4800% + (308 4 4 — 12p cos® @)\ + 8 + 4 — 12p cos® a,

then the two roots of the equation f(\) =0 are

_ 12pcos® oo — 4 — 308 + /(308 + 4 — 12p cos? )% — 4(—480)(8 + 4y — 121 cos? )

M —960
- 1
2
and
N 12 cos? o — 4pr — 308 — /(308 + 4p — 12/ cos? )2 — 4(—480)(8 + 4p — 12y cos? )
2 = :

—960

2 o, we take cosa = 1 to obtain

Noting that A2 is monotonically decreasing with respect to cos
A2 > 2 — 5p. What we need to note is that the cos® o here is only a parameter, not our
final cos? a range. Therefore, (3.10) is reasonable when A\ and cos a satisfy the following two
conditions:

1

—2M

<A<

N =
wl o
—
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and
COS > 711 — 4
=201

472\ — 32002 + 1246
Ccos v 2\/ * + o

Furthermore, we notice that when

6600+ g ap) e

we have

(44 12cos?a)(2A — 1) 160\ +4 + 2 — 6ucos® a 2\ — 1 -
6 40\ + 1 4\

160X +4+2u—6pcos® a 20—1 .
Then we can take d = T enT o in (3.5), thus

400A2(3 — 4N)(2XA — 1) (40X + 1)2 + puJy(p, A)
cosa > 4/1—
1200A3(2\ — 1) (40N 4+ 1)2 + pJa(p, A)

~40022(7A — 3)(2A — 1)(40X + 1)2 + pu(Ja (11, \) — J1 (1, N))
B 1200A3(2X — 1) (40X + 1)2 + puJa(p, N)

> 0.

= SS(/La A)v

(3.13)

(3.14)

(3.15)

where Jq(p, A) and Ja(p, \) are polynomials with respect to g and A, in the following forms:

Ji (s X) = 4X(2X — 1) (40X + 1)[(30 — 40A)(40A + 1)
— (40X + 12) (40X 4 1) — (30 — 40 — 1) (40X + p)]

and

Jo (1, ) = A(40X + 1)[24002 (40X + 1) — 6(2X — 1)(30 — 40X — 1) (40X + p)].

From (3.12)—(3.13) and (3.15), we can get that Kéhler angle « satisfies
cos a > max{ S (i, \), Sa(p, A), Ss(, N}

Finally, under assumptions

1
2#

N =
Wl N
—

and
cosa > maX{Sl (:uv )‘)a SQ(/La A)v S3 (:uv )‘)}a

we show that (3.3) is correct.

At the point |H| = 0, we use the following inequality (see [8]):

2 3 (Sohnl - ngnl)) + 230 (Sngns)” <l
a,B 1]

By k
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The proof of case of |[H| = 0 is equal to that given earlier for case of |H| # 0 and so is omitted.

Applying the maximum principle for parabolic equation to
0 <aQ+CQ
ot — ’
we know that

Q<0

along the flow, if it is true on initial surface for % <A< % — % w and

cosa > maX{Sl (u’ )‘)a SQ(/La A)v S3 (u’ )‘)}

This completes the proof of Lemma 3.2.

4 Long Time Existence and Convergence

In this section we prove the long time existence and convergence of the symplectic mean
curvature flow.

For convenience, we consider the case of p = 1, and the other cases are similar to p = 1.

Theorem 4.1 When p = 1, under the assumption of Lemma 3.2 and the initial surface
satisfies cosa > /1 — §, where

V1—0=max{S1(\1),5(\1),53(\ 1)},

then the symplectic mean curvature flow exists for long time. Here S1(\, 1), Sa(\, 1) and Ss(A, p)
are defined in Remark 1.1.

Proof Suppose f is a positive increasing function which will be determined later. Now we

compute the evolution equation of |H|?f (1),

(i - 2) (0 (52)) = (g~ o) mes () + e (g7 - 2)1 ()

—2V|H|2~Vf( ! )

Cos &

It follows that

d = 3
(& - A) cosa = [VJs,[*cosa + EksiHQacosoa

> |VJs,|? cosa.
And, we also have

0 2 2 30 2 21 412
- _ < =
( " A)|H| 2|\VH|* + (1 + 5 )k|H| +2|H|?|A|

2

KL
40)\—|—1| |

< 2[VH] + (1 + 3—25)k|H|2 + 2|H|2(/\|H|2 -
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160)\+4+2u—6ucos2a2)\—1k)
400 +1 4N

35 160A+4+ 21— 6pcos?a 2\ — 1
:_ZWH'Q“L(H?“L 10N+ 1 N

)k|H|2 N H[

Putting the above inequality into the evolution equation of |H|?f (L), we get that

(5~ 2) (711 ()

30 | 160A+442p— 61 cos® o 2\ —

COos &

<f(-2vH (1 )kH2 2/\H)
F(=2AVHP+ (14 5+ 40N 1 ax JHHI - 2AH]
Ava 2 2 2
_|H|2(f,|VJzt| +2f,|Vco§o¢| N ,,|Vco§a| )
COS & COS” v COS™ «v
H|?) - |H|? 1
TV JHPO G Ly
f cos

2 2 HIVHP?  fIVIs PN 2 V) 1
= |H] f(2)\|H| 2 |H |2 [ cosa ) 2/H] fIH|? Vf(cosa)

AV < ]2
0 _ ot cona) Tl
f cos? o
N (1+3_5+ 160\ + 4 + 24 — 6pcos® a2\ — 1
2 40N+ 1 2\

Set ¢ = f|H|?. At the point where ¢ # 0, it is easy to see that

+ | HP(— " +2

)k|H|2f.

V cos o
Vo= fVIH]? +|HPVf=fVIH? - |H?f —5—,

cos? o

i.e.,

Veosa i(V|H|2 V¢)
|H[> ¢

cos? a
Then we have inequality as follows:
0
g A)
(5 -2)¢
_ 2 _
<(1+3_5 160N +4 424 — 6pcos”a2X — 1
40\ + 1 2\

[VH]> [ IVJ&F)

)k¢+¢(2)\|H|2_2 |H]? [ cosa

, Vo Vcosa of

+2HP?f'— 5 co7a " (f,)2(—f”+2g—2f’cosa)(%
i )
< (1+%5+ 160/\—1-4;)/2\/116/1(308 a2)\ )k¢+¢( f}%JﬂMHP)
o B
A —zf’cm)('v.ﬁﬂf”—ZTETF% oy T

_|_
36 160\ +4 + 2u — 6 cos? a2)\ 1 9
=(1+— k + 2\ )| H
(1+ 5+ 10N+ 1 )¢ o~ 2f cosa T )11
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1 / VIH]* V¢ | |Vo|?
+¢(2 72 2f/cosa)( 2 HE o + e )
Ir" f |VIH|? , Vo Vcosa
—4 2|H .
+¢(6 (f)? 8]“ ) |H|? +2l |f ¢ cos?a
Setting % = g, we choose g such that for z € [1, ﬁ],
2>,
g
—4g" + % o5 0.
T
Let g(x) = xp(z); then p(x) needs to satisfy
1
0<p(2) < 73
—2xp' =1-2p.

We choose p(z) = % — gz by solving the last equation, where ¢ will be defined later. It reduces
to solve the inequality
1 1 1
0<§—qx<— T € [1,7}

~ 4)\3 /—1_6 )
i.e.,
1 1\1 1 1
- )o<g< — 1, ——].
-m)rsesq xe[’,/—l_g}
Thus if V1 —0 > 1 — 55, we can choose ¢ = § — ;. Then
1 T 1 1y 5
g=o(3-ar)=5-(3- )
and ( 202 )
1—2q)°x T 1
1, —|.
J@) = T ~ @ e e ©€ [ ’\/_1_5}
It is evident that for z € [1 11_5},
1
1< < .
<@ < A= - 1)
So, we have
0 30 160X\ 44 +2u — 641cos? a 2\ — , Vo Vcosa
— —A)p < (1+ — ko + 2|H
(875 )¢—(+2+ T 2N )“b B o a
[ f VIH?V¢ |Ve|
2 — —2L -2 > .
== 2 pee)(E g )
Applying the maximum principle, we get that
cos? o 1
2 < < (1+35+1GO>\+4+2M 6 2/\ l)kt '
|H] |H] f(cosa) =¢ o H(©)f (cosa)(o)

So pinching inequality implies
160X + 4 + 21 — 6 cos® a 2\ — 1
40\ + 1 2

where Cy depends only on max |H|? and \. Therefore the flow exists for all time. The proof is
0

|A? < Cpe®'t + k,

completed.
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Theorem 4.2 Under the assumption of Lemma 3.2, the symplectic mean curvature flow

converges to a holomorphic curve.

Proof We can rewrite the evolution equation of cos a

= 3k .
—cosa = Acosa + |VJsg,|* cosa + 751n2acosa

ot

as
9 sin? (g) = —Acosa + |VJs,|* cosa — 3k sin? (g) cos® (g) Cos o
ot 2/~ v 2 2
< —csin?® (g),
2

where ¢ > 0 depends only on k£ and the lower bound of cos a. Applying the maximum principle,

we get that sin*($) < e~ From [5, Proposition 2.1], we know that

s 2
S1- < _
d:ut S OOe Kta
5, COsa

sin? o
cos a

where Cj is a constant which depends only on the initial surface, i.e., Cy = on dpg, and
K is scalar curvature of CP%. As t — 400, Coe K7 is sufficiently small. So we can apply [5,
Theorem 2.5] to obtain that the mean curvature flow with the initial surface Xy exists globally

and it converges to a holomorphic curve. The proof of the theorem is completed.
Thus we can summarize what we have proved as the following theorem.

Theorem 4.3 Suppose ¥ is a symplectic surface in CP? with constant holomorphic sectional

curvature k > 0. Taking p € [0,1], assume that

160X + 4 + 21 — 6 cos® a 2\ — 1

A2 +2uny| K| < M H|?

k,
where v = 40A—1+1 and
cos a > max{ Sy (A, i), Sa(A, ), Ss(A, )

holds on the initial surface for any % <A< % - %,u, then it remains true along the symplectic
mean curvature flow. Furthermore, under this assumption, the symplectic mean curvature flow
exists for a long time and converges to a holomorphic curve. Here Sy(\, ), So(A, 1) and Sz(\, )
are defined in Remark 1.1.

5 A Special Case
When our objective manifold is a flat torus T4, using a similar method, the above Theorem
1.1 can be greatly simplified.

Lemma 5.1 If a solution F : 3 x [0,t9) — T* of SMCF satisfies |A|? + 2uy|K+| < M\ H|?,
where p € [0,1], v = m and % <A< %, then this remains true for all 0 <t < tg.
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Proof In the space T?, we can get the following formula:

Sar = alAP —2vAP 12 Y (Sl - k) + 23 (nghd)’
o, 1,7

o, 34,7 k
a [ N6 2
S HI? = AlH? 2/ VH +2) (> mong)
i,J «

and
) .
&'KH <A|KL| 4 2|Vl K4 + |KL|(|A? + 2|A4)?).

Using the same argument as in the proof of Lemma 3.2, we can easily carry out the proof of
this Lemma.
Since the space T* is flat, the formulas (3.5), (3.7)—(3.9) are meaningless. So we just have

to set X to be symplectic, i.e., cosa > ¢ (0 < d < 1 is a constant).

Theorem 5.1 Under the assumption of Lemma 5.1 and the condition that the initial surface
satisfies cosa > 0, where 0 < 0 < 1 is a constant, the symplectic mean curvature flow exists for
a long time and converges to a minimal surface, which is a holomorphic curve with respect to

some compatible complex structure on the flat torus.

Proof Notice that the space T is flat, so we just have to set ¥y to be symplectic, i.e.,
cosa > 0, where 0 < 6 <1 is a constant. The proof of this theorem can be proved by the same
method as employed in the last section. Finally, we can get the following inequality

1
cos o

1
cos o

(H? < |H2f (—) < [HP0)f (—) (0).

So pinching inequality implies |A|? < |H[*(0)f(-1=)(0) < 4oco. This implies that the mean

cos o

curvature flow exists for a long time and converges to a minimal surface at infinity. It is known
that a symplectic minimal surface in a Calabi-Yau surface is holomorphic with respect to some

compatible complex structure. The proof of the theorem is completed.
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