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Abstract

‘In this paper.We consider optimal éontrol problems for linear system on real separable '
Hilbert gpaces with quadratie criterion; in-which the state weighted operators aré indefinite. -
Wellposedness and solvability, existence and umqueness of. optlmal control are discussed. We .
'prove that the closed-loop.syntheses of optlmal control are state. hnear feedback. Ex1stence of
solutlons of rela.ted operator Ricceati equatlons is mvestlgabed

Starting from the contribution. given by :k’alhea.,h:m ‘the optimal. control theorj. _'
~ of linear system with quadratm criterion has been developed to some extent in finite'
'dlmensmnal casem and it has been generahzed to the mﬁmte dlmensmnal case‘s“” o
Moreover the case with smgular cnterlon has also been dlscussed““ This theory has o

already been applied to the analytic desngn of computer control systemm

. " We consider the optimal control problem of linear system described by a t1me—
invariant evolution equamon on real separable Hllbert spaces X, U Wlth a quadratic
1nde1m1te cr1ter10n ' o . , o o
| %-Aw%—Bu BWEX, u) v =0, @

10, 4] it {J(u) =@, 2] [Qs), 5O+ R, u)) at},

T()on X, a closed ‘operator with dense domain D(A) a,nd its range in X Let & (+ )

"denote a Banach space consisting of bounded linear operators from the former Banach _
© space to the latter w1th operator norr. We assums that B E 5,” (U X ), Q, Q1€ _2” (X X ), -

REX(U,T),Q, moreover Qy and R are self-adjoint. ,
For any w(O) @€ X, u€ L“’"([O oo) U) the mild solutlon of (1) is

w(t) = T(t)wo—l-j T {4 s)Bu(s)ds >0, :',_'.,(_4)

_ Manusci'ipt received J anuary 28, 1981,

e
[0, o); in {J(u) j [(Qu(), w(t)>+(Ru(t) u(t))]dt} e

In this paper we assume that A is an 1nﬁn1tes1mal generator of Oo—selmgroup_
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We denote the problem (1)—(2) on finite time -interval [0, #] and the problem
(1)—(8) on the infinite time interval [0, oo) simply by (#7P) and (ITP)
respectively. Assume that
LA([0, 41, ), L2([0, t], X), (FTP),
I2([0, o0), U), I2([0, o), X), (ITP),

Ifa self-adjomt operator K'>081, 3>>0 is a constant, then K is called coerclvely
positive definite and denoted by K >0. If K is nonnegative, we denote it by . K >0.

In the present paper, all integrals involving operator-valued functions are Bochner
integrals in strong sense. -

Wpy= U= { and 3{={ 5)

Almost all of the works concerning the linear-quadratic optimal control problem,

whether finite or infinite dimensional case, always made a priori hypothesis that |
: : Q=>0, >0, and B>0. _

We refer to thls oage as the standard case. Molinarit® pomted out that Q will be of
negativity in the linear-quadratic problem relating to network analysis, and in his
papet survey was made for the finite dimensional case. On the other hand, with a view
to generalizing the frequency theorem of the absolute stability of nonlinear régulatibn
systerns, Yakubovitz®-*! obtamed some results about the problem on infinite time
mterval o
' Under the condltlons that A4 is an unbounded operator and @, @ are sign-
mdeﬁmte we 1nvest1gate the infinite dimensional problem and discuss mainly its

 well-posedness and solvability, closed -loop opt1ma1 controls and the related operator

Riccati equaﬂmons

§ 1. Well-posedness and Solvability of
Optimal Control Problems

Definition 1. Given an optimal control problem (FT'P)or (ITP) Jif for any given
$nitial value 2(0) =2,€ X

V(wo) = 1nf {J (u) ]w(O) w0}> — oo,

then the problem is oalled fwell-posed of in wddztzon there exists u* € %,d such that J (u)
=V () > — oo, then it is called solvable. o

We denote the optimal control (corresponding to a given initial value), the
corresponding optimal state trajectory and the optimal pfocess by v, 4 and {&* u"}
respectively. V(svo) is the optimum of criterion. The ad;;omt of a bounded linear
operator K is denoted by K*.

Theorem 1. The necessary condztwn for (FTP) as well a3 (ITP) to be well-posed
8 R=>0,
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Proof TFor the contrary, we can choose an admissible centrol function u(-)
such that J () | a0y=0<<0. Thus J (ku) |$(o)_0—-lc2J () | a0y=0—>— oo(lo—>00) This is a
contradiction to wellposedness.

Wo allow Q and @, to be sugn-mdeﬁmte so that quadratic criterion concerned is
non-convex. Using the extremum lemma for real quadratic functional defined on
Hilbert space (see[10]), we attain the conditions 'Qhaifacterizing‘ Well—posedness and
solvabilty. | : | | o _

Theorem 2. _(FTP) is wellposed and solvable if and only zf the following conditions
are swtzsﬁeol “ . B | -

1) H= R+L*QL+L;Q1L1>0 cmd
2) there ewists an admissible process {@, u} satisfying

RO +B I (=@ + [ T o~ )@(@)do1=0, t€D0, 4], ©

where the operators L and Ly are defined by (Lu) (¢) =J’t T (t—s) Bu(t)ds, dnd Lyu=

(Lu) (t1) respectively. - Furthermore, if H >0, then for any #(0) =w,€ X, u* ewists
uniquely.

Proof We denote Z=% X %% X and .#,, is the set of all augmented processes
{@(- ) u(+), #(¢1)} which have the same initial state .

M= Mo+ {T (+)mo, 0, T (t1) @o}.

According 10 the extreraum lemma mentioned'above, the necessay and sufficient
conditions for this optimal control problem to be well-posed and solvable are

i) diag (Q, R, @) | %=>0, i. e., {(R+L'QL~+LiQ:Ls)u, ups>0, Yu€ %,

: : L+ T (ywo \ [ Lu |
ii) Ju’€ %, such that (diag (@, R, Q1) o0 , |l ou =0, Yu€E %,
» R U Lol +T (t)wg | \Lau /| .
From ii), there exists an admissible control process {°, »°} which satisfies
Ru-+L'Qu+LiQuw (81) =0, . @)

Notingthat - - | . : e
(L*p) () ——-ﬁ BT (o~)p(0)do, (L)@ =BT (t~Da, (8)
‘we then obtain (6) by substitution of (8) into (7). As a consequence of the extremum
lemma, H >0 implies that 2) holds and %" exists uniquely.

Definition 2. . Operator A is called having the spectfrwm ¢solation propefrty, fz,f its
.spéctrum o (4) and the imaginary awis are disjoint, and ' :

30>>0 (a positive constant), | (iwl—A) <0, Vo€R,

Definition 3. Linear system {A, B} is called L*-stabilizable (resp. ewponentially
stabilizable)., if there ewists an operator K € £ (X, U)such that the pafrtwbed semigroup
G(t) generated by A+BK satisfies . :
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J |G () o] 2dt < 00, Varo€ X,

(resp. ”G(t) |<Me=**, V10, and M w are two constants).

Theorem 3. Assume tkat A has the spectrom isolation property and that {4, B}
is IP-stabilizable. : :

1) If the following condition in Jrequency domain holds,

300>0, @(faw) =R+ B* (iw] — 4)"*Q (vl — A) “iB=>0,ly, VwER, (9)

then (ITP) is well—posed and solvable, and Vo (0) =2, € X, u’ ewists uniquely.

2) @ (iw)=>0 for any o€ R, is a necessary eondition for (ITP) to be well-posed.

Proof As {A, B} is L*-stabilizable, there is K€ .Z (X, U) such that A+BEK
‘generates an exponentially stable semigroup G(¢). Let Z=2"% %, denote the set of
those processes correspondmg to the same initial state mo by ,/ﬂ,,,, then ., = -+
{G ()@, KG (+)wo} is non-empty.

1) Oonduct L?-Fourier transform to u=K o+, vE 32/ and w(t)=Jt G (t—s)Bv (s) ds.

We obtain that the Fourier transforms e of @, u satisfy the relation w(w) (th -
' A-BK) lev () = (tl — A) ~1B% (w), and

- J (u)
Ny e

. 1 oo Lo~ o .
= inf w1 (D (iw)u(w ) Sdw

v Tefgt fuls J - oo, i) |
=8, [sup (] (I —4) 7| | BI®) +1] =00, (10)

By the extremum lemma, the first part of this theorem is proved.
2) If there are wo€ R, g€ U, such that (B (iwo)uy, %><0, then
| o= (iwo] — A) *Buy € D(4), |
. consider the natural complex extonsions of X, U, and the. correspondmg complex
extensions of the related operators For #,>>0, apply the control
=2 ~KQ(t)e, 1€ 0, 4],
KG(t—1ty) (e"""t*wo G (t1)w), te (4, oo)
- Let #(2) = (Lu) (¢). On account of the exponentml stablhty of G(¢), it follows that
| J (@) |807=0 = 124D (i20) o, ud+O(VT7), t>too, - (12)
_ If ty is chosen large sufﬁclently, ' . | _ ' |
Re J (%) | 20y=0=J (%) | ayoy=0-+J (t2) ]z,«,)_o<0 D=ty iy, &=ay-+ina.
Thus there must be a real process with zero initial state, either {wi, u;} or {m,, ua},

(1)

such that the corresponding value of criterion is negative. The second part of this
' theorem is proved. A A _ ‘ _ _ .

| - When 4 does not have the spectrum 1solat10n property, the condition (9) may be-
reformula,ted but omitted here. -
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OPTIMAL CONTROL FOR LINEAR SYSTEM WITH QUADRATIC :
No. 1 - INDEFIN ITE CRITERION ON HILBERT SPACES : 28

Remark 1. The results we obtamed show that in order to assure the Well—

* posedness of (FTP) and’ (ITP) J (u) must be nonnegative on the subspace Mo in Z.

Remark 2. The standard case @, @10 and R>0 becomes now a sPecml case
which satlsﬁes the sufficient conditions H>0in (F'I‘P) and (9) in (ITP)

§ 2. Open—loop Determination of Optlmal Control
 Theorem 4. Assume that (FTP) %8 well-poseol and solvable, any opmmal control u*
mast satzsfy the followfmg open-loop equwtzon '

Rul) + [ W (¢, @)u(o)do= =BT (=H/QT (W)

j T*(o—8)QT (0‘) o], (13)
W(t 0') B*T¥(t1—t)Q1T(t1“O')B : .
+f‘ o BT DQT (=) Bls, 1, o€ [0, 4], (14)
If, in addition, R>O,: then optimal state trajectory «* must sat?,sfy o
o(t) =T (B0~ T(4—5) BRABT" (ts—9)Quo (tr)ds-+ [{E@ o0)ds, @5 |
where ‘ : |

K, a)=—jz’"’“'"’T(t-s)BR—lB*T*(a—s)ng, b o€, 61, (16)

Prroof By the approach of operator transposition and by nterchangmg the order

of 1ntegrat1on suitably a,ccordmg to the Fubuu theorem for Bochner integrals ([12], -

p..84), it follows that _ _
(L' QLu) (8) ~=r‘< j :M BT (= DQT (5=0) B_u (0)ds )do,

(LiQuLnw) (8) = j BT (tu— £) QT (12— ) Bu(0) do.

_ Substitute them into (7) and take notice of (8), then (18), (14) are obtamed Besides,

substitute (6) into the mild solution, we obtain (15), (16).
Theorem 5. Assume that (ITP) is well-possd and solvable, and that T(t) s
ewponentmlly stable, any optimal control w' must satisfy the followmg opén-loop equwtzon

Ru(t)—l—j e a)u(cr)da j BT (o —)QI (@)oo, 1[0, %), an

0@, o) = j 9 )B*T*(s-t)QT(s—&).Bds ho€l, o). ()
f ‘in addition, R>0 then optfz,mal state tmgectoo*y a* must swmsfy -

()= T(t)m—j r(t a(o)ds, 1€[0,%), (1)
where » . T
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I, 0) =-—J:"~M'”)T(tgs) BR-B'T*(0—5)Qds;, 8, o€ [0, o). (20)

_ Proof Using the Hausdorﬁ'—Young inequality, we deduce from ‘the exponential
stability of 7'(t) that Ley (L2 ([0, o0), U), L3([0, o), X )) The rest of the arg-
ument is similar to that of Theorem 4.

§3. Clbsed‘-loop'Synthese’s of Optimal Control

Under the hypotheses that A is an unbounded operator and Q. Q1 are indefinite,
the syntheses of closed-loop optimal controls of (FTP) and (ITP) are key results bub
difficult to prove. Through the manipulation in integral form we obtain an equality
by which the synthesis of (FTP)is achieved. Similarly the synthesis of (ITP)is achieved.

Lemmal. Vz(0)=2,&X, Vué U, and assums that N € ¥ (X, X)4is an arbitrary
self-adjoint operator, then it holds that VO<i<o<-+oo, :

<NT(O‘ t)w(t) T(c—t)x@))={Na (o), w(cr))
~2 j (NT (6 =9)a(s), T (o —5) Bu(s)>ds )

Tts proof is simply a verification.
Lemma 2. Va(0) =2,€ X, Yu€ %, and asswme that P (i) is the solution of ths
operator Riccati integral equation
P@) =T (. —8) QT (t1—1)
j T*(6~1)[@~P(@) BR*B'P()IT (e —t)do, 1€ 10, &1~ (22)

(we always mean the solutfwn asa stfrongly continuous, self—aolgomt bovmled opemtor-wlued
function). Then 'z,t holds that

PO, 5(0)>= @), o@)>=2], @), PGB
j<(Q — P(s) BRB'P(s))w(s), m(s) Sds, Vi€ [0, . @
Pa"oof Usmg Lemma 1, we obtam the followmg two relations. S
@w(t), az(ti))——2L QT (ta—9)a(s), T (ta—8) Bu(s) pds
=QT t—t)a(@), Tt—Do@®). < (24)
[@-P@OBRIBP@)®, o0
~2( (o, | 709 @—P (@) BEBP(e))T (s ~8)da | Bu(s) )i

~(['7*e- (@-P()BEBP(@)T (o~ 1)do-a(), o). o

Summing up (24) and (25) leads immediately to (28).
Theorem 6. Assume that R>0. If the operator Riceati integral equation (22)
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admits & solutzon P( ), then for any w(O) 2 € X, _
u (t) — —RB'P )" (t) t€ [0, t4] (26)

is closed-loop optimal control 1o (ETP). Moreover,
- V(wo) =<P (0> @o, @0, Vao€ X, 20

Pfroof By lemma 2 let t=0in (23) 1t turns out that

PO, 2=, 8y} W), BP o)
+[ <@-POBRBPO)), o)

—J W) — I(R(u(t)—l—R 1B*P(t)az(t)), u(t)—l—R‘iB*P(t)w(t))dt ue . (28)

On the other hand, the feedback control (26) ylelds the state trajectory belng the mild
solution of perturbed evolution equation

Galh) — (4-BRABP®)a(®), v(0)=2. (20)

Thus we know (26) represents an admissible control and it must be- optimal.
.. Theorem . .Assume that {4, B} is L _stabilizable, R>0. If the operator Riccati
algebraic equation

{(Pw, Ayy+{ Az, Py>+<Qw, y) <PBR'"1B*Pm y) =0, Vs, y€ED(4) (30)
has @ solutton P=P*€ ¥ (X, X) such that A—BRB'P generates an éxponsniially
stable semigroup G (t), then for any 2(0) =2, X,

u (t) =—RB'Pa*(8), =0 L BCIN
45 closed-loop optimal contfrol to (ITP), the optimal trajectory «* () = G(t) @ wnd
"V (@) ={Pwo, @op, VwmE X, - (82)

Proof Suppose that Ke (X, U) is such an operator that A+BE generates an
exponentmlly stable semigroup W (¢). By the transform u=Kuz+, (ITP) is sh.lfted
10 & new problem equlvalently ‘

- (A+BK>¢+BQ)
| %2£{f<w {4 “ 5 D) O,

. where Qi—Q+K *RK, 81~RK It is eagy -to verify that (30) is equlvalent to -the

following equation

(33)

W Q- PR R EPHSIW G, (@D
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{Pmo, wo> = I: {@-PBK-K'B'P~- PBRle*P) w(n), o (n) Sdn
~2| <o), PBo(n)>dn | |
=7 @) = [T KRo®, 20> +KRE (), v()>+(K*RE(), (D>
+2(B'Pa(t), Ko(8) +v())>+(PBRB*Pa(f), o(f)>}ds
~J- j (R +BBPu(), vu(t):—}—R"iB*Pw @) |
<T@, Ve . o N ¢

' On the othér hand, the state feedback control (31) is a,dm1smble and makes
( ) - P, »’”o> '

'§ 4. Existence of Solutions- of Op_erator Riceati Equation |

Theorem 8. For (FTP) and its assocwted opemtor Riccati mtegml equatwn
(22) of B>0 and. H>0, then ' :

1) there ewists @ unique solution P( ) of equwt@on (22);
. 2) for any 2(0) =@ X, there ewists & unique optzmal control u” (+ ) gwen by (26),
where P (+) is the solumon of (22) just mentioned; =~

3) &"(8) =G (¢, 5)a"(s) =G (¢, 0) o, 0 s<E<ty, _Where Q(t, s) is ths efuolutzon

operator determined by the perturbed evolution equation

S u-BEEPE)E e

4) the opmmum of cmtefrzon V (@) =< P(0), wop, Vo X,
Pfroof We give the proof of this theorem via the following Lemma 3 to Lemma.
- B. Denote owo="T'(+)@o, Dwo="T (4;)mo. Then we can write that N
() = — H4(L*QO+LIQ.D) (Y woe=N (Hm,, i€ [0, 51] @D
- Lemma 8. Vi€[0, 4], N EL(X, U). Moreover, N Z(X, 0([0 41,0)).
Proof  We see L'QO+LiQ:DE #(X,0([0, 4], U)). As the equatmn Hu=fis
w) =~ B W 4, oyu(o)do+ B, €0, 41, FEO(D0, 8, D),
where W_(t, a) is shown by (14), it follows that w=H “1f €o([o, ti] U) and Hisa
bijection on o([0, #,], U). Thus H-2€ £(0([0, t:], U), C([0, &1, U)).”
- Lemma 4. Under the hypotiwses in Theorem 8, the optimal-control pfroblem of the

n :same lfmeafr system on tfz/me mtewal (s, t1] (O<s<t1) with the cowespondmg quadratic
:cmtemon B

ueL}(%t;.] 1) { J.<u) <Q1w (tl) ¢ (tl» S o
+ L [(Qw (t) , 2()) +<Ru (®), w(®)d]dt|w(s) =w0} _ (38)
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has o unique optimal conirol for a/n4/ given w(s) =2o€ X, and s optimal trajectory is
wr () =Q(, s)®o, 0<s<t<<ty, where{Q(t, s); O<s<t<ti} 4s am evolution operator whoss
operator-norm s umformly bounded. : ' :
Proof H>0 1mplles that for any given m(s) NS X the optimal solution of this
problem exists uniquely.

Similarly as in Lemma 3 we have :
@) =N s [N |ocxn<M, VOSs<SIStaL - (39)

Substltutmg uj (1) = N (£) o into the mild solution of(1), we define G(t s) to be

@, 9o=T -0+ Tt—n)Bui(ndn

—T@-9wt [ TG-mBN.(adn, Ye€X. (D)

From (89) we obtain those properties of G (3, ).
According to the optlmallty principle, substitution of *(¢) =a{(¢) =G (2, s)a; (s) :

into (6) implies
W@ = BB, €00, ), (41)
where . ' R

o P@)=T*(1—8) @G (41, t) +K T* (o —£)QG (o, t)da,' 1€ [0, #4]. (42)
From (40) and (41) it follows that ‘
G0, ) =T(—s)+ [ Tt—mn (- BROBYP()G(n, 9dn, 0<s<i<h.  (43)

Lemma 5. P (£), given by (42) , s the unique solution of opemtor Riceati integral
oquatfwn (22). ' : '
Proof That P(2) is strongly contmuous can be easily verified from (42) and the
propertles of G(¢, s). '
Substituting (43) into (42), we obta1n

P() =T (=0 [QuIP (=) + [ T (=) (~ BEB) PG) G, D3]

[T e =0QUET 1)+ [T (o =) (- BRB) PG, Od)do. (44

* According to the duality fheorem on the perturbation of evolution operator (see
[14]), (43) is equivalent to the following ' '

G, s) = T(t——s)—{-J G, n)(— BR"iB*)P(n)T(n s)dn, 0<s<t<t1 (45):’
~Then we obtain . :
P (&) =T" (b, — t)QiT(t'l—t)'—}—J T*(a-—t)QT(a—t)do-

j T*('n 8) [T" (b~ n)QiG‘(tx, n)]BR"iB*P ()T (n—t)dn

" [ 7= 1)QE o, n)ds|BRAEPGIT (1)
=T G D@ ) +[[T (=) Q- POYBREP@IT (-, (45)
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In view of the uniqueness of the strongly continuous solution of (22), see [4] for
its proof and it isn’t influenced by the mgn—mdeﬁmte property of Q and Q1, it must
oceur that P(¢) =P*(t), ¢€ [0, #].

Thus, we have proved all the conclusions stated in Theorem'8. The similar appro-
ach can be used to discuss the solution of operator Riceadi algebraic equation (30).

Theorem 9. To(ITP)and its assoviated operator Rwaatz adebfraw equation (30),
asswme that A has the speotfrum isolation propefrty cmol {A B} is L"—stab@lzzable If
R>0 and the condition (9) s satisfied, then !

1) there ewists a solution P=P'C ¥(X, X ) of equation (30) such that A— BR™*B*P
generates an ewponentwlly stable semigroup G(t) 1=0;

2) for any #(0) =m,€ X, there ewists a unique optimal control u ( ) given by (31) ,
where P i3 the solution of (30) just mentioned; S

8) «*(t) =G ()wo, t=>0, where G.(t) is the semfl,gfroup genamted by A—BR‘iB*P

4) the optimum of oriterion ¥ (w,) =<{Pwy, ®p, Ve, € X . e

" Proof Since {4, B} is L2-stabilizable, it is sufﬁclent to consider only the case
when T7(¢) itself is exponentially stable. .

- Now we assume for simplicity, that §= 0, otherw1se takmg S mto account it
will not influence our argument below. ' ‘ - o

According to Theorem 38, (9) implies that (ITP) is welllposed and solvable, what

is more, the opfimal control exists uniquely From the opén-loop relations whioh u*

satisties, 1. ., (I1T), (18) and w'($) = — ™ (L*Qw*) ® = —R—iB*J T"(0~4)Qu’(0) doy;
using the followmg estimates, ' : » o '-

|11, ¢)|ew.m <§ca'; g=lt=el, >0; -

@D O bo<[ 1T ¢, )Y () v do

. <c”¢’_"L’([0.°9),U):‘ leELB([O) OO)’ U);
| (L*Qp) ) |[v<<elo|wco,wnm, Vo€ L2([0, ), X);

| Z*QT (- )onL'<co.~),v><0n9’o" V“’qe‘“:,X; .  (47); ,

we obtain as in Lemma 3 that )

w(@) =N@)m, t€[0, ); |N®) oo, <M (constant), Vi€ [0, o).

Similarly, as in proving Lemma 4 we obtain (t) G(t s)a: (s) G(t 0)ao, 0
<s<<t<<co, But here :
GG, 8)= G(t s, 0) V0<s<t<qc:»,,-' o (48)
Rewrite G (¢, 0) as G(t) then G(t)is a Go—semlgroup

Similar to the proof of Lemma 5, ‘we have - -

Cw@)=~BBPo @), P=| T ()QE@)d; () =Gz, (49)
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For arbitrary o, g€ D(4), differentiating

<Po, =, T (1-1) Q@ (n~t)dn, y), BECON

it follows that P given by (49) is a solution of (30), P=P'€ #(X, X).

Now that {G(+)we; Yoo € X} < L2([0, o0), X), we know that G(¢) is L -stable,
thus it is exponentially stable. From Theorem 7 it follows that V (o) = <Pmo, Zo),
Ve, € X,

Theorem 10. Assume that A has the spectrum isolation property, B* is ooéozpact
{4, B} is L*-stabilizable, and R>0. If (I TP) is well-poseol then thers is a solution of
the equation (30). :

Proof We exert a pos1t1ve perturba,tmn to F(w u) {Quw, a:>+<Ru u)

0<d<l), Fi(w, u) =F(w, u) +8 |[u|l” ‘ (51)

Suppose that P, is the solution of equation (30), correspondl_ng to the perturbed
optimal control problem (ITP),. According to the spectrdl resolution, Ps=P}—P;,
where P#=0 and P;>0. For any #€ X, we write #=*-+2~. The well-posedness
condition implies that

—0o<V () = inf J ()< inf {J () +8]uls} =<{Puw, &)<{Pw, o),
@(0)= 2(0)=a

Moreover, we have

|/ Pfo|2=<{Pis, &)={Piz*, a*>={Psw*, v*><{Pw*, o*><| P1||a*|?,

|V Pro|?=<P;a, a)=<Pra~, a7 =—(Pw", s7)<—min(0, V(27)) (52)

=max(0, V(27)).
Thus
| Ps|<comst, forall 0<O<1,

There exists a sequence {3,} such that {P,} converges weakly to an operator

P=Pc (X, X) as 3,~>+0. It follows that

lm R;'=1lim(R+3,I)"*=R™ (convergence in opsrator-norm) .

7 ->00 n—roo

The compactness of B* implies further that

lim[ —R;'B*P,]=—R™B'P (convergence in strong sense) .

n—r00

Let (80) 8, satisfied by Pj, pass to the limit, it follows that P satisfies the equation
(30).

Remark 8. In the standard case, where @, @;>>0 and R>O the operator Ricoati
equations (22) and (80) are solvable respectively.

The author wishes to acknowledge his thanks for the direotion given by Professor
Jin Fulin and Associate Professor Li Xunjing.




32

' CHIN. ANN. OF MATH: ~ = Vol 4 Ser. B

[11
[2]
[3]
[4]
[5]

[6]

[71]
[8]
[91
£10]
[11]
T 2]

[13]
[14]°

References

Kalman, R. B., Bol. Soc Mat. Me:v (1960), 102—119

Anderson, B. D. O., and Moore, J. B., Lmear Optimal Control, Prent1ce-Ha11 1971.

Balaknshnan, A. V., Applied Functional Analysis, Springer-Verlag, 1976. ‘ :
Curtain, R. ¥\, and Pritchard, A. J., Infinite Dimensional Linear System Theory, Sprmger-Vrlag, 1978.
Lions, J. L., Optimal C‘ontrol of Systems Governed by Partial Dlﬁ"erentlal Equatlons, Sprmger-Verlag,
1971,

Olements, D. J., and Anderson, B D. 0, Smgular Optimal Gontrol————’l‘he Linear Quadratlc Problem,
Springer-Verlag, 1978.

.Li Xunjing, Journal of Fudan Unwerszty (N aturdl Sczenoe) B 17 2 (1978), 38——48

Molinari, B. P., dutomatica, 18(1977), 347—3857.

fAxy6osms, B. A., Cuf. Mam. &Eyp., 15 (1974), 639—668.

Sxy6ozuy, B. A., ibid., 16 (1975), 1081—1102.

JImxTapEREOB; ‘A. I, ¥ fAxy6oszg, B. A., ibid, 17 (1976), 1069—1085."

H1lle, E., and Phllhps, R S., Functlonal Analyms and SemJgroups, Golloqumm Pubhcatlons, Amer.
Math. Soc., 81 (1957)..

Kwan Chaochi, Lectures on Functional Analysns, Advaneed Education Publishing House, Beijing, 1958.
Curtain, R. F. and Pritchard, A J' SIAM J. Conta‘ol and Opwm'zzatzon, 14 (1976), 951—-—983




