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Abstract

In this paper, the following theorem is proved

Let p be a prime distinet from 3 and 7, then the groups of order 23 p? have
1) 60 types when p=1(mod 8) E

2) 52 types when p=5(mod 8),

3) 42 types when p=3, 7(mod 8),

~ To determine the structures of groups of order n is. a classifical problem in finite
group theory. It is well known that a group of prime otder p is cyclic, and a group of
- order p? is always abelian. O. Holder has determined the groups of order pgr, p°, p*,
P’q (p, ¢, v are distinct primes)™; A. E. Western has done those of order p°¢™; -
recently the groups of order p°¢® have been solvedm In this paper we try o deter’
mine the structures of groups of order 2°p*(p-odd prime).

Notation: A<]G' means that 4 is normal in @, Z, is cyclic of order m, Z* means
the reduced residue (multlpllcatlve) group. (mod n), o(G) denotes the order of the
group G. Z(@) ~the center of G. : :

Now let 0(@) =2°p?, and n, denote the number of Sylow p-subgroups in @. Then
‘Sylow’s theorem shows n,=1 (mod p) and n,,lo_(G‘) =2%p?, thence n,=1, 2, 4, or 8. .
Therefore n,=1 when p+38, 7, i. e. @ has a unique Sylow p-subgroup 4, hence 4<@.
0(4) =p® implies that A is either cyclic or elementary abelian. In § 1 consider the
case A being cyclic, and in § 2 treat the case A .being elementary abelian.,

§ 1. A=<ay, cyclic of order p?

Let B be a Sylow 2-subgroup of G. Then G=A4B, AN B=1. o(B) =2* implies
that B is either cyclic of order 8, or abelian of type[4, 2], or elementary abelian, or
quaternion, or dihedral. We shall treat them separately as follows . _

- B=_Zg=<{b>, b¥=1, | 1.1)

Now G'={a, b), a*=1=0%, b~%ab=a’". Thence ré=1 (mod p%), consequently one
and onlyone of the four cases r=1, r=—1, r®=—1 and r*=—1 (mod p*) can hold.
r=1 and r=—1 (mod 9% give respectively two types, say, B '
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(1) G=Z23ps;
() G=(a, by, a"=1=0° b~ab=a"" Z(Q) ={b")==Z,

When r -——1 (mod %), p=1 (mod 4). Let Zj=<{a)(Zyp-1)), then ri=-—

(-1
(mod »*) hag two solufions r=t« e . But b~%ab=a" implies bab*=e"", and @=

{a, b)=<a, b7*), this shows that we have only one type, say,
(iii) G=<a, by, a"=1="0%, b~'ab= a*; r?="—1(mod p?), where p=1 (mod 4),
Z (@) =(b*)exZ,,
When r*=—1(mod p?), p=1 (mod 8). Now r*=—1 (mod p?) has 4 solutions

p(p=1)
ro=a *° (mod %), (=1, 8, 5, 7), while b~ab=a"® implies b~ 7ad!=a" =" (§
=8, 5, 7), and also Q={a, b)=<a, b’y. This says that these 4 solutions determine
the same group @, say. _ ‘
(iv) G={(a, b), a"=1=0%, b"ab=a", r*=—1 (mod p*), where p=1(mod 8)]

Z(G) =1.
B=<w, ), o*=y*=1=[a, y] (=07y ay). 1.2)
Now G={a, o, y), a"=1=at=y?=[u, y], s %av=a", y~lay=d’, so that ri=l=

s?(mod p?) . But s?=1 (mod p?) implies s=41 (mod p?); and r*=1 (mod p”) implies
either =41 (mod p?), or r= j:a (mod p?) when p=1(mod 4), where Zj=<{a),

plp-1)
4

Since B=(a) X {g) = (a® X gy =<ay  {ay) = (a® X <o), and raw=da"

pip-p)
L 2 p(0—1)

v lay=a=>u" et =0 ) , (&%) ta (a®) =a™, hence r= :l:oc'i_‘i— and s= 41 (mod
p?) will determine only one group G. Again B= (@) x {yp =<{ay) x <y and s lawv=aq,
y oy =a" = (wy) ta(wy) =a~* also show that s 'aw=0a*', y~ay=a~" determine the
game group @. Consequently the case (1 2) glves us 4 groups, say:
(1) QZpXZyx Zy; ' ‘
(ii) G={a, o, v, e lav=a, yay=a~, Z(Q) ={o)=Z4
(iii) @={a, @, ¥), s awv=a"1;, ylay=a, Z(Q) =<{a*) X{y)=ZaxX Zy;
(v) G=(a, o, v), v ax=0a’, g ay=a, r*=—1 (mod p?) and p=1 (mod 4),
2@ - ~Ta
B={a) x{y)> X2y =ZaX ZaX Za. (1.8)
Now @=<a, =, vy, z}, V' =a=yP=22=1=[, y] =[o, 2] =[y, 2], 27 aw=0a", y " ay
=a*, 2 %az=a'. Thence r?=s"=1=1(mod p?), implying r==+1, s=+1, t=+1 (mod
2. In view of @, y, 2 being situated symmetrically in &, we only need to consider 4
cases: 1) r=s=t=1(mod p?), 2) r=s=1=—{(mod pg), 8) r=1=—s=—1 (mod p%),
4) r=s={=—1(mod p?), :
Since B=<{a) X () X {2> = (&) X {yz) X (2> = {wz) X {yz)y X {2, and o e = o, Yy lay
=a, t oz =a"=>(y2) a(y?) =a~?, (a2) a(zz) =a~*, hence 2)_ 8) . 4) give the same
group. This says that case (1.8) gives us two groups, i. e.
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(1) G=Xa, », y, 2y=ZpXZaX ZaX Za,
() G=<e, 2,9, 2, a"=0"=y'=2"=[o, yl=[o, 2]=1[y, 2] =1,
o law =y tay=2"laz=0"",
B={Lg, 9>, a*=1, a?=9?, y~2wvy=o"(Quaternion), : -~ = (1.4)
Now G=<a, o, 1>, a” =1=0o*, o® =12, y~ay=o, o-lav=a’, y~lay=d", so that
r*=1=s' and r’=s"(mod p?). By means of y~*zy=4"", we have
a"=waw = (y~lwy) a(yoy) =y e ey =0 =a’, o
hence r?=1(mod p”). Consequently r==£1, s==+1 (mod pﬂ) Since @ and. 4y situate
symmetrlcally in @, we only need to consider 3 possibilities, i. e. 1) r=l= s(mod ),
2) r=—1=s(mod fp”), 3) r= 1=—s(mod »?). In view of B= <a: y) (a:i,\y> w=ay,
and { e lav=a"t { a;l—iaml——wl,
Y Yy ay=a
same group. Thus case(1.4)gives us two groups say N _
(i) @= (a @, ¥, v law=a= y“iay, Z(@) = (aw2>~Z2p,
(i) G=<a, o, ¥, s7ax=a"r=yay, Z(Q) ={a*Hy =2y
in which a”=1=2a* a?=¢? ylay=0"1, .' . o
B={w, %, at=1=17, y“iasy=a;‘1(Dihedra1) | (1.5)
Now G'={a, o, ¥), a”=1=a*=9?, yloy=a2"1, s lav=qa", y lay= ar,s “thence we
have r*=1=s" (mod p*). Also by y'wy= w"1 we find a” = a’s’—a’=>fr =1 (mod p?),
therefore r=41, s=+1 (mod p?). Since B= o, y>=<w, Y1), 1=my and o-laz=at
=y ay=yr'ay,=a, hence r=s=—1 (mod p?) and r=—1, s=1 (mod p?) determine

S it follows that the two subcases 2) and 3) glve the:
ay=a

the same group, consequently (1.5) gives us three groups, say: .
(i) G={a, o, ¥), v aw=a=y oy, Z(G)={av®>rZqyy;
(ii) @= {e, @, 47, o law=a, y~lay=a"1, Z(Q@) = <a:2>~Z2,

(iii) G= <a &, ¥, v law=a"t=ylay, Z(Q) =Ty

in all of which we have a” =at=¢?=1, yay=a"1,

‘Note that (ii) is non-isomorphic to (iii), since the group (ii) has 4p*4-1 elements

of order 2 (a*»%y, 2% 0<A<p?, 0<a<4), and (iii) has 2p°+3 elements of order 2

(e’a’y and a*y, 2?, ay, o®y). ' '
Summarizing § 1, we have
Lemme 1. If p is an odd prime +38, 7, then the groujps of order- 23p ‘when the

Sylow p-subgroups are cyclic, have: - : : :
(1) 15 types when p=1(mod 8) [(i), (i), (iii), @iv) of (1. 1) and (1 2); (1) (ii)

of (1.8) and (1. 4) NOR (11) (111) of (1.5)1; '

(2) 14 types when p-5(mod 8) [all occuring in (L) ewcept (iv) of (1.1)1;
(8) 12 types when p=3(mod, 4) [all occwmg m(l) ewcept (111) and (1v) of (1 1), and

@v)of(l. 2)]
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§2. A ay X<y =Z X Z,

‘ As we have done in § 1, G AB, ANB= 1 where B is a Sylow 2—subgr0up of G,
hence 0(B) =8, and B is one of (1 1)—(.5). ,
B=2Z3=<w). (2.1)
x~tax = a*b? a B
T A=<7 )G GL (2,p)
a®=1 1mphes B=F in Z, (pnme field of characteristic p), thence the minimum
polynomial m(}) of 4 is of the property (M) | (AB—1). But m(?x.) ldet (AE-4),
therefore m(A)is of degree 9°m (A)either=1 or=2.
(D). o°m(A) =1. -
Now m(A) =A—¢, d=EE, =1 (mod p), hence either ¢=1, or §=—~1 or §’
=-—1, or &*=-1 (mod p) one a,nd only one holds. Oonsequently we have 4 types of

NOWG‘ ={a, b,s), a?=0"=[g, b]=1 =28, {

groups G‘ say:

!
(1) G=<a,:b, o, {w 1‘;” Z i 6. GaeZy% Z, ><Z8, -
Cfrtap =gt
(11) G -(a, b, m),{ o Z(G) ez
¢ ' | :
(111) G‘ (a b w), {a;_ Zm_;, Where §2~——~1 (ntiod_p) a,nd.hence p=1(mod 4),

- with Z(Q) ={a*>=Z,, - =
(Note that two solutions of £*=—1 (mod p) determine the same structure (iii)
a8 we have done in proving (iii) of (1.1) in § 1)

) G@=<o, 5, o, {

s tax=af , S
r o where C‘*—- —1 (mod p) and hence p=1 (mod 8),
&b =0* A _ T
with Z(@) =1, ' . L

«(Note thé 4 solutions of {*=—1 (mod p) determine the same structure (iv) which
¢éan be.shown similarly as dons in.proving (iv) of (1.1) in §1),

(II) 2°m(A) =2. '

NOW m(\) = det(?\.E - A) =M+ +0 with w=— (oa+b‘) 0= ab‘ ,37

(II. 1) @=0 (mod p). Now m(A) =A2+0=>F == 6*H, thence §*=1 (mod p),
consequently either =1, or 0= —1, or 8?=—~1 (mod p), one and only one holds.
hE 0 =1 (inod p) =>m (7\.) ?\,2+1 ‘thus the ra,tlonal ca,nomca,l form of 4 is (_(1) (1))
. showmg that a, b can be suitably chosen so that { w_:‘;z '2 ,» hence '
( v law= b

W ¢ =5, o, {0 2@ =D,
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f=—1 (mod p) = m()») (7\.-—1) (?» +1) =>A~ < o 1), showing that we can
su1tab1y choose @, b Wlth the type |
v law=a

o) @=ca, 8,0, {70

§2=—1(mod p)=>p=1 (mod 4); and 6%=—1 (mod p) has two solutions § and
—@. For the solution 6, m(A). =A%+ means that the :'ra,tional canonical form of 4 is

2(@) =@ T,

01 '
( 9 0> hence @, b can be chosen su1tab1y with. the group structure

(vil) G=<a, b, w},{

oaw=b
e Whe‘re =1 (mod p) and p=1 (mod 4),

Z (G‘) =1,
Note: putting ay=0, by=a, &,=4", we have G <a b, a:) {as, 61, m1> W1thg.

s br=a

a7 @y =by and w7 bywy=af. This shows that the two solutlons of o= —1 (mod p)
determine the same group structure (vii).
(11. 2) w==0(mod p) Since m(A) = 7\,2+co7\.+0 is a factor of
: —1=QA-=1) (A+1) (A2+1) (A\+1),
hence our: problem is reduced to find the quadratic factorsof A3—1, with the coefficient
of A not zero. In later, we set Zy=<1. : '

a) p=>5(mod 8). Now A’+1 A—r = )(7\.+'r 7 ) and
?»4+1 (}\.”—fr 7 )(7\.2 r 5 KD

’ -1
But it is easy to check that 7&2+a" 7 are all irreducible in the prime field Z,, in view
of p#=1 (mod 8), therefore the quadratic factors of the form m(A) =A2+wh+0 with

_ 4 _
w==0 (mod p) of A®—1 are only (7&:}:1) (h:l:a"?"r) consequently’ 4 is similar o

+1 0 ' ' '
( 2_) in the ﬁeld Z,, this shows that g, b-can be so chosen that s 'ew =0,
0 fr ¢ . o _ B

, =3 ﬁ B : 1 .0
a~lba=10" . Again G={<a, b, ¥)=<a, b, «°) means that( ,,_1> determine the
S - -1 o \ ’ 0 &g *
same structure of @, Similarly < =1 ) do so 100. Hence we obtain two groups,
o ' ' N 0 ri /. o _
(viii) G={a, b, a;), o law=a; 57 o=b" 3 Z(Q)={aw'd=Zy,
- (ix) G={e, b &), o tar=a", @ 1bw ¥ Z(Q) ={aty=2Zy,
b) p_.l(mod 8) Now ' :
, 7\.4+1 (A—=¢) (7\.+8) (h—g%) (?»—1—83), 7»2+1 (7\. s”) (7\,—1—69),

pr—=5(mod 85,

where e=1 an Thence the quadratic factors of the formm(A) = =A"+wh+0 with w0
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(mod p) of ?»8 1 are only of the forms such as (A:l:ei) (A&, 1<z< j<4. From &'

+& 0
), i. e. @, b can be chosen

% +¢&’ we can ﬁnd Pc GL(2, p) S0 that P4P= ( 0 igf
te

with o~ tew=a*", o s =b*, 1<i<j<4.
- Because of @, b being symmetrically smuated in @, and G'= (a b a*y with k=1,

. - 0y /- 0
3,5, 17, it is 'e'aSy to know that e , g
S oo N0 @\ 0 &6

Similaz] +s 0 ¢ 0 +e O +e® 0 4 +s 0
. . i o - ;13 all 1
HREAEY A o —e?/ 0 &8/ \0 &) \ 0 &t 0 —st

B0 - . fe O\ _[-e 0\ [e O
(;{;& —84> respectively do so. Agein (.O | 83) and < 0 _83>, (0 ——s‘"’) and

—e 0\ (& 0\ (—& 0 (e 0 A7 0N
SR } an or{ - Jan -all respective
0 &% ’ 0. gt a_ LY A 0 _—84 0 -—gt P y

‘gwe the same types of groups Therefore we have in . this case eight d1st1nct group

>, determine the same group.

structures, respectively represented by the followmg elght matrices, say

R A T A AT

q & 0 - & 0 q g 0 dotepmi A el
o owever a ) etermine groups respecilve reo-
o 1 TV o 1) e —1) O BIODS XeSpestively

presented by the fypes (viii) and (ix) mentiened in the subcese p=5 (mod 8), i. e.

the types (viii) and (ix) will also occur in the case p=1 ‘(mod 8). Except them, we

-have the other six types; such as. ' : ;
¢ x2) G=<a,d, sy, s7'ar=0a’, a;T.ibzv:bs’;'"Z (@) =14

Axi) G=<a, b, o, 4 ‘iaw @, o~ w=0""", Z(Q) =1;
‘(xn) G=<a, b, o), v law=a, ;17)w=bs’, Z(@)=1;

» (xifi) G={a; b, &), s7aw=0°, ¢ 0u=0"", Z(@) =1;
(xiv) G={g, b, o), v tav=0a*, s b0=0"", Z(Q) =1;

(xv) G'—<¢z b, &), s law =0, a:"-ibw—b Z(G‘)'—l

0) p= 3(mod 8)' Now<_-—> (~1)F e (—) —1—_—>as 0 that *=

}} p=1 (mod 8)

(mod p), honce A%+1— (7\.9+s?\. 1) (7\.2 ~ A 1); but 7»2—{—1 is 1rreduclb1e in the ﬁeld
Zy (" p#1 (mod 4)), therefore the quadratm factors of the forms m(}) = =2+ or-E 0
with w#0 (mod p) are of only .two: APfsh<1 and A=sh—1. If m(A) =AT+sh—1,

’

/

.thena+6~—-s ad—By=—1, 4= (Z §>=>A‘1 A = (

3+s, B'=B, ¥'=, thus o/ +&'=s, det A=/~ B'y'=—1; cinsequently from G'=
a, b, @y =<a, b, o7, it follows that m () =22 +-sh—1 and m(A) =A? —sh—1 determine
the same' group-structure, therefore: without loss of generality we can assume m(A)

'g,) with o'=a+s, 0'=
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. : . 1 :
=A2—sh—1, and thence the rational canonical form of 4 is ( ), i.e. @, b can be
s

1

chogen suitably so that . )

(xvi) G= (a b, o>, v tax=>, o~ bw=ab*, with s*= ~2(mod p), p=3(mod 8),
where Z(G) =1, '

d) p=7(mod 8). Now (%) —1=>3 1, so that #=2(mod p), thus

At 1= (A2 A +1) W —iA+1),
A2+1 ig also irreducible in the field Z,, hence the factors m(A) =A?+wA+0 with w#E0
(mod p) of A8—1 are of only two: A*+#A+1 and A*—iA+1. From @={a, b, > =
{a, b, #%), we readily find that A2+#A+1 and 7\.’—75?\.—1-1 give the same group, as we
have done in c) ‘Hence we obtain a new type, as -

(xvii) @={a, b, &), e'aw=">, v~ "be=a""d’, with $?=2 (modp) p=7 (mod 8),

where Z(G) =1. ,

In order to explam that (i)—(xvii) are distinet from one another we must show
that the 8 types (iii), (v). (ix) are non-isomorphic with one another, and also that
the 10 types (iv). (vil), ). (xi) . (xii), (xiii), (xiv), (xv). (xvi) and (xvii) are
non- 1somorph10 with one another. For example, (iii) 2 (v) means that there exist two

elements a;=a"b”, by=a°b® in (iii) with A=( )EGL (2, p), and an element y
o

=a/(j=1, 8, B, or T)of order 8 in(iii), such that
| y ey =bs, Yy 'by=ai’,.
equivalent to a®b” = a0, a~*b" =a" b,

- o 0o 1 0o 1 |
thenc‘e we have ¢’ A=<'G i >=( 1 O>A =S¢l = ( . 0>, evidently impos-

—p —v
sﬂole By the gimilar method, we can prove the others. Hence we have
Lemma 2. If pisan odd prime+8, 7, then the groups of order 2319 when the
Sylow p-subgroups are elementary abelian and, the Sylow 2-subgroups are cyclic, have
(1) 15 types when p=1(mod 8) [(1)—(xv) of 2.1)71;
(@) 8 types when p=5(mod 8) [(1)—(ix) of (2.1), except (iv)];
(8) 5 types when p=3(mod 8) [(1), (i), (V) (vi), (xvi) of (2.1)];
(4) 5 types when p=T(mod 8) [(). (D). (v), (vi), (xvii) of 2.D].
={a) } Yy 2Zy X Za(at=1=9"). : (2.2)
Now G=<a, b, @, 4>, a*=0"=[a, D] =1=a*=9=[s, 4], .-

3 {m‘iaw=a‘”b"’ {'y’laly:a?b'.” A=<a ) d A ()u, a)
‘ o b =a"0> |y by=a’b" B 9 v 7
all €GL(2, p). Thence 4t=FE=A? and 44=A44 (in the field Z,). Let my(A) and
-m4(A) denote the minimum polynomials of 4 and 4 respectively.
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If0°m, (M) =1, md(?y) | (M —1) =A—1) (A+1) (A*+1) will imply that either my (A)

- =A—1; or md(h) A+1; or my(A) =Ax¢ when p=1 (mod 4), where £=r KR and Z,
=<{r>. But my(A) =A—§ means v aw =0 and o bw=0% while G= @, b, @, o>
={a, b, o5, y> will imply therefore #~%aa®=a~* and #~3pa® =5, this says that m, ()
=A—§ and my () =A-+¢ are of no difference. Hence under the case 9°m,(A) =1, we

v lar=q o lgp =gt v oy =af
o o= " { b =b °r{ o= bf
- ‘'When p=1 (mod 4) where § a};—i" and Z5={<r),

If 2°my(A) =2, either m(A,) =A?—1, or=A2+1, or= (A1) (?»j:f) when p=1

only need to consider three possibilities, i. e. {

10 01
: (mod 4) thus there oxists PE GL(2, p) such that P-14P = <O 1), or=< : 1 O)
10 AT
iO + f) when p=1 (mod 4). Oombining-the two

cases 9°m, (A) =1 and =2; it follows that a, b can be su1tab1y chosen so tha.t we mneed
only to eonsuier the followmg nine possibilities: '

O 48, @ a--5 @ o= _O), @ a~(_) ) @ a=gm

: 1 -10 1. o0 -1 0
© A=-<0 §> M) 4= ( 0 §) ® 4= (0 5)’ ® 4=< 0 —f)’
Note that £ will oceur iff p=1 (mod 4). :

Since G=<a, b, v, y>=<a, b, o°, y>, hence (8). (9) respectively coincide with
6). (7). Thence only 7 cases (1)— (7) are needed 0 be considered. '
- When a, b, @ have been chosen, we consider 4. Of course, A2~ K implies m,4(A)
=A—=1, or=A+1, or=A"—1. But m,(A) =AF1 implies A= + F, evidently satisfying
Ad=AA4. T4 therefore remains o consider the case m4(A) =A2—1, Whloh 1mp11es ,w+z'

.(ratmnal canonical form) , OL = (

.—-O and u?+pvo=1,i, o, A= (,w g > with detA———l(modp)
o —w/
Evidently A=<'u' g > commutes with 4=FE, —H, fE‘i-n 1), (2), () respec-
o —-w/ _ _
(1 0 o (+1 0
tively; but such 4 commutes with 4= 0 —1 of (8), or with 4= 0 ¢ of (6).

and (7) when and only when »=0=¢ (which therefore in turn implies p=+1 (mod

| -1 0\ |
p)), thus A= L 0 or= ; while A=< H g ) commutes with 4=
-1 0 1 - o —uw

( -1 0) of (4) ff p=0and »+0=0 (mod p)=>»*=—1 (mod ). which can hold

only when p=1 (mod 4), and thence y==+¢ (mod p) ,-consequently A= +£4,
Therefore all possible combinations of (4, A) are: (1°) d=E= 4, (2°) 4=E =

| | o R I
—4; (%) d=~B=—4s (&) 4= ~E~4; (5})A=<0 __1>—A; (6.)41-—(0 _1)
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3 10 T T N o__o1"

- A (7)A=<O _1>, A~ () A—(‘O.__l), ——B; () A_( . 0),
400 __ 0 1 = = ]G °‘ = 0 1 =

A=E, (10)4_(_,_1 0), A=—B (11°) A—<_1 O) — g4, (12°) A=

[ 01 T of T ey
'(71 o)’ A-¢s (18°) A=EB, A=T; (14°) A=¢E, A=—H; (15 )VA_.<0 §>,

£ L NN & S A Y £ Wy
A=E; (16)41—(0 §>, A= —E (17)A—<0 5)’ 4—(0 _1>, (18°) 4=

/10 10\ .., 1 1
{a f)’A=< o 3) (g o) 4= a7 ) 4=E
(21°) 4= ( 3 Z) A= (E _1) (22°) 4 ( (1)2\), A=< (1)2); (28°) 4-E, 4

#(" ) (24°) 4= —F, A= ( | ) (25°) A=¢E, A=(” ” )
o —W o - o —W
Slnce (23°), (24°) (25°) all mean that ma(A) =A—1= (7» 1) (7\.+1), henoe

1 0
PEGL(2, p) exists 50 that P-1AP = (0 1) and also P (hE) P= IaE(lo ~1, ~1, &)

of course holds, this says that @, b can be suitably chosen so that (23°) (24°) . (25°)
can be reduced respectively to (231)A E ./1 <(1) _—;}_) (24 ) A=.-—E A (3 '_ :) '
1 0 . :
D 4-¢8, 4= _1). |
| Again
B={ay x> =4a®> % <y> Loy % <y =<a*y> * <y
= (@) % Ly = <% X {aPy) =<ay) X <@ y> Loy X <@ y>
' z—> 4 -
- also ' { A=>a; —>A3 a;y-—aAA oy —> 424, w”y»AﬂA \
y—> v

' thls says that (2°) and (4°) give the same @, s1mp1y denoted by (2°) (4°) Slmllarly
(5°) = (287), (6°) (249) by the symmetry of w bin &, hence (9°) (10%), (11°)
=(12°), (13°) (14°), (18°)= (17°) (19°) = (21°) (16°) = (18°) = (20°) = (22°) |
_Therefore We need only to treat the types(1°). (2°) (3°) (239). (241) (7°) (8°)
9°). (13°) (15°) (16°) (19°) ., (259) and (12°) But in (12°), G = <w b @, y) ‘

o —-<w1, bl, @y, Y1y Where @ =a-th, by=a'b, =2y, y1 y 80 that

(oftem=of (YT Gy = 0y ,
. | {a;l blwi—bf { 1b1y1—bl.: e T
this says that (12°) = (25 ) Oonsequently we have only. 13 group s‘uruotures deter—
minod by (1°). (2°). (8%). (283), (2) (7)., (8°). (9°). (18°), (15")..(16"); (19°).
(257) respectwely, which are Wr1tten as follows R S
(i) G=4, % Zy ><Z4><Z2, '
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s lawv=qa {y oy =a

(i) G=<a, 0, “tpy=b | y-tpy=p-

Z(@) ={wpeZy
o s law=a" Y ay=a

(1115) G=<a) b >) —1ba7 b_ll {y_ib
-1

o 1,

{ 2@ =<0 X {yp =T x Z
(iv) G=<a, b, 5, 9), v R IC I

{

{

o bo=b" | ylby—p*

v lax=a"1 [y lay=a
sy =0"1" { Yy oy=0""

sl =a {y"iay=a

(v) G=<q, b, 5, p», Z2(@) =<ayaZy

(vi) G=<a, b, @, 9,

o oe=0" |y toy=p’
Z(@) = <“>><<9’2>X<?!>~Z XZBXZS,
s lar=a Yy lay=a"
(vit) @=Ca, 8,0, 90, {7 70, {y_iby o Z(@) =Ty
=D -
<vm> @=Ga, b5, 35, {“ L 2@ =yt
brx=a Yy by =
o law=af ‘1ag/—
(1x> G=a by, 90, { o Y Z<G>=<_y>azs;,
s law=a ‘1ay=
() G=ca, om0, {0 (V07 2@) ~cay i
. s law=a ylay=q
(xi) G=<a, b, 0, 9), | i [ g 2@ =1
e av=a"r [y lay=a
(xi) G=a, b, 2, 9, { it -{y_iby o 2@ =y Ty
v ar=df [ yoy=a
(i) s, 5, y>,{ ot Lty gs 2@ -1

By the similar method applied in the end of (2.1) it ig easy to see that the types
(v). (vii), (V111) (ix), (xii) are non—lsomorphlc with one another, although they
have centersarZ,, Similarly (xi) is not isomorphioe to(xiii). Thus the group structiures
(1) (xiii) are actually distinct from one another. Hence we have the followmg

Lemma 3. If p is an odd prime+8, 7, then the groups of order 2%p* when the
Sylow p—subgroups are elemenmry abelian and the Sylow 2—subgroups are abelian of
type [4, 2] have: '

(1) 13 types in cass p=1 (mod 4) [i. e.(Q)— (x111)of(2 21,

(2) 8 types in case p=8 (mod 4) [i.e. (i)—(viii) of 2.2)].

B = o) Xy> X2y Za X ZyX Zo(a? =g =22 = 1. (2.3)

Now G=<{a, b, », y, 2>, a®=b?= [0, 8] =1l=a=¢?=22= [g, yl=1[a, z] [y 2],

e larv=a"t’ [y lay=a*b® [ 2 lar—afl
{w‘ibw=w76"’ {y‘iby=a"bv’ {z"'bz=a/’b°’
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with A=(“ 7); A=<,”‘ "), K=<§ Z)
\B @ v T n 6

all lying in GL(2, p). From a®=¢*=2*=1=[&, y] =--, it follows that 4°=A*=K?
=F and 4, 4, K are commutative two-by-two, therefore there exist PE€ GL(2, p) so
that P14P, P-*AP, P~*K P are simultaneously all diagonal matrices &, —H, J, or

—J, where J = < 0 1) , this says that we can choose @, b so that A=E, —H, J, or

—J; but in view of @, b being situated symmetrically in @, we find that 4=J and 4
= —J are of no difference, hence concerning 4 it needs us to consider 3 possibilities:
d=H, -—E, J. After 4 has been given, A and K have respectively 4 possibilities i.
e. B, —E, J and —J; but y, 2 situating symmetrically in G implies that we need
only to treat the combinations of 4, K, and not the permutations of them, consequently
the number of combinations of 4, K is equal to O%.a_y =10, therefore the number of
combinations of (4, 4, K) is equal to 3x10=30, as |

E EE E E E BEE BE B—-E—-E-E-B-E-E~-E~E-E-BJ JJ-

A | EBER E~-E-E-BEJ J~-J BE BE E E-E-E-BE J J~JE BEBE-

E |E-EJ —J~BE J 33 -J-J B-E J-J~FE J-J J-J-JE-EJ-

Since @, 9, # situate symmetrically in @, hence it is sufficient o consider the
combinations of 4, 4, K, disregarding their permutations, thus only. 19 cases on the
above table are worthy to be discussed, denoted by

W@ @ G ® M ® O 1) 1) 12) 18) (14 I15) (16) A7) 18) 19)
>4 ® EBE E BE E EE E E-E -E ~-E -E-E-EJ J J

y>4f B BE E-E-E-E J.-J -J-BE -E =B T J -J J J -J

skl B -B J-J-B J—-J J-J -J—E J =3 T ~3 -3 J =3 =7

Again since B=<{m) X {y) % {2y = {we) X {yzp % {2 =<ay) X Yy X {z) =1+, hence (2)
=(5) = (1) (i. . (2), (B). (L1) give the same group), (8) =(8) =(17), (4)=(10),
and () = (7) = (9) = (12) = (13) = (14) = (15) = (16) = (18) = (19). Thus it is suffi-
cient to consider the following 5 possibilities: (1), (11), (17), (4), (6). Again a and b
situating symmetrically in @ also implies that (8) = (4) and hence an = (4) Conse~
quently we actually have only 4 group—structures i. e.

(i) GZyXZpy*x ZaX LaX Lg; . |

(ii) G=<q, b, @, ¥, 2D, s aw=y ay=2""az=a", s b=y by =2""bz= b1,

Z (@) ={ayy X wap=Za X Lx;
(i) @=<a, b, 2, 9, 2, v law=y tay=2""az=a, v o=y by =2""bz= b1,
Z (@) =<ay % {ay) X {wzy=2Lip X LiaX Lg; ’
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e“av=a (yTlay=a [27'az=a
i G= » b; y 95 s { V ’ { ’ { -1’
(iv) . <@ @, ¥, 2 o bw=b Ly tby=50"1 Lz thpz=0""2

Z(G) ={wyZs,
Henoe We'obtain the following . v

Lemma 4. If pis an odd prime+38, T, then the groups of order 2%p? when all Sylow

subgroups are slementary abslian have 4 types [ (I)—(iv) of (2.3)]. |
B=Qs=<{z, v>, a*=1, y?=a? 'y‘ic'vy =»~*(Quaternion group). (2.4)
- Now g, b, @, 9>, a?=b"=[g, b] =1l=a*(=g"), y?=o?, y oy =02 (s "y =yY),
o™ ow = a”b® y;lwy =a"h”
{ o~ 1bw=a'd?’ { Yty =a°’b”
consequently 4=F=A* A*=4, A24A=A"" (in the field Z,). Concerning 4, we
proceed in the same way as we have done in (2.2), so that @, b, # can be chosen

suitably with 4=E, — K, R B S, , , or§E, ire. only
0 -1 -10 0 ¢ O 3 :

these 7 posmb111t1es are needed to be discussed. Note that f r + Z =<{r) where p=1
(mod 4), :

, Where A——'4<a' B)and/l ( >a1111emGL(2 p),
: v O o

10\ ’
If 4= (iO §> or {E, by means of 44=A4"* it readily follows that we always

have y=¢=7=0 (mod p), contradiction with AEGL(2, p). Thence it can only be
that 4= B, —F (1 .°> or< 0 1)
77 \0 —1 -1 0/
(I) 4=E. o |
- Now A2= 4= F implies ms(A) =A—1, A+1, or (7\, 1) (?\.-{—1) But ms(A) =A—1
- or A+1 gives respectwely B
(i) G‘=<¢z, b, @, y>, {w av=a {y‘lay “

e bw=b" Ly~tby

Z(G‘) <w> X <b> X <w9>~Z X ZyX Zg,

y o o lax=a y‘iay at _
- (11) G=<“; b; .w; y>; _{w“lbm=b’ { y—iby=lbf—1, Z<G> =<.’E2>gz2.

- | 1 0
When my ('}\.) =A—1)A+1), PE G’L(2,- p) exists S0 tha,t ,P‘iAP-=<»O .1> whioh
N ﬁ Yoy =y |
“inturn 1mplles wl, b€ A <a> X <bYs0 that A= <w1> X (bi> Wlth {y‘ 1bly b_l-; ‘but 4 .
' 19 =01 '
@~ alm w1

 =F also 1mphes P*1AP=E, i. e. { “1p b .. This _shows @ can be “vvritten as
e w=by ‘ . -

' . (slav=a (Y ley=a
= b: s 37/ { ’ {

(i) @=<a, b, 0, 0%, {° 077

(I) 4=—E. L . |
Now also 42= A . 7, Henee as mentloned in (I) we have A= E —~E ot ms())

- (A—1) (A +1). Since », y situate symmetrically in &, we find thal; A=E, 4=—E&

y'-ibg = {,—1 i" .,Z <G) = <“"’v§>.'—"’—_ng. |
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- will determine the same gronp as 4=F, A= —H does i. . the type (ii). Again 4=
— B, A= —E means m—>;——b_E,' y—>—H, hence @y =ay—> H, but alse B=<zs, 9D, ai=1,
P =ai, ywiy=a7r’, this'sa,ys that the group structure is also the type (ii). Thence we
need only to consider m,(A) = (A—1) (A+1), therefore PEGL(2, p) exisis so that

1 0\ . . :
P AP = ( 0 1), and at the same time P~*4AP = — E(=4), this shows @, b can be .
chosen suitably with the group type |
o =a" ylay=a '

wa= b, @, { { | Z(@) =T

(iv) <a, v, b=t | ytby—bt (@) =<ap=Z,.

Note that the type (ii) has 4p?+2 elements of order 4 (¢*b 2™y, 0<A, u<<p-1,
0<a<<3; o, %), while (1v) has 2p%+-4p elements of order 4(a*b*s’, a*s'y, b a'y, O<A,
p<p-1, i= 1or8, j=0 or 2), hence (ii) is non-1somorphlc to (iv).

(1D 4 1o
')‘ “\o -1/ ,
pi4vo=1 a(u—l—z-)
d{ mod p), again 44 = AA‘1=>
P +vo=1 y(u-+7)= 0( p) € g
=0=0( mod p), thence =41, v==1 (mod p), and hence A=E, —H, 4, or—4.

But A=F or —E means that tne group-structure is (iii) or (iv), in view of & and g

Now A”=A9=E=>{

being symmetrically situated in G. "While A=4 implies #y=ay—> 44=E, hence from
B=<m, §>=<w, y> we find that it reduces to (iii). Similarly A= —4 reduces to (iv).
(01 |
IV) 4= .
) a-(_7 )
Now A*=42= - H, Agam 44 = AA‘i 1mp11es p=¢ and w+7=0 (mod p) thus
A ;(M ) therefore A?= — K implies u?+»?=—1 (mod p), which s always
v — W ‘ : :
soluble: infact, if p=1 (mod 4), take w=0, and » satlsfying v?=—1 (mod p). If p=3
(mod 4), since 1°, 29, «+», (p—1)° and r°=1, 7%, ¢%, ., r® D are-identical (mod p),
where Z,= <fr>, hence " '

‘,r(p 1)e
0= 5} po——_"" =0 (mod p) when O<c<p 1,

Consequently by substltut_mg 11; 1nto the binomial expansions, we find

P t2+1‘ _ p'v g %—-(p'—l)____ p- e 1 1 . 1
t=21< P )_,Z;(t +1) =R ¢ri=p-l= (mod p),

. 2
thus from p=3 (mod 4) we have(:*+1, p) =1 for all ¢, i. e. (t +1

>= +1 for any t,
2
therefore by 2 (t ;1> —1 (mod p) there exists at least one ¢ so that (t ;’1)= -1,

and thus putting such ¢i=pu we have <ﬂ—;—1—->= —1, thence <——<—%+—1-)-> =1, this

means an v exists so that »?= — (u+1) or p’+»*=~1 (mod p).
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- Although ¢ +»?=—1 (mod p) has always solutions, yet the solution (u, ») is
B

not unique 1n general, i. e. A=(_
v —pw

) is not unique, however the determined

group structures are isomorphic: -
In fact, lot @=<a, b, , 9>, &’ =0"=[a, b] =1=0*, y?=0?, y™2y=27"%,
{ s law=1>b { ¥~ tay =a*b”
s~ lbo=a" Y~ 1oy =a’d~"’ .
p?+v?= —1(mod p); and assume u?4-ri= —1(mod p).In the group G we try to choose
—'(lsbt v
{b’-—a"b’ with P= <k Z)EGL(Q, p) [hence Q@=<a’, &', , 9>], and hope to have
{w‘ia'm'= ¥ q {y“ia’y——a”“b’”' (%)
“p'e=a"t y iy =a' b " o
By computation, the first one of (x) is equivalent to b= —1¢, I=s (mod p) thus

P= (_: ) )e GL(2, p)&© 8?4120 (mod p),

and hence the latter one of (*) is equivalent to
{(,u,—~p,1)8+ (r+v1)t=0
(»—v1)s— (u+p)t=0.
1 %) vty
v—vy  — (uwtps)
actually solutions(s, ¢), in which at least one of s, ¢ i9£0 (mod p). Now we can assert
moreover that s?44?s£0 (mod p), for (#+) implies -
(= )%= (v +01) %
{(V — 1) %= (+ ) % (mod p). ’
by adding them we find s?(—2—2uus — 2vvy) =1°(—2+2uus +2wws) (inod p)=>(s*—1?)
+ (82 4+1%) (pa+vry) =0 (mod p)=>s?=1? (mod p) in case s?+#*=0 (mod p)=>2s?=
(mod p)=>s=0=t (mod p), impossible..Thence s°*+¢*#0 (mod p).

(modp) (+#)

" Since —‘—(,u, —u?) — (? —vf) =0 (mod p) hence (#«) hag

01 .
This says nothing other than that A=< { 0) and A=< oo ) with p? 4=
| o\~ - \v —w
—1 (mod p) will determine the unique group-structure, as
o (etew=b (yTley=arbr |
- - +1?=~—1 d Z
0 6=, 0,5, 0, |~ o { gy arper P =~ Em0d ), Z(@
* Hence we have
Lemma 5. If p is an odd prime+#38, T, then the growps of order 2°p® when the
Sylow p-subgroups are elementary abelian and the Sylow 2-subgroups are quaternion
have 5 types [(1)—(v) of (2.4)].
B={(m, y>, a*=y?=1, y~‘oy=o2(Dihedral group Ds of order 8) 2.5)
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Now G—<a, b, », 4>, P=bP=[a, b] =L=at=¢?, y~loy—a~,
{w_zaw%“bﬁ; {y—1“y=“uby with A=<“ B), A:(“ ”)
o bw=a"0®" Ly tby=a’b" vy O c 7
all€ GL(2, p). Hence the defining relations of B imply 4=A%=F and A~*44=47
Concerning 4 we can proceed in the same way as done in (2.2), and also by means of
A4 = A4 we know that we can ohoose @, b, « as done in (2.4), so that 4=H, — K, |
(1 0), or ( ol >, i. e. we can restrict ourselves in these four cases.
0 —1) " \-10 -
(1) 4=E. |
Now by A2=E we can proceed in the same way as done in (I) of (2.4), and we
find that G has 8 types, say. ' '
) v s lar=a=9y"tay
(1) G=Ca, b, 3,95, { Ny
o~ taw=a= (y~lay)
o~ 1bw=b= (yby)~*’
e low=a [y lay=a
s lbs="b { yloy=0""

| Z(Q) =@y % B X (S Ty X Ly X o

(W) G=Ca, b, 2, 9, | 2(Q) =<a®y =T

(i) @=<a, b, @, VD, { Z(Q) =<aa®> =7

(1) 4=—H.

Now as in (I) we have A=E, —E, or my(A) =A*—1, But A=—F means now
that s——E, y——H, thence ay— K, and also in view of B= o, y>= (w xyy, we
find that 4= —E, A= —E and 4= —E, A=E give the same group, as :

, s lar=a ylay=a

() @=ca, b, 0,00, { T VY 2 S

When ms(A) =A2—1, PEGL(2, p) exists so that P~*4P = ( 0 1), i.e. @, bean
yay=a ‘
y by =b~"
have another type, as A .

e tar=a"r (Y lay=a

(V) G= <:7.) b} Ow) y>} {“‘a}“ib{v=b'1’ { y_lbg———‘-b-i’ Z(G) =<w2>gZ9-
- (IID) 4= .

am a=(y )

| 0 . | o
Now 4A=A4"*= A4 implies 4= ('gl ' '), henca A2=FE means p?=1=7* (mod

be chosen With{ and now P'4P=~—FE too such as 4=—FE, hencé we

tly A=FE E Lo ~1 B. $ 10, lieg: now
= -— -—> 3 :
p), consequently H, o -1 or 01 ut y 0 —1 implies’ no

ay—> H, and y?—? (—O { > implies oy—>— E therefore from B= {w, y} {w, my) it -
follows that it is sufficient to consider A=FE and A—- -—-E.. Thus we have:

L. , (o law=a Yy loy=a
-(Vl) )G=<w; b) ‘aé: y>: { w_ibw=b;.1-: {'y_iby= Z<G) <¢Z£U2>~ng,
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Z(Q) =<a?>e~Z,,

: Ly P DR |
(vi) G=<a, b @ 05, {00 Y

o bw=b"" |y tby=0- ,

Since the group-types (ii),* (iv), (v), (vii) respectively contain 4p*+1, 2p*+-8,
4p+1, 2p"+2p+1 elements of order 2(a*b*s™y and o? in (ii); @*b%a'y, o, &% and ¥in
(iv); @aty, b4y, b’y and o in (v); @*b“a’y, a*bty, o’a'y and o in (vii); where
O<hA, p<p—1, 0<a<8, i=1 or 8), again the types (iii) and (vi) contain respectively
4p+1 and 2p+3 elements of order 2 (b“a”y and 2* in (iii); d“a'y, ¥, 4% and 2? in
(vi); where 0<< p<p—1, O<a<3 ¢=1 or 3), hence the types (i)— (vu) are aotually
distincet with one another.

avy 4= °1
\~10/) | .
Now 44=A447" will imply v=¢, u+7=0 (mod p), thus _A=(”' V), and
| : v —w)

| therefore 4%= K implies u®+»*=1 (mod p) which is evidently solvable. Taking y=1,
»=0, we get )

' o lax =0 Yy lay=a
(Vi) G=a, b, @, 93, { ™ {3 2@
Now assume u?+»?=1 (mod p). In the type (V111) we try to find
a =a'ht s .
{ ¥ — with P—-=<k ; )EGL(2, p)

and hence G=<da’, &', &, y>, and hope .
o la'w =0’ Yy o'y =a'"b"
{ o p=a/ 1 ad { Yo'y =a’?b’",
By computation, the former is equivalent to I=s, 70+t =0(mod p), and the latter thus
implies _
{ (}w—l)sb——vtEO (modp) (rse)
vs+ (u+1) =0 ‘
p=1l —v |
v wpt+l
% (0, 0), i. . at loast one of s, t is not zero (mod. p). Moreover from (uw—1)%?=p%?2
vis?=(u+1)%? (mod p) we have (by adding them): '
| =D 75" = [+ (u+1)%# (mod g),
henoe simplifying it, we have
(A—w)s’= (L+pm) 8 (mod p)=>(s*~ ") =u(s"+¢*) (mod p),
Consequently S350 (mod. p)-for otherwise we would have s*=i? (mod p) and hence
s?=0 (mod p) by using of s?+1?=0 (mod p), thence s=0 and therefore ¢=0 (mod

Since

=p?—142=0 (mod P); hence (##+) has solutions (s, t)

. \ s ) s i '
p), contradiction with (s, ) # (0, 0). This says that P_=( b1 ) = < i s ) isof det P
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relativeiy prime to p, or P € GL(2, p). This says nothing other than that the group-
W

structure determined by A=(

) with u?4»?=1 (mod p) is unique, hence it
can be represented by (viii).

Therefore we obtain .

Lemma 6. If p is an odd prime+38, 7T, then the groups of order 2%p® when the
Sylow p-subgroups are elemeniary abelian and the Sylow 2-subgroups are dihedral have
8 types [(1)—(viii) of (2.5)].

Combining the Lemmas 1, 2, 8, 4, 5, 6 we have the following

Theorem. The groups of order 2°p* (p-odd prime+3, T) have:

(1) 60 types when p=1 (mod 8), S

(2) 52 types when p=5 (mod 8),

(8) 42 types when p=38 (mod 8),

(&) 42 types when p=T (mod 8),
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