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Abstract

In this paper, we discuss the problem of estimation of the probability of error im
Slepian-Wolf Theorem. We give both an upper bound and a lower bound of the error exponent
of the best code C(R,, R,).For a main part of the achievable rates, we have determined the
error exponent completely, for the others,. our estimation is aceurate.

,Sl'e'pié,xi-Wolf theorem is cohsidered as one of the most iinportant results in the
coding theory of correlated sources. In the original work™, its proof was relatively -
tedious, therefore Ahlswede, R. F. and Korner, J. gave a better proof later, Recently,
using random coding argument, Oover, T. M. has offered a still better proof with-the -
advantage that, besides its simplicity, it also provides the possibility of estimating the ’
error bound in Slepian-Wolf theorem. : -

In this paper, the problem relating to the estimation of the error hound in Slepian-
wolf theorem is discussed, and the results obtained are tight.
This paper is prepared under the supervision of the research directors Professor
‘Hu Guodmg and Associate Professor Shen Sh1y1 The auther is indebted to Prof.
Shen for suggesting the use of the method employed in[3]; the thanks are also given
to Mr. Wang Gungshu and Dai Changjun for their careful check-up on the paper.

§ 1. Introduction

" The Slepian-Wolf coding problem can be described as foliows: (Fig. 1)
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Fig. 1.
In Flg 1, = [,92" ®%, p(w, ¥)] is memoryless correlated sources, here Z, Y
- are finite sets, and p(w, y) is a probability dlstrlbutlon over Z®%. Let {(a;;, Yt
- be the first n outputs of the sources, and a"= (&, e, @), Y= (51, v, %), then the
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joint distribution of " and y" is
p® (@, y") = II P (@i, 99, 1.1

Let p(@|y), p (y|o), p(@)and p(y)be the marginal and conditional dlstrlbutlons
determined by p(w, ). Similarly, in this paper, the denotations such as p™ (a"|y"),
p™ (y") are used, the denotations h(w|y), h(@), h(a"|y")and h(y"|o") are also employed
10 express different kinds of entropy densities. It is assumed that all of the entropy
densities take only finite values, for example, when p(w|y) =0, it is assumed that
hiz|y) =0. Let H(X, YY), H(X]Y) H, X) H(Y) and H(X) be all kinds of
the entropies of the random variables (X, ¥) whose joint distribution is p(w, 7).

Encoders E,, B, Observmg a*, y* respectlvely, encode the messages by means of
the followmg encodmg functlons - |

Fa: 32”»-913,,_ {, 9, v, M}, - (1.2)
 fu Gole={L, 2 -, Ma, B %)
P S e 1 1
.y where Xr=F Q- ®5L"' W= R RY. a",,——]nMi, a‘,,—~—1nM9 are called
the. rates of the code.

. Decoder D. Observmg the outputs of the encoders i=Fy(a"), _7 =, (™ sumultane—
,ousl;y,‘_reproduce megsages «". y". Its outputs are denoted by @*, §". The decoding
tf,unc_ti_on is o |

g: IM1®IM3_>'Q/-V”.®@”. ‘ . (1.4)
~ The probability of error is defined as o :
PP—p®{(a", y"): (@, y) * (@", §}. ~ (@.5)

Thus we have defined a triple (far Yy, §) Which is called a (n, rs, ;) code. A
" yector (Rx, R”) is called an achievable vector, if there exists a series of (n i, riP
codes @"" such that 75° <R, fr("’<R and 4
| PP E™)—>0 (n—>00), (1.6)
The set consisting of all of the achievable vectors is denoted by %, which is determined
by the following theorem.
Theorem 1. (Slepian-Wolf 1973)
Z={(Bs, By). R>H(X|Y), R,>H(|X), R,+R,>H (X, )}, (1 (9]
* For each (R,, R,) € &, let €™ (R,, R,,) be the set consisting of all of the (n, r,, ry)
codes satisfying ry<R,, r+<R, and

m?(R,, R,)=inf {P™ (@) CE@‘"’(R,, R,,)}, 1.8)
O(R,, Ry) =113£{f%1nm2(3z, Ry)}e 1.9

. ‘In this paper, it is pi:oifed that for each ((Ry, R)EZ, O(R,, Ry)':S"O,' moreover
‘both an upper and a lower boiinds of O (R, 'R,) are offered; in fact, for a main part
‘of achievable vectors, C(R,, R,) are determined completely. -
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§ 2. Lemmas

In this section, developing the method used in § 1.6 of [3], we estimate the
numbers of the elements in some sets and the probabilities of some events. The results
obtained will be useful not only in this paper, but also for some other ‘problems in
the coding theory of eorrelated sources.

| A] is used to denote the numbers of the elements in set A. For each y*& %" if
v'= @1, *, ¥a), lob 1(y) =[{&:9s=y}|. For each (2", y")EZ" @ %", if (2", y") =

. ~ t
((mil yi) ) (CU,,, yﬂ))x lot s(w) y) = H{"': (w‘: yi) = (m) y>} H} a’nd‘ p(ﬂ) =_—(£'Z>—l
q(wly) -3, 9) , plo, y)= M Tt is eagy to know that p(®, y) is a distribution

t(y)
over & ® %, the margmal and conditional distributions of which are p(y) and

q(m|y) respectively. All of these distributions are called frequency distributions or,
81mp1y, frequencies. |

I [Z®Y, p(w, y)]is a 2-dimentional finite probabilistic space, f: x ® 0//—>R’
is a real valued function, then f®: %’ ® %>R’ can be defined as follows for each

(@, ) EZ"RY", (&, ¥) = (o, ¥n), = @ ¥a)), SO, ) =1 Zf (% Y.
Let Hyf = 2 2 p(y)p|y)f (@, v), where p(y) is a distribution over UJ If q(w[y)

is a conditional d1str1but10ns let : . :
HE, §, 0 =23 S5@)i6ly) he@ly), @.1)

H(p, D= -3} 2@l niGly), @
Byaf=2 @19 (s, y) (2.3)

We deﬁne the followmg function o
J*(f(fv ), K|p) *mf {H (35 7, 9 -H@ DY, 2.4)

Where Q is the set of all of the condltlonal d1str1but10ns g (w|y) satisfying the following

conditions _
i Beaf=K, (2.6)

Funetion J~(f (#, v), K|p) can be defined in the same Wa,y'as. J(f (@, v),
K ]p) but the following (2.6) is used instead of (2.5)

- Baf< <K (2.6)

Let | ;
J(f(@, ), K|p)=J+(f(o, 9), K|ID)+I (flo, ), KIp).  (2.7)

Lemma 1. If y"€%" and the frequency of y" is p(y), we have »
i fO (e, ¢ K |y =exp{—nd* (f (o, 9), K|p)+0(nn)}  (2.8)
@ far: f® (@7, y") <K |y} =exp{—nJ~(f(o, 9), K |p) +0(nm)}. (2.9
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Proof Given y"€ %", the number of Qv", for which the conditional frequency
f isa(wly).=i(—m’—?ﬁ, is |

i (y) - | v -
- | | i TLs@, o)t L @.10)
For each above a", 11; can be obtained that R R
p® (@ |y") = 1L yler [p(z[y) 1@, (2.11)
therefore "
p(”’{ *: the frequency of (a; Y™y, is p(y)q(w]y) = y‘”}
{yenﬂ_1 WL LT TGl e

By using stlrlmg formula, it can be deduced from (2 12) that the left side of (2.12)
is

, exp{~n[H(p; ¢, » —~H(p; 9I+0(am},  (2.13)
- Noticing that o _ :
f @ (wn; y") = %%5 (?Dé(w I y)f (wr y) ’ i (2 '14)

we can obtain that - : . _
PO fO(, 4 S K |y} =exp{—nT* (f(2, 9), K|p)+0(am)}. (2.15)
Considering that the total number of different frequencies is 6°"™, we obtain
PP e fO (", g >K |y} <" oxp{—-nJ*(f (s, y), K|p)+0(nn)}, (2.16)
which proves (2.8). (2.9) can be proved similarly '
| Lemma 2. ' If K satisfies the following oondfbtwn

. = @) min f (z, ?/)<K<2 p(y)max f (o, ), - (2.17)

~ then '
J(f<w1 y): Klp) =}\'0K*F<p)f) }\‘0)) ) (2'18)

" where o s the unique real root of the following equation '
p(a|y)een T
glmﬂg p(y) S @ [)F 5@, ¥) K,. o (2.19)
L3
and, . i _ ' :
F(P, fiM=2p@ gyp(wly)e”f@'“’. | (2.20)
The ¢ which gives the infimum in (2.4) (the same for J=(f(w, ), K|p)) is

p(z|y)e™ v @)

- | g(‘”lf’/) = m%p(m/ly) g @ y) e
If K<E,f, then | o | |

: S JH(f (@, ), K|p)=0; S ¢ °2))
if K=Hyf, then . - _ - _
| S - S ey, Kl =0 (@2
if K€l > ply)minf(o, 9), 2 p(y)ymax f(o, Y. o
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J(f(w, 9), K|p)=-+oo, - | (2.24)
The proof of this lemma is almost the same as in § 1.6 of[3].
Lemma 3. F(p, f, A) has the following properties:

@ F(p, f, 0)=0, | (2.25)
oF '

(2) on %=0=E5f; | » (2-26>

@) ZE>0, | @

and the necessary and, sufficient condition that the equality stands in (2 .27) isthat for

ali & satisfying p(w|y) #0, F (@, ¥)=c(y).
'Proof Because of the simplicity of the proof of (1), (2), we prove only (3) here.
" This can be done by considering that

PF . 3 el (@, ) [ Sp@ly)e’ @ (o, v)
AP (zD{ 2 (@ |y)el s —(meiggp(w'ly)e‘f @ ) } |
=0 (2.28)
and the necessary and sufficient conditions for (2.28) 1o become an equality are that .
for all of the # for which p(#|y) %0, f(&, y) =c(y).
Lemma 4. J(f(, v), K|p) has the following properties:

W J*(f@, 9), K| = sup MKE—-F(, f, M}, (2.29)

J(f@, 9), KIp)= sup (MK—F(p, £, M}, - (2.30)
J(f, v, K|p=_sup_HBK-F@F, £, W}, SR D
@) §I‘§ "y gé, _—— | (2.32)
€y -—S—QKJ-;,—>0, : (2.33)
@ J(f@, v, K|p=>0, (2.34)

the équality stands in (2.84) if and only if K=Hyf.

‘The proof of this lemma is omitted. :

Remark. Assume that % is a single-element set,then the results in § 1.6 of[8]
can be easily deduced from Lemmas 1 and 2. In this case, the simple denotations
F(f, A) and J (f(w), K) are used. '

Lemma 5.

| F(h@), 1) =In|Zo|, where Fo={o, sEX, p(a) #0}; (2.85)

F(h(o, y), 1) =In|Z,|, where Zo={(®, ¥). sCX, ye¥, p(x, ) +0} (2.36)

| F(p, hio, y), )= X p@)n| {o: p(@|y) #0}]. (2.87)
The proof of this lemma is omitted. ' '

Now, we estimate the numbers of the elements in the following sets:

(@) {o" h(e")<nK}, | (2.38)
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2) {@", ¢"): k", y) <nK}, (2.89)
3) {am (e |y <nK}, . (2.40)
First we consider (1). Accordmg to Lerama 1, if K'>H (X ), then |
p a5 nK’<h(a;”) <nK}=eoxp{—nJ (h(z), K')+0(Inn)}
—exp{—nJ (h(x), K)+O0(nn)}, o (2 41)
if K> K", it can be easily deduced from the strict monotonicity of J (h(z) , K) (when
K>H (2)) that

PP (o nK'<h(a") <nK} ~exp{—nJ (h(a), K")+0(Inn)} (2.42)
and every element in set {&", nK’<h(a") <nK} satisfies that ‘
) Pl p(n) (wn) < e-—nK (2 . 43)

Thexefore . . :
exp{n(K —J (h(»), K’)) +0(In n)} = {a", nK'<h(0") <nK}|

- Zexp{n(K'—J (h(w), K))+0(]nn)} (2.44)
Hence, for every K’'<K, we-obtain _ : '
[{#": h(a") <nK}|=exp{n(K'- J(h(m) K’))+0(1nn)} (2.45)
and therefore _ _
e h@) <K} [ >exp{n(K ~J (h(@), K))+o(m)}. - (2.46)
- IfK <—%§- s that is aaé <1, from (2.44) it is obtained that

[Ha™ h(a") <nK} | = “’U{“’": iK<h(@) < (i+1) K} U i

<nexp{oma,x1n{ P k-7 (h@), L K)o
LKA~
| <exp{n(K —J (k(2), K))+0(1nn)}- (2.47)
Then, by using (2.46), it is reached that
[{o": h(e)<nK}|—exp{n(K ~T (h(@), K)) +o(m}., ~  (2.48)
If K<H(X), we can prove (2.48) in the same way, thus we obtain the following
oF
Lemma 6. If K<—— 7| then
|| {o" h(a") <nK}|=exp{n(K ~J (h(®), K))+om)}; (2.49)
oF | - - ‘
f K > wn , then .. | _
[{z": h(e") <nK} | =exp{nIn|ao] +o(®)}. (2.50)
Pfroof Only (2.51) has to be proved. Using the fact: 1f K= 3817;\.‘ o , then
K- J(h(w) K) F(h(), 1) =In|Z5|, we obtain, if K>7?C— .
[REAE h(a;") <nK}|=exp{n In|Z,|+o®)}, (2 .51)

and the oppositely directed inequality is obvious. ,
The following Lemmas, the proof of which ig omltted here, are similar to Lemma
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Lemma 6. _
O If K<8F(h(w y) 7»)

a=1’

then '

@, ): o ) <nI}| =exp{n(K ~T (h(o, 9, K)o}, @.52)

If K>2F% (gi D M| ihen

a=1’

4@, ¥): b, 97 <nK}| =exp{nin|Zo}+om)} (2.53)
(%, see Lemma b). e
@ If k<27, h(wly) .

, then'
"1 . -
T ) <0l | = enp 8~ o), RIF) 4o j G50
Whe’re p(y)@s tke f’requenoy Of y q,f K> a-F (Z), h(m]y) . 7\,) thgn ol e

Z.“‘ 2

[{a"; h(a"]y™ <nK}U=eXP{n2p(y)1nu{w: p(wly) #0} ll . (2.55).
It KX <_3£‘_ o’ , funetion BR=K-J (h (w) K ) isa monotone function the inverse

of whloh can bo denoted by K =K (h(#), R). Let |
| W), B)=J (@), Kt@, B), (@56
| WHh(), B) =J*(h@), K@), B)), =~ (2.57)
W (h(@);, R)=T(h(®), K (@), R)), = - 1(2.58)

Where the domains of definition of K, W*, W= and. W are O<R< ]nl] ﬁ" oﬂ and W=
W+=oc0 if R>In|%,|. We can define functions K (h(w, 9), R), W (h(=, v), R),
K (h(z|y), R|p), W(h(z|y), R|p), etc similarly to the definitions of K (h (w) R)
and W (h(x), R) and their domains of definition are 0<R<In 25| and «

0<R< = p(y)lnll {w :p(wl:t/) %0} ll

respectively. - ..
The followmg lemma is a consequence of Lemma, 6
Lemma 7 : IR R
Q) If Z" is a subset with é"* elements of .92” " then S
p® (™) =exp{~nW*(h(®), R)+o(m)}, -~ . - {(2.59)
P (Z™ |y mexp{~aW* (h(w|y) | B|p) +o(m)}. (2.60)
(2) If Z™ is a subset of 2™ X " with 6*F elements, then

pP(Z)Zexp{—nW* (h(, 9), B)+o(m}.) - (2.61)

§3. The Lower Bound of the PrObability of Error

In this section, we estlmate the probabﬂlty of error in Slepian-Wolf theorem. For
each code €€ E™ (R, R,, , the number of the pairs (", y"), which can be decoded
correctly,is fewer than exp {n(R,+R,)}.From the consequence of Lemma 6 we know that
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PP (@) =exp{—nW*(h(, y), By+Ry) +o(n)}, 3.1)
- If the message #3€ % is fixed, the number of ¢", which can be decoded corréctly,
must be fewer than ¢"®¢, so it is obtained that

PO{y": gt |} exp{~W* (h(y|a), By|P)+om)}, - (3.9)
therefore '
PO©)> 51 p® (@) exp{~T* (h(yla), By[P) +o}, (3.3)
where p is the frequéncy 6f 3. It can be proved similarly that v .
Pr©)= 2 Whexp{-W*h(aly), B. |p) +o(m)}. (3.4)

Followi'ng the method used in the proof of Lemma 1, we can prove that the right
side of (3.4) is

oxp{—intn[W*(h(o|y), Re|B)+Hs(p) — Hy(p)] +o(m)}, (8.5)
where - - B
Hy(p)=~ 3 5@)np(y), o 3.6)
Hy(p) =~ 3@ 5 ). | .7
Let ’ q o
§+(h(aly), B) =int (W*(h(aly), B|D)+Hs(p) —Hy(®)}. (3.8)

. (similarly we can define 8 (k(¢|y), R) and S~ (h(w|y), R)), where the infimum
is taken over the set of all possible p(y). Hence ’
PP (€) =exp{—nS* (h(a]y), Bo)+o(m)}, (8.9)
PP (@) zexp{—nSt(h(y|z), By)+o(m)}, (8.10)
s0 we obtain the following ‘
Theorem 2. For Slepian-Wolf coding problem
O(R,, R) <min{W+*(h(e, y), R:+Ry), 8* (h(@ly), By, 8*(h(yl®), Ry)}. .

. (8.11)
Now we discuss the properties of the S-functions.
Lemma 8.
1) If R<H(X|Y), then :
Sh(ly), R)=8(h(aly), B), (3.12)
S+ (h(aly), B) =0, (3.13)
@) If R>H(X|Y), then
S(h(aly), B)=8*((sly), B), | (3.14)
8~ (h(ely);, B) =0, (3.15)
The proof is omitted. '
Let

LW (halg), RID+Hy (D) ~H®-p(Fp@) =D, (3.1
_then | | o |
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A 8W
== +In5 @) +1-Inp(y) ~p. (8.17)
. op(y) op(y) |
From R=K —W, we obtain
o- 2K oK o o 4 _2 (3.18)
| aply) O oply) op(y) A 9p(y) |
nd | w oJ aJ oA |
w . _ S (8.19)
oply) op(y) A (Y’ |
Using' (3.17), we obtain ‘
oJ oK
on  _ op(y) op(y) (3.20
op(y) 0K _ aJ (8.20)
N on
Substituting (3.20) into (8.19), we obtain »
: 0K &J 0K - aJ
oW __ on op(y) _op(y) on -
m@ oK ol 6.2
| on oA
From J=AK —-F (and —a-I-F—=K>,
| o] . 0K oo
therefore : _ , -
awzl{a;r _%aK} '('323)
| opl) 1-Aloply) — ap@
From (2.18) ' S o
| aJ oK oF o
A .- . Sy (8.24)
ap(y) () 2p(y) -
and _
ow .. 1 . @F 1 s
i e o In ; . 3.25
O A R = R
- Then , : ’
| 8% . _L. ]an(w]y)i""+1n W/) +1—p=0 (3.26)
oply) 1 | |
therefore ' -
p(y)—e" 19(@/){22)(@!?/)1’”} T, (3.27)
Using 2‘, p(y) 1 ‘We obtain |
5 p(@l){Ep(wly)i‘*} = R
@)= | (8.28)
| 2 p(@/’) { 2 (@ ly’)“} = |
and , .
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W=AK —F, (8.30)
F=2pWh 3 plely)*™ 3.31)
o .R=E-W, (3.32)
o 8= 1np(5’>, 3.33
20®) 0 3.3 :):
thus We obtain & parametric representation of S(h(z|y), R),
From (3.28), (3.88), it can be obtained that
oS -~ A OR :
o 1-an on” 3.34)
therefore -.
S A
Moreover P " oy
S - (OR N\
, ‘ 28T S (L-A7) ( ) ° (8.36)
From direct computation we know that -
oR
_97>0 (3.37)
therefore
T '326' v
W>O' “ @3 ..38)=
Hence we obtain the following :
Lemma9. S(i(z|y); R) has the followmg pfrope'rtws
(1) Its domain of definition s
0<R<max1n" {w p(wly) %0} ; (3.39)

sz>max]n{|{w p(w|y)aé0}|| ot § =00,

" (2) (8.28)—(8.33) are the paramelric mpfresentatwn of the funct@on S(h(s|y), R).
3) Sh(z|y), R)>0, the eguwhty stands if and only if R=H (X | Y).

a8 A P8
W m=1% wm ™

- §4 The Upper. Bound of the Probability of Error |

In this section, we estimate the probability of error in Slepian-Wolf theorem.

First, we assume that
@, RYER,
R<|Z], R<In|%|

(2, ¥ see Lemma 5) and construct a random code as follows.

(4.1)
(4.2)

Encoding. We encode any a"€ %™ as one of the elements of the set {1,2, -, g
independently and with probability e "F~. Similarly, we encode any y"€ &™",
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Moreover, let the encoding of "€ %" be independent from the encoding of ¢"€ 2™
(without loss of generality, we assume that ¢"*, " are integers). Thus, all of the
possible encodings are equiprobabilistic.

Decoding. For fixed encodings, if the received signals are (4, §), it can be
deduced that the messages. being sent are in the seb F21(@) @71 (§). If there is a
unique pair (2", §*) in the set fit (o,) ® ft ( ) safmsfymg that for each (a: y") Cfrt (%)
®f7*(H

™ (2", y") =p® (2", m», (4.3)
we decode (4, i) as (a", 4", that is, g(4, y) = (@, y’") in other cases that there are at
least two pairs in fa,l(z) ® f;l €)) sahsfymg (4. 3), we decode (’b 4) as one of the pairs
arbitrarily.

The average probablhty of error of the random code. First, we compute the condi-
tional probability of error under the condition that (#3, yi) is the message emitted from
the sources. Let ' ' -

PO (s, o) —p®{ (2", 7" |
= {(a%, ¥B) | (%, 43) is the message emitted from the source} (4.4)

There are three possible cases for making mistakes, that is, if the received signals
are (4, j),

(1) there is such a y"€ f7*(4), y"#yo that - _

p®(ah, v =p® (@5, 45), (4.9

@) there is such an "€ f;1(4), @} that

p® (", y) =p™ (@8, 90, (46)
3) there is such a pair (@", y") €F () ® £t (D, w”aémo 0, aé-y{,‘ that

p™ (e, gy =Pk, ¥8). . (4.7)

If we use PP (af, yo) to denote the cond1t1ona1 probablh’oy of error in the ¢ th
case, it is easy to know that

PO, o) = 2 POGEL ). @9
It is obvious that | |

P (o, 98) <o~ {y: p™ (@b, ¥") >0 (a5, 99}
— B {g: h(y"|a) <h(@laD}], L 49
By (at, 48) <o~ s h(a*]98) <h @93, (4.10)
PP (a3, gy <e~"®e+Eo | {(a", y"): hie", y") <h (%, 4 (4.11)

Let. P® be the average probability of error of random code, then. .
Pr=3 > p™ (a5, ?Io)P ™ (@5, 95)

a:gezr" yieam

SIS S, o) PoG, ). (4.12)

=1 afcar yjcom

Let
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. w{,’e.@l”

then = =

Now we est1mate P(”) (t 1, 2 3) respectwely o o L
)< 2 24 p(n) (wo, yg) mln{l e—n(Rz+Rv)"{(wn n) 'h(w”) fl/") <h(w3, yﬁ)}u}

. ofcar yficen "

<exp{—nW*(h(w, y), ¢+R,,>+o(n)}

A CARY Bemmera | { (@, ") h(a", y") <h(ah, %‘)}H (4 15),

kg, vg)<nK

' :where K K (h (a: y), R +R W) Now we estlmate the second term in (4. 15)
™ (w ?/o) PRy H {(w” o): h(a;" y") <h(ah, 4 >}”

h(msw )<nK

= Eee B PG @, sk, 1<, 91

=0 Co nK4<h(wo,11 )<nK

n—1

< Ee-n(Rz-i-Ry)p(n){(wo, yo) nK'gh(a}O’ ?/0)
<l'n’KviHl.} ”{ (a’”) n) . h("”": ”)<h(w0) ?/0)} " o

| <5§exp{_.,i[ B+ R,_-.«i-(RﬁR,f,’)J}W*(‘h(w, ), -’i—(Rx*FRv))]*‘”(")}

<2exp{ —~n[R, +R—- R5up, (R W+(h(w 9, B))I+om)}, - (4. 16)

. jwhere K=K (h(z, y), —-—(R,-{-R,,)) There are two dlﬁ'erent cases, which we are to

| discuss. oo
W K 6”W
o oR 1 A " oR?
Lemma 9), we can L prove that '

Notlcmg that

_>O (Whlch can be proved in the same Wa,y as

Q@) if 3?; »‘ . >1 that is, if 7\.>-—;—, the“suprem:um in. (4.,16)__ is achieved ab
.'.__R?S_v'vhich satisfies that aa]g }hm =i, thgt is, A= —%-; denote this R* by R, then
PP <exp{—n[Re+RB,—Bs+W*(h(s, y), R)l+o(m); - . (4.17)
(2) if ng i <1 that is, if A<-§—, the Supremum_ in (4.16) is achieved
© at R=R,+R,, then "‘ s SR |
. ‘ - | P(’"<exp{ nW*(h(w Y), - x+Ry)+o(n)}  (4.18)
e W*(h(w ), B)= W"(h(w ), R), R<Rs, o :
W+ b, 49, B) =R-ByA W*(h(o, 9), Ry), '1_5:'>Ra, )
Summlng up the above results we obtam ‘

PP <exp{—aW+*(h(w, y), R,+R,,) —l—o(n)} (4.20)

NOW we estimate P{

p;n)_z' ;4 P(”)(wo, )P"‘)(mo, )’ e (4.13) :

P(n)_ EP ' : - : S (414) ._ .
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PO, e Ly <hgld}, (620

: o : wo’;ql” h(y.’,’la:{,‘)<nK(wa‘) .
where K (at) <K (h (ylm), R, p), p is the froquency of @ From 3.4), (3 5) (3 8) ,

We know that the first term of the right. S1de of (4.21) . _
2 10""( )eXP{—-nW”(h(ylw) Rylp) +0(n)}

- <exp{- nS*(h(ylfv) Ru)+0(n)} SR e "(4.22)

The estimation of the second term is as follows

opean h(us'lwa)zénK(wo) (”) (wo’ )e""RVH {y h(y lwg) <h (y”]a;o)} “
)-l—o(n) }

<3 (aB)e™" Zexp{@Ry—nW”(h(ylo&),
o)

@Ry

=S 51 poadyonp (i~ *{(b0la), 2

3=

= i 6 "Fy exp{’bR —nS*(h(ylw), _@R”>+o(n)}
e expln sup (R~ (bwla), B+ (4.23)

The supremum in (4.28) can. be discussed i in two dlﬁ'erent cases.

(1) if _6_§’__ om <1 “then the suprermum is a.chleved ab R Ry, and |
’ Pg"><exP{ ns+(h(ylw) Ry)+o(n)} I @ 28)
(2) if -@%— . >1 then the supremum 1s achleved at R* (Whlch i denoted by
R,) satisfying %’%———1 that is, ?\,—-%- and 4. 28) becomes (notice (4. 21) (4 22))
- PP <exp{— n[R,, : R1+S+(h(y|w), Ri)]+o(n)} (4 25)
et 8l B - S*(h(ylw}, R), it B<By = | R
S+(h(y|w) R)= R Rl—l—S"(h(fylw), Ri), if R>R1 ' -(4’ 26) _

_Then .
AR e P<”><exp{ nS*(h(ylw), R,,) +o(n)} (4 2Ty
~ Discussing Py in the same way, We can deﬁne functmn S’* (h (w]y), R), and
obtain - P R
: - P@<exp{— nS+ (h(wly) R %) +o(n)} . (4.28).

" Thus we obtain the following
" Theorem 8. For the Slepian-Wolf codmg problem it is true that

(@) if R<In| 2|, Ry<In| ¥, then

O<R:v Ry>>m1n{W+(h<w ’!/) Rz’*'Rv) S+(h(?llw) Rw): S+(h(wly)Rz}:
- (4.29)

(2> ’bf Rm>1111|3f"o|l Ry>1nIWol| thon.

O(B,, By =c0, 4.30)
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(3) q,f Rw>1n[|.92”o|| R,,<1nu%n then

0@, R)>§*(4Gle), B), @.31)
(4) if R,<1n"ft"o|| B>In|%,|, then o
(R, R)>8* (h(oly), R @)

.. Proof .- We have to prove only (8). In this case, a11 of the 4"€ £™ can be trang-
poted without error, so we have to construct the random code at only the encoder K,.
- Then, following the:example of the proof of (1), we can prove(3) step by step.
Laample Let & =% = {0, 1}, p(w, y) be given by the following matrix

8’ 2

4° 8/
Then H (X, V) =1.2180, H(X |Y)=H (Y| X) =0.5514, and the curves of W+, W+,
S+, 8+ and region Z are shown in the following figures. |

S
0.1

W . 73 0.15]
0.15 _

' 0.10
0.1 0.088
0.05]. w+  0.05

ol -~ 1.6

1-21-218 1-3 1-342 0.55 0.60  0.650.693 0.50 0.60 0.70 R,
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