ON THE PUTNAM-FUGLEDE THEOREM OF NON-NORMAL OPERATORS

YAN SHAOZONG (严绍宗) LI SHAOKUAN (李绍宽)

(Institute of Mathematics, Fudan University)

Abstract

In this paper we have extended the Putnam-Fuglede Theorem of nomal operators and discussed the condition for the Putnam-Fuglede Theorem holding. We have proved that if A and B^* are hyponomal operators and AX = XB, then $A^*X = XB^*$; that if A and B^* are semi-hyponomal operators and X is invertible operator such that AXB = X, then $A^*XB^* = X$; that if T is a contraction and P is a positive compact opertor such that $T^*PT = P$, then $\overline{R(P)}$ reduces T to unifary. In the meantime, we have proved that AXB = X and $A^*XB^* = X$ both are true if and only if $1^\circ N(X)^\perp$, $\overline{R(X)}$ reduce B, A to invertible operators, respectively; 2° Let $X = WP_0$ be polar decomposition, then we have that $B^{-1}|_{N(X)^\perp}$ and $A|_{\overline{R(X)}}$ are unitary equivalent by W which is unitary from $N(X)^\perp$ to R(X), and P_0 and P_0 commute.

In the operator theory of Hilbert space the normal operators have an importate property: If A is intuining between normal operators N_1 and N_2 , i. e. A satisfies

$$N_1A = AN_2$$

then A is intwining between N_1^* and N_2^* too, i. e.

$$N_1^*A = AN_2^*$$

This theorem is called the Putnam-Fuglede theorem. In recent years there have been many extensions of this theorem.

- (1) In [1] it has been proved that if A and B^* are hyponormal operators and X is Hilbert-Schmidt operator, then we can obtain $A^*X = XB^*$ from AX = XB.
- (2) In [4] it has been proved that if A and B^* are hyponormal operators and X is injective operator with dense range such that AX = XB, then we have that $A^*X = XB^*$ and A and B are normal operators.
- (3) In [2] it has been proved that if A and B^* are subnormal operators, then we can obtain $A^*X = XB^*$ from AX = XB.
- (4) In [6] Yan has proved another form of this theorem: If N_1 and N_2 are normal operators and X satisfies $N_1XN_2=X$, then we have $N_1^*XN_2^*=X$ too. Note that this form is more general, since we can deduce the above form from it.
- (5) In [7] we have proved that if A and B^* are semi-hyponormal operators and $0 \in \sigma_P(B)$ and X is injective operator with dense range such that AX = XB, then we

have $A^*X = XB^*$ and A and B are normal operators.

This paper divides into two parts. The first part proceeds to extend the putnam-Fuglede theorem and second part discuses the conditions for the Putnam-Fuglede theorem holding.

Theorem 1. If A and B* are hyponormal operators on Hilbert spaces H and H' respectively (and X is an operator from H' to H such that AX = XB, then $A^*X = XB^*$ and $N(X)^{\perp}$ and $\overline{R(X)}$ reduce B and A to normal operators respectively.

Proof From AX = XB we know that $N(X)^{\perp}$ and $\overline{R(X)}$ are invariant subspace of B^* and A respectively. Hence $A|_{\overline{R(X)}}$ and $B^*|_{N(X)^{\perp}}$ are hyponormal operators too. By the decompositions $H = \overline{R(X)} \oplus \overline{R(X)}^{\perp}$ and $H' = N(X)^{\perp} \oplus N(X)$, we have

$$A = \begin{pmatrix} A_1 & * \\ 0 & A_2 \end{pmatrix}, B = \begin{pmatrix} B_1 & 0 \\ * & B_2 \end{pmatrix}, X = \begin{pmatrix} X_1 & 0 \\ 0 & 0 \end{pmatrix}.$$

Here $A_1 = A \mid_{\overline{R(X)}}$ and $B_1^* = B^* \mid_{N(X)}$ are hyponormal operators and X_1 is injective operator with dense range. We can obtain $A_1 X_1 = X_1 B_1$ from AX = XB. Hence we have $A_1^* X_1 = X_1 B_1^*$ too and A_1 and B_1 are normal. By the properties of the hyponormal operators we obtain that $N(X)^{\perp}$ and $\overline{R(X)}$ reduce B and A to normal operators respectively. Therefore we have

$$A = \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix}, B = \begin{pmatrix} B_1 & 0 \\ 0 & B_2 \end{pmatrix}, X = \begin{pmatrix} X_1 & 0 \\ 0 & 0 \end{pmatrix}.$$

Hence we can obtain $A^*X = XB^*$ through calculation.

Theorem 2. If A and B^* are hyponormal operators and X is invertible operator such that AXB = X, then $A^*XB^* = X$ and A and B are invertible normal operators.

Proof From AXB = X and X is invertible we know that R(A) = H and $N(A^*) = \{0\}$, but A is hyponormal and so we have $N(A) \subset N(A^*)$, hence A is bijective i. e. A is invertible. Likewise we have that B is invertible. Hence we can write AXB = X as $A^{-1}X = XB$ and A^{-1} and B^* are hyponormal operators. Hence $A^{-1*}X = XB^*$ and A^{-1} and B are normal operators, therefore we obtain that $A^*XB^* = X$ and A and B are invertible normal operators.

Theorem 3. If A and B^* are semi-hyponormal operators and X is Hilbert-Schmidt operator such that AXB = X, then $A^*XB^* = X$.

Proof All Hilbert-Schmidt operators compose a Hilbert space σ_2 with inner product

$$(X, Y) = \text{tr } (XY^*).$$

We define an operator on σ_2 as follow

$$\mathcal{T}Y = AYB$$
.

It is obvious that $\mathscr{T} \geqslant 0$ when $A \geqslant 0$ and $B \geqslant 0$ and

$$\mathscr{T}^*\mathscr{T}Y = A^*AYBB^*$$

And hence we know that \mathcal{T} is a semi-hyponormal operator as well as A and B^* are

semi-hyponormal operators. But we have known that $\mathscr{T}X = X$ from the condition AXB = X. Therefore we have $\mathscr{T}^*X = X$ too by the properties of the semi-hyponormal operator, i. e. $A^*XB^* = X$.

Similar to Theorem 2, we have

Theorem 4. If A and B^* are semi-hyponormal operators and X is invertible operator such that AXB = X, then we have that $A^*XB^* = X$ and A and B are invertible normal operators.

Theorem 5. If A is a semi-hyponormal operator, B is a normal operator, and X is injective operator with dense range such that AXB = X, then we have that $A^*XB^* = X$ and A is a invertible normal operator.

Proof From AXB = X we know $A^nXB^n = X$. For $\delta < \frac{1}{\|A\| + 1}$ we denote $C_{\delta} = \{|z| < \delta\}$. If $B = \int z dE_z$ is the spectral decomposition of B, when $y \in E(C_{\delta})H$ we have

$$||Xy|| = ||A^n X B^n y|| \le ||A||^n \cdot ||X|| \delta^n \cdot ||y|| \le \left(\frac{||A||}{1 + ||A||}\right)^n \cdot ||X|| ||y||.$$

Let $n\to\infty$, we obtain Xy=0 and since X is injective we have y=0. Hence B is invertible. So that we can write AXB=X as $AX=XB^{-1}$, and we have $A^*X=XB^{-1*}$ by (5), i. e. $A^*XB^*=X$. Thus, A is a normal operator.

Note. In Theorem 5 if A is a hyponormal operator, then we have that if X satisfies AXB = X then $A^*XB^* = X$, and $N(X)^{\perp}$ and $\overline{R(X)}$ reduce B and A to normal operators respectively just as in Theorem 1. Here we only need to prove that N(X) and $R(X)^{\perp}$ are invariant subspaces of B and A respectively from the condition AXB = X. In fact, from AXB = X we know $R(X) \subset R(A)$ and since A is hyponormal so that $R(A) \subset \overline{R(A^*)} = N(A)^{\perp}$, hence if $x \in N(X)$, we have AXBx = Xx = 0 and so that XBx = 0, i. e. $Bx \in N(X)$. Similarly we can prove that $\overline{R(X)}$ is invariant under A.

Theorem 6. Let A and B be operators with polar decompositions A=UP and $B=P'V^*$ on Hilbert space H and H' respectively, and let X be an operator from H' to H with polar decomposition $X=WP_0$. Then AXB=X and $A^*XB^*=X$ both hold if and only if following conditions are satisfied.

- 1. $\overline{R(X)}$ and $N(X)^{\perp}$ reduce A and B to invertible operators respectively.
- 2. W, as unitary operator from $N(X)^{\perp}$ to $\overline{R(X)}$, transforms $B^{-1}|_{N(X)^{\perp}}$ to $A|_{\overline{R(X)}}$, and P_0 is commute with B.

Proof From AXB=X and $A^*XB^*=X$, we can obtain N(X) and $\overline{R(X)}$ reduce B and A respectively. In fact, if $x \in N(X)$, then AXBx=Xx=0. But $R(X) \subset R(A^*)$ $= N(X)^{\perp}$, hence we have XBx=0 from AXBx=0, i. e. $Bx \in N(X)$. Similarly from $A^*XB^*x=Xx=0$, we have $XB^*x=0$, i. e. $B^*x\in N(X)$, so that N(X) reduces B. Likewise, we know that $\overline{R(X)}$ reduces A.

Therefore we can suppose that X is injective operator with dense range, since we

can disscus on $N(X)^{\perp}$ and $\overline{R(X)}$.

Now we prove that A and B are invertible. From AXB=X and $A^*XB^*=X$ we can obtain $P^2X(P')^2=X$. Let $P'=\int_0^l \lambda dE'_\lambda$ when $\delta<\frac{1}{1+\|P\|}$ and $y\in E'_\delta H'$ we have

$$\|\,Xy\,\| = \|\,P^{2k}X\,(P')^{\,2k}y\,\| \leqslant \left(\frac{\,\|\,P\,\|\,}{1+\,\|\,P\,\|}\right)^{2k}\,\|\,X\,\|\,\|y\,\|\,.$$

Letting $K\to\infty$, we obtain Xy=0 and so that y=0. Hence P' and B are invertible. Likewise, we can prove that A is invertible.

Since P' is invertible, we can write $P^2X(P')^2 = X$ as $P^2X = X(P')^{-2}$, hence we have $PX = X(P')^{-1}$, therefore PXP' = X.

From PXP'=X we have $W^*PWP_0P'=P_0$, i. e. $\overline{P}P_0=P_0(P')^{-1}$ where $\overline{P}=W^*PW$. Taking adjoint we have $P_0\overline{P}=(P')^{-1}P_0$, so that $\overline{P}P_0^2=P_0(P')^{-1}P_0=P_0^2\overline{P}$ and we obtain $\overline{P}P_0=P_0\overline{P}$ and $P_0(\overline{P}-(\overline{P}')^{-1})=0$. Since X is injective, we have obtained $\overline{P}=(P')^{-1}$, i. e. $(P')^{-1}=W^*PW$. Thus, we have $(P')^{-1}P_0=P_0(P')^{-1}$, i. e. $P_0P'=P'P_0$.

From AXB = X and PXP' = X, we can obtain $UXV^* = X$. From $A^*XB^* = X$ and $P^{-1}X(P')^{-1} = X$, we can obtain $U^*XV = X$. So that we have $X^*X = VX^*XV^*$, hence $P_0^2V = VP_0^2$ and $P_0V = VP_0$. From $UXV^* = X$, we obtain $(UWV^* - W)P_0 = 0$, but range of P_0 is dense, so that $UWV^* = W$, i. e. $V = W^*UW$. And so we have $B^* = W^*AW$ and P_0 is commute with B.

If A, B and X satisfy the conditions 1 and 2, we can obtain AXB = X and $A^*XB^* = X$ directly through calculation

Theorem 7. Let A and B be operators on Hilbert space H and H' respectively, and let X be an operator from H' to H with polar decomposition $X = WP_0$. Then AX = XB and $A^*X = XB^*$ both hold if and only if following conditions are satisfied.

- 1. $\overline{R(X)}$ and $N(X)^{\perp}$ reduce A and B respectively,
- 2. W as unitary operator from $N(X)^{\perp}$ to $\overline{R(X)}$ transforms $B|_{N(X)}$ to $A|_{\overline{R(X)}}$ and P_0 is commute with B.

Proof From AX = XB and $A^*X = XB^*$, we know that $(A+\lambda)X(B+\lambda)^{-1} = X$ and $(A+\lambda)^*X(B+\lambda)^{-1*} = X$ for $|\lambda| > \max(\|A\|, \|B\|)$. Hence we know $N(X)^{\perp}$ and $\overline{R(X)}$ reduce $B+\lambda$ and $A+\lambda$ respectively, and so they reduce B and A respectively too. And we also have that P_0 is commute with $(B+\lambda)^{-1}$ and so P_0 is commute with B too. On the other hand, from AX = XB and $A^*X = XB^*$, we obtain that

$$AWP_0 = WP_0B = WBP_0$$
, $A^*WP_0 = WP_0B^* = WB^*P_{0_0}$

Hence on $N(X)^{\perp}$ following relations hold

$$AW = WB$$
, $A^*W = WB^*$,

i. e. W, as unitary operator from $N(X)^{\perp}$ to $\overline{R(X)}$, transforms $B|_{N(X)^{\perp}}$ to $A|_{\overline{R(X)}}$. The inverse statement is known directly through calculation.

Corollary 1. If AXB = X, $A^*XB^* = X$, and A is φ -hyponormal operator, then

 $B|_{N(X)^2}$ is $\overline{\varphi}$ -hyponormal, where $\varphi(t) = 1/\varphi(\frac{1}{t})$. Conversely, if B is φ -hyponormal operator, then $A|_{\overline{R(X)}}$ is $\overline{\varphi}$ -hyponormal operator

Corollary 2. If AX = XB, and $A^*X = XB^*$, and A is φ -hyponormal operator, then $B|_{N(X)^{\perp}}$ is φ -hyponormal operator. Couversely, if B is φ -hyponormal operator then $A|_{\overline{R(X)}}$ is φ -hyponormal operator.

Note. If an operator and its adjoint are both semi-hyponormal, then it is normal operator. Hence in Theorem 1, 2, 4, and 5, the normality is a direct result of the Putnam-Fuglede theorem.

At last, we disscus the operator equation $T^*XT = X$.

Theorem 8. If T^* is a hyponormal operator and X is a positive operator such that $T^*XT=X$. Then $\overline{R(X)}$ reduce T to a unitary operator.

Proof From $X \ge 0$ and $T^*XT = X$, we know

$$||X^{1/2}Tx||^2 = ||X^{1/2}x||$$
, for $x \in H$.

Hence there is a isometric operator V from $\overline{R(X)}$ to $\overline{R(X^{1/2}T)}\subset \overline{R(X)}$ such that $VX^{1/2}=X^{1/2}T$.

Since V is a hyponormal operator on $\overline{R(X)}$, T^* is hyponormal operator. From Theorem 1 we have that $N(X^{1/2})^{\perp} = \overline{R(X)}$ reduces T to a normal operator and $TXT^* = X$ by (4). By Theorem 6 and $X \geqslant 0$ we know that X is commute with T^* , i. e.

$$TT^*X = X$$
, $T^*TX = X$.

Hence on $N(X)^{\perp} = \overline{R(X)}$ we have $T^*T = TT^* = I$, i. e. $T_{\overline{R(X)}}$ is a unitary operator.

Corollary 3. Let T^* be hyponormal operator. Then $T^*XT = X$ has a solution X > 0 (i. e. $X \ge 0$ and $0 \in \sigma_P(X)$) if and only if T is a unitary operator.

Proof From X>0 we have $\overline{R(X)}=H$. By the theorem T is a unitary operator. For unitary operator T, $T^*XT=X$ has a solution X=I>0.

Note. The condition that T^* is hyponormal can not change to that T is hyponormal. Take T unilateral shift, $T^*XT = X$ has solution X = I, but T is not normal.

Theorem 9. Let T be a contraction operator and P be a positive compact operator such that $T^*PT = P$. Then $N(P)^{\perp}$ reduces T to a unitary operator.

Proof Let $\sigma(P) = \{\lambda_n : n = 1, 2, \dots, \}$, $\lambda_1 > \lambda_2 > \dots > \lambda_n > \dots$ such that $\lambda_n \to 0$ and $E_n = \ker(P - \lambda_n)$. We prove that E_n reduce T.

By spectral decomposition of P we know $E_1 = \{x \mid ||P^n x|| = \lambda_1^n ||x||, n = 1, 2, \cdots\}$. For $x \in E_1$, from $T^*PT = P$ and $||T|| \le 1$, we have

$$\lambda_1 \|X\| \geqslant \|PTx\| \geqslant \|T^*PTx\| = \|Px\| = \lambda_1 \|x\|,$$

$$\lambda_1^2 \|x\| \geqslant \|P^2Tx\| \geqslant \|T^*P^2Tx\| \geqslant \|T^*PTT^*PTx\| = \|P^2x\| = \lambda_1^2 \|x\|.$$

Likewise we can obtain

$$||P^{2^n}Tx|| = \lambda_1^{2^n}||x||.$$

For m, we take n such that $2^n \ge m$, and so

$$|\lambda_1^m ||x|| > ||P^m Tx|| > |\lambda_1^{m-2^n} ||P^{2^n} Tx|| = |\lambda_1^m ||x||.$$

Hence we have $Tx \in E_1$, i. e. E_1 is invariant under T and from

$$T^*PTx = Px = \lambda_1 x = \lambda_1 T^*Tx,$$

we know that T is isometric on E_1 . But E_1 is finite dimension space, so that E_1 reduce T.

Continuing this process we can obtain that $\overline{R(P)} = N(P)^{\perp}$ reduce T to a unitary operator.

Note. If we take T as unilateral shift, we know that the condition of the compactness of P can not be omitted.

Reference

- [1] Berberian, S. K., Proc. Amer. Math. Soc., 71 (1978), 113-114.
- [2] Furata, T., Proc, Amer. Math. Soc., 77 (1979), 324-328.
- [3] Putnam, C. R., Commutation Properties of Hilbert Space Operators and Related Topics, Springer-Verlag, N. Y. (1967).
- [4] Stampfli, J. G., and Wadhwa, B., Indiana, Univ. Math. Jour., 25 (1976), 359-365.
- [5] 夏道行,中国科学,10 (1979),936—946.
- [6] 严绍宗,数学年刊,1 (1980),485-497.
- [7] 李绍宽,关于非正常算子的谱子空间,数学年刊, 3:3 (1982), 303-307.