# RATES OF A. S. CONVERGENCE OF THE ESTIMATION OF ERROR VARIANCE IN LINEAR MODELS

ZHAO LINCHENG (赵林城)

(The University of Science and Technology of China)

#### Abstract

Under appropriate conditions we obtain the best rates of a. s. convergence of estimates  $\hat{\sigma}_n^2$  of error variance  $\sigma^2$  and establish the law of iterated logarithm about  $\hat{\sigma}_n^2$ .

## § 1. Introduction and Main Results

Consider the usual linear model

$$y_i = x_i' \beta + e_i, \ i = 1, \dots, n, \dots, \tag{1}$$

where  $\{x_i\}$  is a known sequence of p-vectors,  $\beta$  is an unknown p-vector of regression coefficients,  $\{e_i\}$  is an independent random error sequence, satisfying the following conditions

$$\int_{0}^{\infty} x^{2\lambda-1} q(x) dx < \infty \text{ for some } \lambda > 0, \text{ where } q(x) = \sup_{i} P(|e_{i}| > x), \tag{2}$$

$$Ee_i = 0, i = 1, 2, \dots, \text{ when } \lambda > \frac{1}{2}.$$
 (3)

$$0 < Ee_i^2 = \sigma^2 < \infty$$
,  $i = 1, 2, \dots$ , when  $\lambda \ge 1$ . (4)

When  $\lambda \ge 1$ , on the bassis of the first *n* observations of sequence (1), one may calculate the estimate  $\hat{\sigma}_n^2$  of  $\sigma^2$ , based on the residual sum of squares, as follows

$$\hat{\sigma}_n^2 = \frac{1}{n - r_n} \left\{ \sum_{k=1}^n \theta_k^2 - \sum_{j=1}^{r_n} \left( \sum_{k=1}^n c_{njk} \theta_k \right)^2 \right\}, \tag{5}$$

where  $r_n = rk(x_1 | \cdots | x_n)$ ,  $\{c_{njk}, j=1, \cdots, r_n; k=1, \cdots, n\}$  is a group of real numbers determined by  $x_1, \cdots, x_n$ , satisfying

$$\sum_{k=1}^{n} c_{nik} c_{njk} = \delta_{ij}, \tag{6}$$

where  $\delta_{ij}$  is Kronecker sign. Even in case  $\lambda < 1$ , we may still define  $\hat{\sigma}_n^2$  by (5). For rates of convergence of  $\hat{\sigma}_n^2$ , we prove the following theorem:

Theorem 1. Suppose e1, e2, ... are mutually independently distributed, we have

(i) If (2) is satisfied with  $0<\lambda\leq\frac{1}{2}$ , or (2)—(3) are satisfied with  $\frac{1}{2}<\lambda<1$ , then

$$\frac{1}{n^{\frac{1}{\lambda}-1}} \hat{\sigma}_n^2 \xrightarrow{\text{a.s.}} 0 \quad \text{as } n \to \infty.$$
 (7)

(ii) If (2)—(4) are satisfied with  $1 \le \lambda < 2$ , then

$$n^{1-\frac{1}{\lambda}}(\hat{\sigma}_n^2 - \sigma^2) \xrightarrow{\text{a.s.}} 0 \quad \text{as } n \to \infty.$$
 (8)

when  $1 < \lambda < 2$ , this theorem gives the rates of convergence of  $\hat{\sigma}_n^2 \xrightarrow{\text{a.s.}} \sigma^2$ , that is

$$\hat{\sigma}_n^2 - \sigma^2 = o(n^{-(1-\frac{1}{\lambda})})$$
 a. s. (8')

When  $\lambda \ge 2$ , (8') is not true, in this case the rates of convergence are described by the following law of iterated logarithm. For  $\lambda = 2$ , we have

**Theorem 2.** Suppose  $e_1$ ,  $e_2$ ,  $\cdots$  are mutually independently distributed, and (2)—(4) are satisfied with  $\lambda=2$ , and

$$\liminf_{n\to\infty} B_n/n > 0,$$
(9)

where  $B_n = \sum_{k=1}^n \operatorname{Var}(e_k^2)$ , then

$$\lim_{n\to\infty} \sup \frac{n(\hat{\sigma}_n^2 - \sigma^2)}{\sqrt{2B_n \log \log B_n}} = 1 \text{ a. s.}$$

$$\lim_{n\to\infty} \inf \frac{n(\hat{\sigma}_n^2 - \sigma^2)}{\sqrt{2B_n \log \log B_n}} = -1 \text{ a. s.}$$
(10)

When (2) is not satisfied, we have

**Theorem 8.** Suppose  $e_1$ ,  $e_2$ ,  $\cdots$  are mutually independently distributed,  $Ee_i = 0$ ,  $Ee_i^2 = \sigma^2$  ( $i = 1, 2, \cdots$ ), write  $Z_i = |e_i^2 - \sigma^2|$ , then under the condition (9) and

$$\lim_{n\to\infty} \sup_{n\to\infty} \frac{1}{n} \sum_{k=1}^{n} E(Z_k^2 |\log Z_k|^{1+\delta}) < \infty \text{ for some } \delta > 0, \tag{11}$$

(10) holds true.

We remark that the condition (2) is equivalent to the following condition:

There exists a r. v.  $\tilde{\epsilon}$  such that,  $E|\tilde{\epsilon}|^{2\lambda} < \infty$  and  $P(|e_i| > x) \leq P(|\tilde{\epsilon}| > x)$  for any  $x \geq 0$  and any i. (2')

In this case we often say that  $|\tilde{\epsilon}|$  is stochastically large than  $|\tilde{\epsilon}|$  for all *i*. If  $\{e_i\}$  is an i.i.d. sequence, and  $E|e_1|^{2\lambda} < \infty$ , then (2) holds trivially.

It is well known that, if  $X_1$ ,  $X_2$ , ...i.i.d.,  $E|X_1|^{\lambda} < \infty$ ,  $\overline{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i$ , then the Marcinkiewicz strong law of large numbers is true, that is

$$\lim_{n\to\infty} \overline{X}_n/n^{\frac{1}{\lambda}-1} = 0 \text{ a. s., when } 0 < \lambda < 1, \tag{12}$$

$$\lim_{n\to\infty} n^{1-\frac{1}{\lambda}} (\overline{X}_n - EX_1) = 0 \text{ a. s., when } 1 \le \lambda < 2.$$
 (13)

Conversely, if

$$n^{1-\frac{1}{\lambda}}(\overline{X}_n - b_n) \xrightarrow{\text{a.s.}} 0 \quad \text{as } n \to \infty$$
 (14)

for some  $0<\lambda<2$  and centering constants  $\{b_n\}$ , then  $E|X_1|^{\lambda}<\infty$ . This shows that, under the conditions of Theorem 1, the orders given by (7) and (8) are the best possible.

(21)

### § 2. Some Lemmas

**Lemma 1.** Suppose  $y \le 1$ , then

$$e^{y} \le 1 + 2|y|^{2q}$$
, when  $0 < q \le \frac{1}{2}$ , (15)

$$e^{y} \le 1 + y + |y|^{2q}$$
, when  $\frac{1}{2} < q \le 1$ . (16)

The proof of the Lemma is easy. For example, when  $|y| \le 1$  and  $0 < q \le \frac{1}{2}$ , we have

$$e^{y} = 1 + y + \frac{y^{2}}{2!} + \frac{y^{3}}{3!} + \dots \le 1 + |y| \left( 1 + \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \dots \right) = 1 + 2|y| \le 1 + 2|y|^{2q}. \tag{17}$$

Other cases can be dealt with similarly.

**Lemma 2.** Suppose  $e_1$ ,  $e_2$ ,  $\cdots$  are mutually independently distributed,  $E |e_k|^{2q} \leq M$   $<\infty$   $(k=1, 2, \cdots)$  for some  $0 < q \leq 1$ , and  $Ee_k = 0$  for each k when  $q > \frac{1}{2}$ . Also, for some  $\beta > 0$ 

$$\sum_{k=1}^{\infty} P(|e_k| > k^{\beta} \varepsilon) < \infty \text{ for every } \varepsilon > 0.$$
 (18)

Let  $\{a_{nk}, k, n=1, 2, \cdots\}$  be a double sequence of real number, satisfying

$$|a_{nk}| \leq Dk^{-\beta} \text{ for all } k, n, \tag{19}$$

and for some  $\alpha > 0$ 

$$a_n \triangleq \sum_{k} |a_{nk}|^{2q} \leq Dn^{-\alpha} \text{ for all } n,$$
 (20)

where D>0 is a constant. Then  $T_n=\sum_{k=1}^{\infty}a_{nk}e_k$  are a. s. finite, and  $\lim T_n=0$  a. s.

$$P_{T00}f$$
 It is well known that, if  $X_1$ ,  $X_2$ ,  $\cdots$  are mutually independently distributed, and  $\sum_k E|X_k|^{\delta} < \infty$  for some  $0 < \delta \le 2$ , then  $\sum_{k=1}^{\infty} X_k$  or  $\sum_{k=1}^{\infty} (X_k - EX_k)$  converges a. s. according to  $0 < \delta \le 1$  or  $1 < \delta \le 2$  respectively. For any fixed  $n$ , under the

conditions of the Lemma,  $\sum_{k} |a_{nk}|^{2q} E |e_k|^{2q} < \infty$  with  $0 < 2q \le 2$ , and  $Ee_k = 0$  when  $1 < 2q \le 2$ , therefore  $T_n$  are all a. s. finite.

Without loss of generality, we assume that all  $a_{nk} \ge 0$ . Choose  $N = \left[\frac{2}{\alpha} + 1\right]$ , where [x] denotes the maximum integral number not exceeding x. By (18), there exists  $s_k \downarrow 0$  such that

$$\sum_{k=1}^{\infty} P\left( |s_k| > \frac{s_k}{ND} k^{\beta} \right) < \infty. \tag{22}$$

By Borel-Cantelli's lemma

$$P\left(\left|e_{k}\right| > \frac{\varepsilon_{k}}{ND}k^{\beta}, \text{ i. o.}\right) = 0, \tag{23}$$

therefore for any t>0

$$\sum_{k=1}^{\infty} |e_k|^t I\left(|e_k| > \frac{e_k}{ND} k^{\beta}\right) < \infty \quad \text{a. s.,}$$
 (24)

where I(A) denotes the indicator of the event A.

Let

$$e'_{k} = e_{k} I \left( e_{k} > \frac{e_{k}}{ND} k^{\beta} \right), \quad T'_{n} = \sum_{k} \alpha_{nk} e'_{k}, \\
 e''_{nk} = e_{k} I \left( a_{nk} e_{k} \leq n^{-\alpha/4q} \right), \quad T''_{n} = \sum_{k} \alpha_{nk} e''_{nk}, \\
 e'''_{nk} = e_{k} - e'_{k} - e''_{nk}, \quad T'''_{n} = \sum_{k} \alpha_{nk} e'''_{nk}.$$
(25)

For any fixed n, when  $T_n = \sum_k a_{nk} e_k$  is finite,  $e_k = e''_{nk}$  for k large enough, hence  $|T_n| < \infty$  a. s. implies  $|T''_n| < \infty$  a. s., and  $|T'_n| < \infty$  a. s. in view of the inequality (26) to be deduced in the following, we have  $|T'''_n| < \infty$  a. s. also.

When  $0 < q \le \frac{1}{2}$ , let q' = 2/3, otherwise let q' = q, then

$$a'_n \triangleq \sum_k |a_{nk}|^{2q'} \leqq D'n^{-\alpha} \text{ for all } n,$$

where D'>0 is a constant. By Hölder's inequality

$$|T'_n| \leq |a'_n|^{\frac{1}{2q'}} \left\{ \sum_k |e_k|^{\frac{2q'}{2q'-1}} I\left(|e_k| > \frac{\varepsilon_k}{ND} k^{\beta}\right) \right\}^{\frac{2q'-1}{2q'}} \to 0 \quad \text{a. s.}$$

$$\text{as } n \to \infty. \tag{26}$$

Let  $y_{nk} = n^{\frac{\alpha}{4q}} a_{nk} e''_{nk}$ , then  $y_{nk} \leq 1$ , and  $Ey_{nk} \leq 0$  when  $\frac{1}{2} < q \leq 1$ . By Lemma 1

$$\exp(y_{nk}) \leq \begin{cases} 1+2|y_{nk}|^{2q}, \text{ when } 0 < q \leq \frac{1}{2}, \\ 1+y_{nk}+|y_{nk}|^{2q}, \text{ when } \frac{1}{2} < q \leq 1. \end{cases}$$

Thus for  $0 < q \le 1$ 

$$E \exp(y_{nk}) \le 1 + 2E |y_{nk}|^{2q} \le \exp(2E |Y_{nk}|^{2q}). \tag{27}$$

Therefore by Fatou's lemma, noticing (20) and  $E|e_{nk}''|^{2q} \leq M$ , we have

$$E\left\{\exp\left(n^{\frac{\alpha}{4q}}T_{n}^{"}\right)\right\} = E\left\{\lim_{K\to\infty}\inf\exp\left(\sum_{k=1}^{K}y_{nk}\right)\right\}$$

$$\leq \lim_{K\to\infty}\inf E\left\{\exp\left(\sum_{k=1}^{K}y_{nk}\right)\right\} = \lim_{K\to\infty}\inf\prod_{k=1}^{K}E\left\{\exp\left(y_{nk}\right)\right\}$$

$$\leq \lim_{K\to\infty}\inf\prod_{k=1}^{K}\exp\left(2E\left|y_{nk}\right|^{2q}\right) \leq \lim_{K\to\infty}\inf\exp\left(2n^{\alpha/2}\sum_{k=1}^{K}\left|a_{nk}\right|^{2q}E\left|\theta_{nk}^{"}\right|^{2q}\right)$$

$$\leq \exp\left(2n^{\alpha/2} \cdot Dn^{-\alpha} \cdot M\right) \leq c, \tag{28}$$

where c>0 is a constant. For any  $\epsilon>0$ 

$$P(T_n'' \ge \varepsilon) \le \exp(-n^{\frac{\alpha}{4q}} \varepsilon) E\left\{ \exp(n^{\frac{\alpha}{4q}} T_n'') \right\} \le \exp(-n^{\frac{\alpha}{4q}} \varepsilon), \tag{29}$$

hence

$$\sum_{n=1}^{\infty} P(T_n'' \ge \varepsilon) < \infty, \tag{30}$$

by Borel-Cantelli's lemma

$$P(\limsup_{n\to\infty} T_n'' > \varepsilon) \le P(T_n'' \ge \varepsilon, \text{ i. o.}) = 0, \tag{31}$$

since s is arbitrary, we have

$$P(\limsup_{n\to\infty}T_n''>0)=0,$$

i. e.

$$\limsup_{n \to \infty} T_n'' \leq 0 \text{ a. s.} \tag{32}$$

For any given  $\varepsilon > 0$ , choose a fixed integral number K such that  $\varepsilon_k < \varepsilon/2$  for all k > K. By (20), there exists  $n_0$  such that, when  $n \ge n_0$ 

$$\sum_{k=1}^{K} a_{nk} e_{nk}^{"} \leq (Dn^{-\alpha})^{\frac{1}{2q}} \sum_{k=1}^{K} \frac{\varepsilon_k}{ND} k^{\beta} < \frac{\varepsilon}{2}.$$
 (33)

For  $n \ge n_0$ , let

$$D_n = \{k \mid k > K, \ a_{nk} \theta_k \ge n^{-\frac{\alpha}{4q}}\}, \tag{34}$$

then  $D_n$  is a finite set with probability one since  $|T_n| < \infty$  a. s., denoting  $d_n$  the number of elements in  $D_n$ , we have

$$\sum_{k>K} a_{nk} e_{nk}^{"} \leq \sum_{k \in D_n} Dk^{-\beta} \cdot \frac{\varepsilon_k}{ND} k^{\beta} \leq d_n \frac{\varepsilon}{2N}, \tag{35}$$

thus  $\sum_{k < K} a_{nk} e_{nk}^{"} \ge \varepsilon/2$  implies  $d_n \ge N$ . So we have

$$P(T_n''' \ge \varepsilon) \le P\{\sum_{k < K} a_{nk} e_{nk}''' \ge \frac{\varepsilon}{2}\}$$

 $\leq P$  {There exist at least N of subscripts k > K

such that 
$$|e_k| \ge (a_{nk}n^{\frac{\alpha}{4q}})^{-1}$$

$$\leq \{\sum_{k} P \left[ |e_{k}| \geq (a_{nk} n^{\frac{\alpha}{4q}})^{-1} \right] \}^{N} \leq (\sum_{k} |a_{nk}|^{2q} n^{\alpha/2} E |e_{k}|^{2q})^{N}$$

$$\leq (DMn^{-\alpha + \frac{\alpha}{2}})^N = (DM)^N n^{-\frac{\alpha}{2}N},\tag{36}$$

by the choice of N,  $\frac{\alpha}{2}N>1$ , therefore

$$\sum_{n=1}^{\infty} P(T_n''' \ge \varepsilon) < \infty \text{ for any given } \varepsilon > 0.$$
 (37)

The same reasoning as before gives

$$\limsup_{n\to\infty} T_n''' \le 0 \quad \text{a. s.} \tag{38}$$

From (26), (32) and (38), it follows that

$$\limsup_{n\to\infty} T_n \leq 0 \quad \text{a. s.} \tag{39}$$

From (39), replacing  $e_k$  by  $-e_k$ , one gets

$$\liminf_{n\to\infty} T_n \ge 0 \quad \text{a. s.}$$

Now (21) follows from (39) and (40). The Lemma is proved.

**Lemma 3.** Suppose  $e_1$ ,  $e_2$ ,  $\cdots$  are mutually independently distributed  $E|e_k|^{2\lambda} \leq M$   $<\infty$  for some  $0<\lambda\leq 1$ ,  $Ee_k=0$  when  $\frac{1}{2}<\lambda\leq 1$   $(k=1,\ 2,\ \cdots)$ , and

$$\sum_{k=1}^{\infty} P(|e_k| < k^{\frac{1}{2\lambda}} \varepsilon) < \infty \text{ for every } \varepsilon > 0.$$
(41)

Then we have

$$T_n \triangleq n^{-\frac{1}{2\lambda}} \sum_{k=1}^n c_{nk} e_k \xrightarrow{\text{a.s.}} 0 \text{ as } n \to \infty,$$
 (42)

where  $\{c_{nk}, k=1, \dots, n; n=1, 2, \dots\}$  is any triangle sequence of real numbers, satisfying the condition

$$\sum_{k=1}^{n} c_{nk}^2 \le 1. \tag{43}$$

Proof Let

$$a_{nk} = \begin{cases} n^{-\frac{1}{2\lambda}} c_{nk}, & \text{when } k \leq n, \\ 0, & \text{when } k > n, \end{cases}$$

then

$$|a_{nk}| \leq n^{-\frac{1}{2\lambda}} \leq k^{-\frac{1}{2\lambda}}, \text{ when } k \leq n,$$

$$a_n \leq \sum_{k} |a_{nk}|^{2\lambda} = \sum_{k=1}^n |c_{nk}^2|^{\lambda} / n \leq \left(\frac{1}{n} \sum_{k=1}^n |c_{nk}^2|^{\lambda} \leq n^{-\lambda} \text{ for all } n,\right)$$

$$(44)$$

so that, by Lemma 2 with  $q = \lambda$ ,  $\beta = \frac{1}{2\lambda}$  and  $\alpha = \lambda$ , (42) holds.

Similarly, we have

**Lemma 4.** Suppose  $e_1$ ,  $e_2$ ,  $\cdots$  are mutually independently distributed,  $Ee_k=0$ ,  $Ee_k^2 \leq M < \infty$   $(k=1, 2, \cdots)$ , and (41) holds with  $\lambda \geq 1$ , then (43) implies (42).

## § 3. Proof of the Theorems

Proof of Theorem 1. First of all, we prove that the condition (2) is equivalent to (2'). To do this, write  $\tilde{q}(x) = P(|\tilde{\epsilon}| > x)$ ,  $q_i(x) = P(|e_i| > x)$ ,  $\tilde{F}(x) = 1 - \tilde{q}(x)$ ,  $F_i(x) = 1 - q_i(x)$ . Assume that (2') holds, then for  $\forall A > 0$ ,  $\lambda > 0$ 

$$\int_{0}^{A} x^{2\lambda} d\widetilde{F}(x) = -\int_{0}^{A} x^{2\lambda} d\widetilde{q}(x) = -A^{2\lambda} \widetilde{q}(A) + 2\lambda \int_{0}^{A} x^{2\lambda - 1} \widetilde{q}(x) dx, \tag{45}$$

$$A^{2\lambda}\widetilde{q}(A) \leq \int_{x>A} x^{2\lambda} d\widetilde{F}(x) \to 0 \text{ as } A \to \infty,$$
 (46)

therefore

$$E\left|\tilde{\epsilon}\right|^{2\lambda} = \int_{0}^{\infty} x^{2\lambda} d\widetilde{F}(x) = 2\lambda \int_{0}^{\infty} x^{2\lambda - 1} \widetilde{q}(x) dx. \tag{47}$$

By  $q(x) = \sup_{x} q_i(x) \leq \widetilde{q}(x)$ , we have

$$\int_{0}^{\infty} x^{2\lambda - 1} q(x) dx \leq \int_{0}^{\infty} x^{2\lambda - 1} \widetilde{q}(x) dx < \infty, \tag{48}$$

i. e., condition (2) is satisfied. Conversely, suppose that (2) holds, then q(x) is a decreasing function with  $q(0_{-})=1$  and  $q(\infty)=0$ . In fact, if  $q(\infty)=c>0$ , then

$$\int_0^\infty x^{2\lambda-1}q(x)\,dx \ge c \int_0^\infty x^{2\lambda-1}\,dx = \infty \text{ for } \lambda > 0,$$
(49)

this contradicts (2). Choose any  $x_n \downarrow x$ , then  $q(x_n) \leq q(x)$ ; on the other hand, for  $\forall s > 0$ , there exists  $i_0$  such that  $q_{i_0}(x) \geq q(x) - s/2$ , and  $q_{i_0}(x_n) \geq q_{i_0}(x) - s/2$  for all sufficiently large n by the right continuity of  $q_{i_0}(x)$ , thus  $q(x_n) \geq q_{i_0}(x) \geq q_{i_0}(x) - s/2$   $\geq q(x) - s$  for sufficiently large n, from this, right continuity of q(x) is obtained. Therefore, F(x) = 1 - q(x) furnishes the distribution function of some random variable  $\epsilon$ , and by (45)

$$\int_{0}^{\infty} x^{2\lambda} dF(x) \leq 2\lambda \int_{0}^{\infty} x^{2\lambda - 1} q(x) dx < \infty, \tag{50}$$

i. e.,  $Ee^{3\lambda} < \infty$ , thus the condition (2') is satisfied.

It is well known that, if  $\{X_n\}$  is a sequence of independent r.v.'s, and there exists a r. v. X such that  $E|X|^p < \infty$   $(0 , and <math>P(|X_n| > x) \leq P(|X| > x)$  for  $\forall x \geq 0$  and  $\forall n$ , then

$$\lim_{n\to\infty} n^{-\frac{1}{p}} \sum_{k=1}^{n} (X_k - a_k) = 0 \quad \text{a. s.},$$

where  $a_k = 0$  or  $EX_k$ , according to  $0 or <math>1 \le p < 2$  respectively (see [1], p. 242). Therefore

$$\lim_{n \to \infty} n^{-\frac{1}{\lambda}} \sum_{k=1}^{n} (e_k^2 - a) = 0 \quad \text{a. s.,}$$
 (51)

where a=0 or  $\sigma^2$ , according to  $0<\lambda<1$  or  $1\leq\lambda<2$  respectively.

By (45) and (47), noticing  $q_k(x) \leq \widetilde{q}(x)$ , we have

$$\int_{\mathbf{0}}^{\mathbf{A}} x^{2\lambda} dF_k(x) \leq 2\lambda \int_{\mathbf{0}}^{\infty} x^{2\lambda-1} q_k(x) \, dx \leq 2\lambda \int_{\mathbf{0}}^{\infty} x^{2\lambda-1} \widetilde{q}(x) \, dx = E \left| \widetilde{\epsilon} \right|^{2\lambda},$$

i. e.

$$E|_{\theta_k}|^{2\lambda} \leq E|_{\tilde{\epsilon}}|^{2\lambda} \leq M < \infty \text{ for all } k.$$
 (52)

On the other hand, for any  $\varepsilon > 0$ ,

$$\sum_{k=1}^{\infty} P(|e_{k}| > k^{\frac{1}{2\lambda}} \varepsilon) \leqslant \sum_{k=1}^{\infty} P(|\tilde{\epsilon}| > k^{\frac{1}{2\lambda}} \varepsilon) = \sum_{k=1}^{\infty} P(|\tilde{\epsilon}|^{2\lambda} > k \varepsilon^{2\lambda})$$

$$= \sum_{k=1}^{\infty} \sum_{j=k}^{\infty} P(j \varepsilon^{2\lambda} < |\tilde{\epsilon}|^{2\lambda} \le (j+1) \varepsilon^{2\lambda})$$

$$= \sum_{k=1}^{\infty} j P(j \varepsilon^{2\lambda} < |\tilde{\epsilon}|^{2\lambda} \le (j+1) \varepsilon^{2\lambda}) \le \frac{1}{\varepsilon^{2\lambda}} E|\tilde{\epsilon}|^{2\lambda} < \infty.$$
(53)

Applying Lemma 3 (when  $0 < \lambda \le 1$ ) or Lemma 4 (when  $1 < \lambda < \infty$ ), noticing  $r_n \le p$ , we have

$$n^{-\frac{1}{\lambda}} \sum_{j=1}^{r_n} \left( \sum_{k=1}^n c_{njk} e_k \right)^2 \xrightarrow{\text{a.s.}} 0 \quad \text{as } n \to \infty.$$
 (54)

By (5), (51) and (54), Theorem 1 is proved.

Proof of Theorem 2. To begin with, we quote a result in [2] (refer to [3], p. 317): Let  $\{X_n\}$  be a sequence of independent r.v.'s with  $EX_n=0$ , there exists a r.v. X such that  $EX^2 < \infty$  and

$$\frac{1}{n} \sum_{k=1}^{n} P(|X_k| > x) \le P(|X| > x) \text{ for all sufficiently large } x \text{ and } n, \tag{55}$$

write  $B_n = \sum_{k=1}^n V_{ar}(X_k)$ , then when

$$\liminf_{n\to\infty} B_n/n > 0,$$
(56)

we have

$$\limsup_{n\to\infty} \frac{\sum_{k=1}^{n} X_k}{\sqrt{2B_n \log \log B_n}} = 1 \quad \text{a. s.}$$
 (57)

Suppose that the conditions of Theorem 2 are satisfied, then for  $x>\sigma^2$  and all k

$$P(|\theta_k^2 - \sigma^2| > x) = P(\theta_k^2 > \sigma^2 + x) \le P(\tilde{\epsilon}^2 > \sigma^2 + x) \le P(|\tilde{\epsilon}^2 - \sigma^2| > x). \tag{58}$$

Thus  $\{e_k^2 - \sigma^3\}$  and  $\tilde{\epsilon}^3 - \sigma^2$  can serve as  $\{X_k\}$  and X respectively in (55). Writing  $h_n = \sqrt{2B_n \log \log B_n}$ , we have

$$\limsup_{n \to \infty} \frac{1}{h_n} \sum_{k=1}^{n} (e_k^2 - \sigma^2) = 1 \quad \text{a. s.}$$

$$\liminf_{n \to \infty} \frac{1}{h_n} \sum_{k=1}^{n} (e_k^2 - \sigma^2) = -1 \quad \text{a. s.}$$
(59)

By (9), there exists a constant A>0 such that

$$\frac{B_n}{n} > \frac{1}{2A^2}$$
 for all sufficiently large  $n$ , (60)

so that, by (54) with  $\lambda = 2$ 

$$\lim_{n\to\infty} \frac{1}{h_n} \sum_{j=1}^{r_n} \left( \sum_{k=1}^n c_{njk} e_k \right)^2 \le \lim_{n\to\infty} A n^{-\frac{1}{2}} \sum_{j=1}^{r_n} \left( \sum_{k=1}^n c_{njk} e_k \right)^2 = 0 \quad \text{a. s.}$$
 (61)

On the other hand, we have

$$\frac{n(\hat{\sigma}_{n}^{2} - \sigma^{2})}{\sqrt{2B_{n} \log \log B_{n}}} = \frac{n}{(n - r_{n})h_{n}} \sum_{k=1}^{n} (\theta_{k}^{2} - \sigma^{2}) + \frac{nr_{n}\sigma^{2}}{(n - r_{n})h_{n}} + \frac{n}{(n - r_{n})h_{n}} \sum_{k=1}^{r_{n}} \left(\sum_{k=1}^{n} c_{njk}\theta_{k}\right)^{2},$$
(62)

and

$$\lim_{n\to\infty} \frac{nr_n\sigma^2}{(n-r_n)h_n} \leq \lim_{n\to\infty} An^{-\frac{1}{2}}p\sigma^2 = 0, \tag{63}$$

therefore (10) holds, and Theorem 2 is proved.

Proof of Theorem 3. Without loss of generality, assume that  $\sigma^2 = 1$ . By a well known theorem (see [3], p. 306), under conditions (9) and (11) we have

$$\limsup_{n \to \infty} \frac{1}{h_n} \sum_{k=1}^{n} (e_k^2 - 1) = 1 \quad \text{a. s.}$$

$$\liminf_{n \to \infty} \frac{1}{h_n} \sum_{k=1}^{n} (e_k^2 - 1) = -1 \quad \text{a. s.}$$
(64)

To simplify the writing, let  $s_n = \sum_{k=1}^n E(Z_k^2 |\log Z_k|^{1+\delta})$ , and use c to denote a positive constant which may take diffrent value in each appearance. By (11), we have

$$s_n \leq cn, \tag{65}$$

so that, when n>16 we have

$$\sum_{k=16}^{n} P(|\theta_{k}| > k^{\frac{1}{4}}) \leq \sum_{k=16}^{n} \frac{E(Z_{k}^{2} | \log Z_{k}|^{1+\delta})}{(\sqrt{k} - 1)^{2} [\log(\sqrt{k} - 1)]^{1+\delta}} \leq c \sum_{k=16}^{n} \frac{s_{k} - s_{k-1}}{k (\log k)^{1+\delta}} \\
\leq c \left\{ \sum_{k=16}^{n} s_{k} \left[ \frac{1}{k (\log k)^{1+\delta}} - \frac{1}{(k+1) (\log(k+1))^{1+\delta}} \right] + \frac{s_{n}}{(n+1) (\log(n+1)^{1+\delta}} \right\} \\
\leq c \left\{ \sum_{k=16}^{n} k \left[ \frac{1}{k (\log k)^{1+\delta}} - \frac{1}{(k+1) (\log(k+1))^{1+\delta}} \right] + \frac{n}{(n+1) (\log(n+1)^{1+\delta}} \right\} \\
\leq c \sum_{k=16}^{\infty} \frac{1}{k (\log k)^{1+\delta}} < \infty, \tag{66}$$

hence

$$\sum_{k=1}^{\infty} P(|s_k| > k^{\frac{1}{4}}) < \infty, \tag{67}$$

argueing in the same way, for any  $\varepsilon > 0$ , we have

$$\sum_{k=1}^{\infty} P(|e_k| > k^{\frac{1}{4}}\varepsilon) < \infty. \tag{68}$$

Therefore, By Lemma 4, (61) holds, and (10) is proved.

Acknowledgement

The author would like to express his thanks to Professor Chen Xiru, under whose guidance this paper is completed.

#### References

- [1] Loève, M., Probability Theory, Van Norstrand, 1960.
- [2] Egorov, V. A., Obobščenie teoremy Hartmana-Vintnera o zakone povtornogo logarifma, Vestnik Leningrad Univ., 7(1971), 22—28.
- [3] Petrov, V., Sums of Independent Random Variables, Springer-Verlag, 1975.