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. Abstract

Let M be an m-dimensional manifold immersed in S™*¥(+). Then 4X= wH — -—-—— X,

~ where X is the position vector of M and H is a unit normal vector field which is orthogonal
to X everywhere. ‘ '

If M is a compact connected manifold with parallel mean curvature vector field &
immersed in S™** (r), and the sectional curvature of M is not less than %(-;—12—+ 1£12 ), then

M is a small sphere.

For a compact connected hypersurface M in S™+1(r), if the sectional curvature is non~
‘negative and the scalar curvature is proportional to the mean curvature everywhere, then M is
a tota,lly umbilical hypersurface or the multlphcatlon of two totally umb1l1ca.l submamfolds

Introduction

In § 1, We improve the formula of Tsunero Takahashi (see[1]) and set up a
necessary and sufflcient condition for submamfolds of a higher dimensional sphere,
then we consider the compact connected submamfold and get Theorem 1.

In § 2, using the method of kentaro yano and Bang-yen chen (cf. [21), we prove
two simple results. For the compact hypersurface in a sphere, when the scalar curvature
1s proportlona,l to the mean curvature everywhere ‘We have Theorem 4.

In § 3, we calculate the Lapla01an of the square norm of the second fundamental
form for the submanifolds of a sphere. Then we get a formula of Simons’ type

Fmally I would like to thank Prof. Su Bu-Chin, Prof Hu He-Sheng and other
teachers who guide me to consider these problems.

Preliminaries

Let M be an m-dimensional manifold imiersed in an (m-+k+1) ~dimensional
Euclidean space E™**, We choose a looal vector field of orthonormal frames Hy, -,
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B mirss in E™+1 guch that, restricted to M, the vectors Hy, -, By, are tangent to M;

and consequently. the remaining vectors E,1, **+, Hnires are normal to M. Let »
be a position vector in E™**¥*1 restricted to M. We make use of X. We shall agree
the following convention on-the ranges of indices: _
1<A, B, Cro<m+k+1, 1<, §, I, p, -<m,
m+1<a, B, v, «<m-+k+1 (k>1),
It’s well-known that the structure equations and fundamental formulas are

given by
dw=§]w‘EA, dEA=2(0£EB,
B

co“-—-%]co”/\wﬁ,_ dw?s = Z'wﬂ Nwf,

. ol +twh= 0. _ X )
We restrict these forms to M. Then we have '
Z;Iw‘E; w*=0, dco‘=§j]w’/‘\co‘,,

of+tal=0, of=3e!, hf=h,
do! = o} A wz’—l-%-zl Ri 0 Ao,
i pl
Rip= %‘l (Béi By — highi ) o ' : (2)

We call h% the components of the second fundamental form. If, for aﬂy o ﬁxed
matrix (h{; ,) has a umque characteristic root, then we call M pseudo-umbilical along

H,, We call H 1=7fr? 34 B, the mean curvature vector of M in E™**, We know
o, 4

AX =mH,, ®
where 4 is a Laplacian of M in E™*+3, :

Let 8™**(r) be a sphere which has a radius r with cenire at the origin. Suppose

M cQmtE (fr) We ste Em+k+1— - —]:- X. OIearly

whien=0, Hi-Lo, . @

Let¢ , > beinner product in EmtEt, Ag [1], we seb gi,;<V X, V,X > | g” is
the element of inverse matrix, V, is the covarlant derlvatlve with respect to the z—th
variable £* in‘a chart of M, where M is equlpped with the induced metric from E"”"“r1

§1. Necessary and sufficient condition for
submanifolds in a sphere
- It McS™E(r), Set 2\ hf =he. From (8), we can see
M HMC : . .

: mi+k m . .
4X= 3 hBla— = X, o (5)

a=m-+1
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: 1-+5 :
From a Lemma in [1], we know that 1, WE] ho B, is the mean curvature vector of

o=m+1
M in S™+*(r). By H, we denote the unit vector. Then (B) becomes
AX =pH -2 X, | - ®
where (H, X»=0, u=( B 3)1’ g
a=m+1
Oonversely. suppose M c E™* and satisfies _ :

_ AX =pH —AX, : )
where A is a non-zero constant and w is a function of M. H is a unit normal vector
field which is orthogonal to X everywhere. B |

Firstly. We have | :
4X, 4X=p ' +3 KX, X, - (8)

Set A4X =D h B, H= Mo,
Then we have ' _
2 h§=M2+7\‘2<X) X>: 2’rg=1. o - (9)
Because : :
we can seo :

MV, X, VXD =S (ura—ha){Villa, ViX)

| = =S (ura—h) By VX, (1)
we gob at once - K
: = ""E([l_/ra'f ha) ha. ) (12)
From (9), (10) and (12). we have
| x, 5=, (18)

Thus we have proved the following lemma:
Lemma. Let M be an m-dimensional manifold immersed in a S™*(r) C Bkl

(k=1). Then 4X =pH —--—% X, where H is @ unit normal vector field which is
orthogonal to X everywhere. %zs the length of the mean curvatwre vecior of M in

S7+%(p). X is the position vector df M im EmtEH
Conversely, lot M be an m-dimensional manifold immersed in E™**+t (k>1), if
AX =uH —)\X, where A is a non-zero constant. H is a unit normal vector field

which is orthogonal to X everywhere. Then we have A>0, and M CS’”'"" J UG
Moreover, l”’ L -21ig the length of it’s mean curvature vector in S ~/ m
Gorollary. If ,u,=0 in M, , M is @ minimal submwmfold in S’”“‘(fr). We can see

that the necessary amd sufficient condition is 4X = — T X This is @ result of Tswneq*o
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Ta]mkashfb (of. [1D).. A

Secondly, we have the followmg theorem :

Theorem 1. Suppose M ‘is a compact connected and oriented m~dimensional
submanifold in E™+*+ (k>1). M doesn’t contain the origin of E™*+, If the position
wvector field X pardllels to AX — uH everywhere, where H 4s & unit normal vector field
which is or thogonwl to X, w s @ function of M.* Then M is contained in @ hypersphere.

and the length of the mean curmtwre wvector of M in this hypersphere is - ]”’ I

Proof first that AX MH 0 on M We pomt out is 1mpossub1e If it were true,
then we should have

0=jM (AX —pH, X>dV - f _<4x, Vz""c>dV :

- Ll VKGIVX, XAV = j M (GVX, VX 5dV = —m vol M,

‘This is a contradiction.
‘We define set U

| U= {PGMIAX(P) M(P)H(P) #0}, . (18

Bocause of continuity, we know that U is a non-empty open set. By N (P) we denote

the unit vector of 4X (P) —u(P)H (P) Then __ '

Y (P)=f(P)N (P), onl. (15)

- Y,isan arb1trary tangent Vector of M at P. ¥ 'is covariant derivative in E’"‘”’”+1

"Then ‘ '

Ve, X = (¥, /)N (P)+f () Ty . 16)
Becauso <V, X, N(P)>=<Vy,N, N(P)>=0, we can seo o
Y,f=0, ' (17)
By U, we denote the connected cemponenfs of U, then
f=fi (constant), onU.. “ 5 (18)

" From the condition of Theorem 1, we know fi#0, and U,c8™*(|f;]). Since
M is compact, there is a d<oo such that for arbltrary %, |fi| <d. We make use of the
lemma and get

X—'MI-I=—f2 x, o U, (19)
From {4X —uH, 4X — j d‘, >0 we know at once that U is a closed set. M
is connected, explicitly U=M, and all of f are equal 10 a constant f. Then
M8 (|f]).

Corollary If w=0o0n M. From X parallels with AX . we lmo'w AX AX, where
Adsa negfatwe constcmt M is @ mmzmwl submamfold n e hypersphere Thzs S @ result
of Bang—yen chen (cf. [3])

* in this paper, uisa d1fferent1able function.
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§9. ’Sor_ne application'

Suppose MC§™#(x). In (6) we ot By e H and Fpyrs= —% X. Then
Dihptt=pu, 2%*0_ (m+1<B<m+Ek—1), (20
3

Bocause (i) is a symmetric matrices, we choose Hy, -+, By ab a point of M such
that A+ =kdy, ERF‘M. The Ricei curvature ' S S

m—1 m-tk—1 u Lo
R(Es, B;) = ERwﬁ[lci(Mf@)ﬂ‘ o ]8@'" X kg, (@D

a=m+1,D

The scalar curvature

R-3IR(E, B)= M—-llw S-S S . <2é>

a=m-+14,p
Theorem 2. - M is an m—d@mens'bonwl connected submanifold in E™F¥ (k=1).

If wisa function of M. H ’bS a umt normal vector field which is orthogonal to X
eq:errywhem If 4X — ,,:,H fz,s a non—zero vector ﬁeld wh@ch s perpend@culw to H, this ﬁeld
(4. e. AX pJH ) is parallel in the normal bzmdle and M is pseudo- umbilical along th'bs A

direction. Then Misa submamfold in a sphefre and owns l—’i"—l as the length of mean

curvature vector in this spherre

» Pfroof Set A4X — ,u,H fEpsa. Suppose >0 and Em+1 is a unit Vec’ﬁor field.
Because fH 41 is parallel in the normal bundle, ‘o is Hpys. f 18 3 constant From
& H 1= 2com+1E,, and we choose By, <o, B such that, k’"“—-ab‘”, then’ co,,,+1= —aaw,

We can see ma—Eh’"“ = f o is a constant VPEM we define lp(P) =X (P) +

M@j@@ We know dip=0, Jisa constant vector. Set X —¢=X . Then (X 1, X 1>' \'

f”’ 4X1— ,uJH=.—i-— Xy, (X4, H)= O .So we have Theorem2

Theorem 3. Let M be an m—dzmenszonal conmnected submamfold in S™*(ry. M

. has non—zero constant mean curvaiure vector - field H,.* Then M is a tomlly—umb'blwal

hypersurface in a g (a’) CS””*’“(fr) ’bf and only if the sealar curvature

(w4 ) (1)

" Proof Because of H 2—-*1- p,H then = m]H 2] (constant) We know

Then from (22). we get : - . | . | _. .
| o ( 2]H2l2 )(1——_:.[-> o (24)

m

" % It means that |Ha| is a constant, where &=>1:




3s OHIN. ANN. OF MATH. Vol. 4 Ser. B

If the equality holds. Then Af,=0 (m+1<oc<m+lc—1), k¢=l./.b= | Ha| (cons-

tant) >0. So w),=0. By exterior differential, we have wf**Awh.,=0. Because w**=

k', then we have wj™=0. Then we get
W=l = "‘*"“ =0 (mtil<e<m+k— 1)

From the proof of Theorem 1 in [4] or Theorem 10 in [5], we can see that M is
contained in (m--2)-dimensional linear space in E™+ But (X, X)=r?, then
Mc 8™ (r), and M is a totally-umbilical hypersurfacé in this 8™+ (r),

Oonversely, it is trivial.

_ Theorem 4. Let M be an m—d@menszonal compact connected and oriented hypsrsur-
face with non-negative sectional curvature immersed in S™(r). Suppose that the
length of the mean curvature vector £ in 8™ (1) doesn’t vamish everywhere and R=>b|¢|,

where B is the scalar curvature. b is a constant and b>—g-fm~/ m(m—1) . Then M is a

totally-umbdwal hyperswface or the product of two totally- -umbilical cur vad submanifolds.
~ Proof From the Lemma, we know wH =mé a,nd w=m|&|. From (9 8) in [5],
We can see

3 AL =2 Ky =k + Dhgt+ [0, @)
where H=FEpy,q, —-}- X =Hpna, Ky is the sectional curvature deﬁned by H; and E,
Integrating (25) over M and using stokeés theorem, we have
j 3 Ky (b= k)*ay + j zhmﬂm,dmj 3 Gt aqy =0, (26)
For arbitrary j, we define a linear operator * by ' ’
#(@’) = (1)t A At AW A Ao, | 27
By caleulation we get
S0k @] = SV + SISV (28)
Substituting (28) into (26), then we obtmn
[ B -byar+ [ LS - S@mHn -0, @)
Set N =pu? —%}(h}'}“) 3, Because of Schwarz inequality, we can see
(i 3 () SRR, @)
From R= -”—7’-(—"-;-5:—1—)-+N , then g kﬁ*?ég—; LU (Zzb 1) + We make use of above

equation and obtain |
ST, Gi)? - SR M=V D (Dh* ~ DN, SN

=[%__3_<T_’fgb2¢>_]§zvg>o, @
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where Ny=2 Zh’”“ 2 Rt —2 §h2}+1k§'}jl. We see at once

S K-k =0, 3 ()= ST (32
Then; N%=0, i. e. IV is a constant and w is a constant, 100. Eb]hﬁfi-—o From (31),
R =0, We obtain that & are constants. And from Ky (ch—loi)”=0_, K ,,=71-§-+k, Ey,

we can gee that there are at most two distinct eigenvalues. According t0 [6]. Theorem
4 is proved.

§ 3 A Slmon S formula

Suppose M is a compact conneoted m—dlmensmnal mamfold immersed in
S’”*"(fr) c B+t (f=1), Let § be the square norm of the second fundamental form
of M in E™+1, We make use of the Lemma in'§ 1 and the method of Udo Simon (cf.
[71). By a long calculation, we obtain a Simon’s formula when w is a constant® ‘

1 < —_
1 45-3 3 (2Kt~ ) (o —ot)+ ST, VTH |
TSV, YR, ()
where V‘=$ ¢V, Y=VV,X .—%,gﬁﬁx Y= gig»V, If o* i3 A-th qdéljdiha,te
[ '
~ function of position vector X. For fixed 4, m Xm matrix (ViV;04) is real symmetric
matrix, when we choose the orthogonal basis, this matrix is also real symmetric
matrix. By of, «-+, oA we denote the eigenvalues and by B¢, ---, 7 the unit eigenvector.
K# denotes the sectional curvature defined by Ef, Ef,

Based on (83), we have the following theorem.

Theorem 5. Let M be @ compact connected m—dimensional submanifold in
Stk (ryc B (k=1). M has parallel mean curvature vector field € in S™E(r),

(1) If é=0 on M, and the sectional curvature of M is not less than 21 -, then M s
a totally geodesic submanifold S™(r) (Udo Simon in 1977);
(2) if £€+0 on M, and the sectional curvature of M isnot less than l( + &2 )

then M is a small sphere ('13. 6. totally-umbilical hypersurface in 8™ (r)),
Proof (1) Because p=m|£|=0, the third term on right hand side in (33)
vanishes. (2) Because the sectional curvature of M is positive, from theorem g in [5],

we knew that M is a pseudo-umbilical submanifold, i. e. Ic;=—£’—%= |£] (constant). By

calculation, we obtain-

* Where AX-=uH—-%x
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SKVTH, P =~ EZ(m ~ot), (39
Then in (1) and 2, we have |
B DR |512><a, Cot) ST, VO, @D

By the h-‘y‘po’thesm of the theorem, we can see {V;¥, 24 f‘>=0 Then VY ;=0. Because
M is irreducible, ¥ =Agyu: But 2 ¢*Yi;#0, then: A=0, Y =0, we make use of Gauss

3,4
equation and Theorem 8. Theorem 5 is proved.
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