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| Abstract R G A PSRN P L e

- Consider the discrete exponentml fanuly wrltten ln the. form Pe(X a:) k(a;)B(e)eﬂ’ !
=0, 1, 2, -+, where h(w)>0 o= =0, 1 2 The prlor dlstnbu’uon of 0 belongs to the

. _ " . h((ﬁ'}) un(m+1)
family #= { f o dG< oo} Denote by 6 (w) 6 (aci, N a:,,, ac) TRGED 4 @) the
Robbins’ EB Estimate. of 0 under the squale loss (0 d)‘* Where u,,(z) is the number of &

elements equaling to+ in 1,0, Xpy Lo Under a quite general assumptlon 1mposed upon h 1t':: ‘

is shown that 8, is an asymptotlcally optimal BB estimate of 6 relative to the whole famlly': i
© &, Further, the condifion imposed on k. mentioned above cax be dispensed with by shghtly
mod1fy1ng the deﬁmtlon of 0a. Also the case that h assumes the value zero is dlscussed

§1 _Introduction_"eiﬁd sumnia‘ry[
Oons1der the discrete exponeninal dlstrlbutlon ertten in the followmg form*l .
Po(X m) h(w)B(B)&” wEEf {o 1, N_}‘,‘ |
0c6, 6={6:0>0, 2h(w)0"<oo} R

‘where N isa posmve 1nteger or oo, One may always take N oo by lettmg h(@) 0
for >N if necessary. @ is a ﬁmte or 1nﬁn1te 1nterva1 Tt is well-known that (1)

contams many important d1screte d1str1but10ns for example »
Poisson: h(®) —--——, ,6(0) =6~ .@: (0, o0), ([
o+r—1 . | o :
Negatlve Binomial: h(w) ( 'm ) (r+known. positive integer),

8@ =1—6), 0=(0,1),

Logarithm: % (0) =0, h(w)'=~;v—vif0r- w1
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B =log 1, 6=(0, 1).

Also the Binomial Py(X =)= < )0’ (1—-0)¥*, ©=0, 1, -, k (k known), 0<0<1,
can be reduced to the form of (1) by mtroducmg the new parameter p= —l—g—é-

The purpose of this artical is o study the asymptotwa,lly optimal. (a. 0.) emypirical
Bayes (EB) estimation of 6 in (1), under qua,dratlc loss (§—a)?. Our main result is

that if the prior distributions are restricted to the class

F= {G: J, aﬂda<a><o¢} ®)

and e :
h(w) >0, ©=0,1,2, - 4

then an a. 0. EB estimator of § can be constructed. We shall also consider the case
when (4) does not hold.
Now we brleﬂy mentmn the historical developments F1rst in the Poisson case
(2) Robblnsm 1ntroduced the “natural” EB estimate of §
@) =8 (@, -, B, ) = @+ Du(2+1) /u(0), (5)
where wl,' oo, a;,, are the “historical” samples, @ is the “present” sample, and u, is
deﬁned as : | ’

: u,,(z) =, (@1, o2, @, B;E) = ni T {number'of @y, *++, @,, ® equaling to ¢}, (6)

According to Robbins‘”’,‘ Johns in [4] proved that this estimateis a. 0. under quadratic
. loss and prior distribution family (8). This is the first significant result concerning
a. 0. EB estimation. Tt seems that the paper [4] has not been published openly, and
we do not know the method of his proof. Another result of Johns™’ is related to this
problem, but has the undesirable feature that each historical sample must be replicated
at least twice, and thus in some degree violates the, originai meaning of EB structure.
In 1972, P. E. Lin considered in [6] the family (1). Assuming temporarily (4)
holds, one shows easily that under the prior G' the Bayes estimate of # (always
assummg a quadratm loss in the present artical) is | |

8¢ (@) =W (@) fo(@+1) /fa(@), m
where W (&) =h (@) /h(z+1), and fq is the marginal distribution of X under prior G
fo@ =[ p@BO)8GO), 2=0,1,2, . @

Hence, similar to the Poisson case, one obtained the “natural” EB estimator of ¢
da (w> [ (mix ***y Tn, w) =w (‘v) Un (w"‘l) / U, (w> ) (9)

(Notice that u,(w) >0). Lin modified this estimate in attempting to obtain an a. 0. EB

1
estimate of § with a convergence rate of O(n %) under a group of conditions. Unfor-
tunately his proof contains a serious error, and the main result of [6] was incorrect,
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as shown by Chao in a recent paper [7] by constructing a counter—example. Also,
Chaomodified the estimate (9) by truncation, obtaining an EB estimate of @ with a
_convergence rate O(n™*) (¢ depends upon various conditions and may be arbitrarily
near one).

. Thus, as far as the author knows, the following two important questions have not
been solved clearly in the published literature:

~ 1. Iy the natural EB estimate (9) a. o. under the prior famlly 3)?

2. If the above question cannot be answered in the positive unconditionally,
then can we modify (9) in a suitable manner, in order to get an EB estimate 8, of 0,
which is a. 0. under the sole condition that the prior belongs to family (3)?

This paper is devoted to these questions. The main results can be formulated in
the following two theorems:

Theorem 1. If (4) is true and there ewists a constamt A such that
- (@) <Ah(@—2)R(@+1), ©=2,3, _ (10)
then (9). is an a. 0. EB estimator of 6 under the prior famdy (3) . ) '

Modify 8, as follows: When the present sample is @, we do not estimate fq(e+1)
by u,(¢+1). Instead, we use '

u,(w+1), if  {é: 1<'b<n =a+1}>2,
'vn(W) {
0, otherwise,

and define L -
8a(@) =8u(an, +++, @, #) =W (2).(2) /1 (). - (11

Theorem 2. If (4) is trus, then (11) ésan a. 0. EB estimator of 6 under the
prior family (8). ’

Section 2 is devoted to the proof of these theorems and in section 3 some related
problems are considered.

§ 2 Proof of The Theorems

The Main task is to prove Theorem 1. A minor modification of this proof will be
sufficient to the proof of Theorem 2,

_ As mentioned earlier, X4, ++; Xq denote the hlstorlcal samples and X is the
present sample. According to the fundamental philosophy of EB procedure, Xy, ¢,
X,, (X, 6) are mutually mdependent each X, possesses the same distribution as X
given by (8). The distribution of # is the prior @, while the conditional distribution
of X for given g is (1). For any EB estimator 3, its “over-all” Bayes risk is given by

Ry (3n) = B[3s(Xy, =, Xa, X) = ~61*
—B{E[(3s( X3, -, X, ®)—0)* X, 0]} (12)
and the Bayes risk of the Bayes estimator (7) is
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Re= E[&;(X) A - (18)

By deﬁmtmn Oy is said to be an a: 0. EB estimate of 6 with respect to_(or under) the
prior family & if : _ . S
- lim R¢(84) = Ryq, for any GE Z. (14)

' By (12), (13) and dommant convergence theorem, one sees that in order to establish
the a. 0.—property of 8, one must verify that )
(a) for any G'€ &, there exists a function My (e, 0) not dependmg on n such
that '
E[(b‘,,(Xi, X,,,‘X‘)’ 0)’2|X 01<Mu(X,0), forn=1,2, -, (15)

B[Mq(X, 0)]<oo; @8
(b) for fixed X €Z and €O | ‘ » |
lim B[ (3(Xs, +++, Xa, X)=0)°| X, 6] = (8a(X)—0)". an

- The following 81mple lemma plays a role in the proof of (a).
Lemma 1. Suppose that (Y4, I_’ a2, ¥ 3) obeys the multmomml law M (n p,i, Pa, P3),

wherefp.>0 i=1, 2, 8, and 2275

P (Y n;, ’b 1 2 3) ‘_W pqlpgspm,
then ‘ o .
Y5 \? 2 . '
E<_—1+Y1> <4(pg!p1) +1, : : (18)

Proof One has

Y2_ 2 - nll | g ‘a o _
— = Sl mmamitapia ) — A . o :
E(1+Y1) 2 1319105 D1p2ps <1+'n1> né;"‘ 2 AL+, (19) |

n2>2

Since ng/ (1+ny) <1 for ny<<1, one geté
n! e — . ' '
Ii\Emp rPEps =1, (20)
Also, since :
) 24-n4
<
1+4+ny <2, g~ 1

<2 for ny>2,

we have

N 24m ng n! 2 ptta—2n <P2 .>2
< 1 ¢l 3
12\7%§2 1+n1 7113"1 (7?«1—]‘2) ! (ng ) Ing! P1 p B 1

9 | _
<4(£j) 2~———n1,,::,n3 PrpRPy = (gj) . @)
From (19)—(21), (18) follows. It is noticeable that the rhs of (18) is free from n,
- To prove (a), define o
| YVi=#{:1<i<n, o,=a},
YVa=#{i:1<i<n, ay=2+1},
Ye=n—-Y;-V,,
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Then (Y;L, Yg, Y3>NM<')?: P, pg, p3) with.
- pi=fe(@), Pa=fo@+1), Pe=1—(p+pa),
In th1s new notation, (9) has a form .

”(w) =.8”(£I}1, °° wn; w) W<m> 1+Y ’ (22)

hence

[8, (s, *+, @, w) 0]9<2W2(m)< 5 Y) +26°, (28)

Lemma 1 gives :

| E[(&.(Xi, - Xn; X) —0)%1 X, 6] | :

o <2W3(X) [4=f2 X +1) [f3(X) +1] +202AMG(X 9, 29
My(X, 6) so defined is free from n, ‘and (15) holds. To show that. (16) ig true, we

have to verify

E[W‘*(X)f2 (X+1>/f2 (X)]<oo, . (2D)
» BIWA(X)]<o, L ._<26>
B <o, -.(27)

 .(27) is nothmg else than (3) To verlfy (26)v, use assumption (10) and GE Z, then
B (X)] WO+ + 2 W""(w)h(w)j (0)6%(}(0) '

L SO+ 3 h9<w+”1§§><w "2> RIS _9p@0a0)

<W2(0) +W*() +A4 j 6 31 (@) B(O) 806 0)

| "'-W2(0)+W2(1)+Aj 0°dG(8) <05,
Thls is (26). Now notlce that o
| IAE[W”(X)fz <X+1)/f2 (X)]— Ewﬁ(w)ﬁ (m+1)/fa(w> (28)
By Oauchy-Schwarz . - o
- h2<w+1>(j
e ._:_hs@ﬂ)([@
g ""<7;‘5(¢ %-1)] B8O awdet ©) j B(9> 9”+9dG (9)

W(w+1) f (w)fa(m+2> | o - (29) |

6(9)6'“101@(0)) |
131/2 (9) 3z/2 Bi/ﬂ (0) 0z/2+1dG (9) >

24

: W)

'iFrom (28) (29) we have - : B S
B e L (042 = 2h<w> ., B(O)é’”“dG(H) [ aﬁazage)-@.
‘ '-."_Thls proves (25) hence. (16), and (a) is established. R .

o prove (b), use - (22) Under (4) “we ‘have py= fa(m) >0 102 = fG(w-l-l) >0,
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Employing an. inequality given by Hoeffding [8], we get

P(|7y/n—p| >0 V%) =0(exp(—n®)) o), i=1,2, (30)
Also notice that for any @4, -+, @, o : ;
O<8n (wi; *ty wﬂ; w)gnW (w)o : (31)

Write

» _ n(p2_n—1/3) _ 2
.A1—<W(w) 1+n(py+n~1%) 9) ’

- \_ n(pe+n V8 \?
As (W(m/l_l_n(p n-i7%) 0)-

By (22), (80), (81), we obtain for n sufficiently large
- o(n ")]mm(Ai, AQ)<E[(8(X1, v, X, X) 6)2 X, 4]
. <max(4i, 4y) +o(n"9)n9W2 (a:) . (32)
l1mA1 lim 4= (3(a) —0)". (83
From (32) and (33), (b) follows, and the proof of Theorem 1 is concluded.
‘Oondition (10) is a mild restriction on %, which is satisfied in the three cases

mentioned earlier. This gives another proof of Johns’ result, and verifies that (9)
gives an a. 0. EB estimate in the case of negative-binomial and logarithm distributions

Evidently

without any restriction on the prior distribution. _ :
Now turn to the proof of Theorem 2. This runs basically on the same line as that
of Theorem 1.0ne needs only to notice that 8, defined by (11) has a form

gﬂ(m) =§”.<@1L *°*y @n, m) W(m) 1+Y 3

where ¥ equals t0 Y5 or 0, accordmg to Ya=>2 or otherw1se A glance at the proof of
Lemma 1 will convince us that v

B(gh) <4mmd’, (39)
where D1, Pa are the same as defined earlier. Also it is easy 1o see that for 0<s<p9 and
n sufficiently large,

P(]Y/n —pa|>e) = P(IYQ/W—P2|>S)

So the proof of Theorem 1 can be carried here almost word by word, with the only
diffrence that the constant 1, which appeared on the rhs. of (18), is missing on the rhs,
of (84). Hence in the verification of (a) we have only to Verify (25) and (27), which
can be done under the sole condition G€ F, without any restriction on 4. Hence
Theorem 2 is proved. ‘ '

§3. Further Results

1. The case in which (4) ig false,
If: the present sample is » and h(z+1) =0, (9) and { 1) become meamngless
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For such @ one has -
86(@) =h(e) j B(6)0°+6- ) /fo(@)

Generally 'speaki-ng,J B& 6““dG‘ (@) is not determined by the margmal distribution

of X, fe. In such circumstances, there oxists no a. 0. EB estimate of 8. To be specific,
we have the following - '
Theorem 3. Denote
D={w: =0, 1, 2, -+; h(®) >0, h(z+1) =0}
and let F* be the prior distribution famzly Then a necessafry conditéon for the extstence
of an a. o. EB estimator of 0 is the followmg For any G%Eﬁ' =1, 2, satisfying
Jo (@) fGa(w): #=0, 1, 2, (35)

we must have
[ B(6)0°+1dG (6) = [, B@8=aa ), foranyo€D,  (36)

Proof Suppose that the condition is not satisfied, then some G‘;E FH, i=1, 2,
can-be found such that (85) is true, but there exists @o€ D for which

j o B(0)6>*1dG1(0) + I@ B(6)***dG.(0). | BN 1)
If in the contrary an a. o. EB estimator 8, (#1, **«, ®a, ) exists, then we have as n—>co
Ro(8,) ~Bo= 2}fa(@ BI3(Xs, -+, Xo, 4) =3a(@) 1’0 (38)

for any Q€ # *. Hence for fg(m) >0 we have
lim B[8,(Xy, -, X, ®) —0a(@)]1'=0, (39)

fN->o0

Take G= G4 and G =G5 respectively. By (85), under these two priors Xy, <+, X, @
have the same marginal distribution, and it follows easily from (39) that

8¢, (@) =8¢,(@), for any & such that h(z) >0,
But @€ D, 50 h(me) >0, hence 8¢, (@) =, (o), Which evidently contradicts (37)

Hence the theorem is proved.

2

When the sample space is finite, generally the prior @ cannot be uniquely deter-
mmed by fe, unless F* is a parametric family. Hence in case % is finite, in general
a. 0. B estimates cannot exist except for parametric prior families.

2. Lin’s Estimate. :

- Consider the family (1). Make N = oo and suppose that (4) “holds. Lin introduced
in [6] the following EB estimator d, for 6
(@) =0 (@3, +++, T, @) =0(@)7a (1) /max(pa(e), ),
where o , .
P (@) =a @1, -+, T, 0) = H iz 1<i<n, m=)

and 9, is a constant of the order n~Y/® (For simplicity. we shall take 8,=n"Y3 in the




48 ' L " QHIN. ANN. OF MATH. B AT TR I Vol. 4 Ser. B

followmg) The main conclusmn of [6] is that under certain cond1t1ons (see : [6], .
(2.12)—(2.14)) one has Ry(ds) — RG O(n Y. Ag mentloned earlier, Chao found
this conclusion to be incorrect. Our aim is to show that, by shghtly mod1fy1ng (and -

in the samie time S1mp11fy1ng) Lin’s conditions, it is possible to prove that dy is a.o.

Theorem 4 - Suppose that there ewists a constant A such that -
. h”(w) <Ak(a; Dh(e+1), ==1, 2,
Then under the prior famzly (3) d, is an a.0. EB estimale of 0
Proof By s1mple mampulatlons We obtain :
- (dy (w) 86(2))*<W*(2) [4n* 3(pn(w+1) *-fa(<v+1>)’ .
+6n%3( fo(o+1) /fa(w))? (Pn (@) —fa(w))’ -
;o A4(fe(o+1) /fe (”) )1 (Ta@ <nt)y
Where I, denotes the 1nd1cator of the set 0. As
: Epa(3) —fa (©)1*=F¢ () [L —fa (@) ] / n< fe(9) / n
and fg (@) =208, we have for & fixed '
P (pn(w) <n ) <P (|pa(®) —fo (@) |>n )
‘ oo o : <n9/3E[p,.(£v) fa<w)]2<n_1/3 G
From (41) to (43) it follows that

- Be(dy) ~Ro= Efa(W)E[d (%) — SG(w)]”<Im Ian'l‘Isn‘l' I4,., ..

where _
o - I 477,"1/3ZWQ(@fG(W)fG(w'l‘l):v

I _1/32W9(w)7%(w+1), 2

.I 4n—1/82W9(a;)f2 (w—i—l)/fG(w)’ .,

S *4 2 W”(w)f%;(mﬂ)/f(;(m), :

and Q, istheset - .

’. {w fG(w) <2n-1/3}
By (29)

h( +2)
' .Usmg G‘Eﬂ' we get

e EW”(@fz <w+1>/fa<w><j aﬁd@<e><oo e
_ H.ence' '
e =0 s),
_"_;Smce O<fg(w)<1 it follows by (47) that 4
| V=0 (%),

_ Also for a;>1 usmg Oauchy—Schwarz and -(40), we. have T S

Wﬁ(w)f2(w+1)/fa(w) ' h(m) fG(a;—l—z) h(m)I lgg)gx+sdg(0)°,'vf._'

@)

a1y

. (42j :

@

(49

(45)

| v--:(4‘6)

@

w
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5@ =1 (@) (j® BO)0d6®))
C= h2 (w) G_@ 31/2 (g)g,(x—i)/z Bi/a (g) glat+/ 2dG (9) )2 ‘
<@ BOFE0) |, BOW0)
“ W ’fff{ Fay oo D (@)

Hence by (46) .
2 W”(w)fa(w)fa(fv-ﬂ) <W2(0)+4 2 W”‘(w)j%(w+1)/fa(w) <oo

and - § : '
| =0 9), | SRR
Finally, by (45) we have ‘ o
| 14n<4j #3 1 () B(0)8%G6). | (50)
Since f¢ (a:) >0 for all # by (4), we see that _ v - o
} fa(@) <2n~Y3=p—>00, as n—>00, ' - (B1)
" This combined with the fact that ' '
| S h@BO)F=1 (52
-gives us that for any 6€ 6
lim S h(z)B8(6)6°=0, » (53)

n->o0 FEQ,
Now by (62), GEF, and the dominant convergence theorem, one finds that the rhs.
of (50) tends to Zero as n—>oo, i, e.

lmI,=0, (54)

n->00

Comblmng (44), (47)—(49) and (54), we finally obtain
lim R¢(d,) = Rg

n-r00

for any G€ 7 and the proof of Theorem 4 is concluded.
The condition (40), similar in nature to. (10), is satisfied for most common
distributions. : _
Also we note that the two conditions (i. e. (40) and (8)) possess the pleasing
feature that each one involves only a single element (i.e., 5 or &) of the problem.
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