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Abstract

Under appropriate conditions we obtain the best rates of a. s. convergence of estimates
62 of error variance o? and establish the law of iterated logarithm about 2.

§ 1. Introduction and Main Results

Consider the usual linear model
=a;B+e, =1, n, o, 1)
where{z;}is a known sequence of p-vectors, B is an unknown p—vector of regression
coefficients, {e;} is an mdependent random error sequenee satlsfymg the followmw

conditions
I:w””"iq (#)da< oo for some A>0, where ¢(«) =sup P(|e&|>a), (2)
]
- He,=0, ¢=1,2, «--, 'when ?\,>—:2[-, . 3)
0<Fe}=0?<oo, i=1, 2, +--, when A=1, ' 4)

When A=1, on the bassis of the first » observations of sequence (1), one may
caleulate the estimate 62 of o2, based on the residual sum of squares, as follows
A2 S '

st 4B (F ewn) ) ®

where rp=1k(@1| -+ |@n), {Cam, j=1, *=+, Ty k=1, ==+, n}is a group of real numbtrs

determined by @y, «-+, @,, satisfying -
kZl CnixOnile = Ot ' (6)

where 8; is Kronecker sign. Even in case A<1, we may still define &7 by (5). For
rates of convergence of 62, we prove the following theorem:
Theorem 1. Suppose e, s, +- are mutually independently distributed, we hcwa

1

5 OF (2)—(8) are satisfied with —1—<7n<1

(1) If (2) is satisfied with 0<A= 5

then
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1

14
A

42 2P0 as n-—> oo, )
n .

| (11) If (2) (4) are swtzsﬁed with 1<A<2, then
(a —o*“‘)——-)O as n-> oo, : (8)
awhen 1<\<2, this theorem gives the rates of convergence of 42 25 o?, that is
11 :
| si—a=o(n "Dy a5, ®)
When A=2, (8') is not tfrue im this case the rates of comergence are descmbed by the
Sollowing law of iterated logarithm. For A=2, we have

Theorem 2. Supposs 61, éa, -+ are mutually independently distributed, and (2)—
(4) are satisfied with A=2, and. '

lim inf B,,/n>0 | 9
where B,— élVar (e3), then .
o=
lim su n(6i—a?) =1la.s
Y 2B, log log B, (10)
— 2
lim inf —=i0i20) 4, 6 ‘

noe N 2B,loglog B,
When (2) is not satlsﬁed we have
Theorem 8. Suppose 61, 63, *** are mutually mdepend@ntly distributed, Fe,=0, He}
=02 (=1, 2, ++), write Z;= |62 —a?|, then under the condition (9) and

Jim sup % 21 B(Z2|10g Z| M%) < oo for some 30, (11)
fi~>co k=

(10) holds trus. .

We remark that the condition (2) is equivalent to the following condltlon

There exists a r. v. € such that, F|e|*<oo and P(|e|>2) <P(|¢ |>w) for any
=0 and any 4. (2) '

In this case we often say that || is stochastically large than |e| for all 4. If{e;}ls _
an i.i.d. sequence, and H|e;|%*< oo, then (2) holds trivially.

Tt is well known that, if X3, Xa, -i.i.d, E[X1|”<oo bd =%—$X¢, then the

Marcinkiewicz strong law of large numbers is true, that is

lim Xn/n?- ' =0 a. 5., when O<A<l, (12)
T v
lim n' "% (X,~ EXy) =0 a. 5., when 1=<A<2, | (1)
Conversely, if . _ | | '
o n 3 (X by) —>0 asn—>o0 (14)

- for some 0<A<2 and centering constants {b,}, then E|Xi|*<oco. This shows that,
under the conditions of Theorem 1, the orders given by (7) and (8) are the best possible.
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§ 2. Some Lemmas

Lemma 1. Supposs y=1, then

=14+2|y|%, when 0<Qé‘—%—-, | ‘ | | (15)

<1y |y|®, whon T <g=1. (16)

The proof of the Lemma, is eé,sy.- ‘For example, when |y|=1 and O<q§% , Wo

have

3y=1+y+_£+_y_a.+-n$1+ ly| (1+—4:!'-—+——:L-—+"'>=1+2ly| =1+2[y[™
- 21 ' 3! = 1x2  2%x3 o )
‘ ()

Other cases can be dealt with sumllarly ,
Lemma 2. Supposs e, 6a, - are mutually. mdependently dfbstmbuteol Ele s =M

<o (h=1, 2, ++) for some 0<¢=l, and Eek=_0 for each k when q>—1—. Also, for

2
some 3>0 . _ v
ilPﬂekl >kPe) < oo for every >0, (18)
k= ’ ' ’
* Let{am, b, n=1, 2, -} be a double sequence of real number, satisfying
B |G| S DK for all &, n, (19)
and for some a>0 o : _ » ‘
an 2D | @ | M= D0 for all.m, (20)
% ‘ : :

where D>0 is & constant. T hen T,,'= ,ﬁ"{“""e" are a. $. finite, and
limTy=0 a.s. | ' (21)
Proof Itis well known that, if X4, X, -+ are mutually independently distri-
buted, and ; E|X;|°< oo for some 0<0=2, then g Xy or Ig (X,— EX,) converges

a. s. according to 0<d=1 or 1<d=2 respéctively For any fixed n, under the
conditions of the Lemma, 2 | oz | 22 | 6] 2 < 00 Wlth 0<2q$2 and FHe,~0 When

1<2¢ =2, therefore T, are all a..s. ﬁmte
Without loss of generahty, we assume that all ¢,;,=0. Choose N = [12——!-1], where

[] denotes‘i;he maximum integral number not exceeding . By (18), there exists
&x | 0 such that

gP( |6k|>l\;;) ]gﬂ) oo.- ‘ | | (22)
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By Borel-Cantelli’s lemma

P (la|> g, 3.0.)=0, 23)
therefore for any ¢>0 _
2 ]ek|’1<|ek|> 70”><oo a. 8., (24)
where 1 (4) denotes the indieator of the event A.
Let
6, =e,l (ek> ¥ k"), T, = 2 @B,
6no =61l (Ampp=n"%0), T'= 2 Aniure, (25)
611 = 05— 6nk: T = E“nkezlk. |
k&

For any fized n, when T,.=§ amo, is finite, e,=e);, for § large enough, hence

|Th| <oo a. 8. implies |T}|<ooa.s., and |T,|<oo a. s. in view of the inequality
(26) to be deduced in the following, we have |7 | <co a. 8. also.

‘When 0<g¢g== 1 let ¢'=2/8, otherwise let ¢’ =g, then

2 2
), 2 |ty | 2 = D'n* for all n,
[

where D’'>>0 is a constant. By Hoélder’s inequality

2q’-1

17015161 T {1l F 1 (Jol > 8)) T >0 as.

as n—> oo, (26)
&% - .
Lot ¢u=1% a6y, then y,;,=1, and Fy,;<0 when —%<q§1. By Lemma 1

1

1+2|9u|%, when 0<g=—= 5

oxXP (Yur) = 1
14yt | Yaz| 2%, when 5 <¢=1,

Thus for 0<g¢=1 :
E oxp (W) S1+2F |4 | ¥<exp (2E |V x| %). @0
Therefore by Fatou’s lemma, noticing (20) and B | e | 1= M, we have

E {exp(ni i T} =E {llm inf exp ( D Y )}
. K00 k=1

K R K
<lim inf B .{exp (fg Ynk >}=}gﬂ§ inf kI=Il E {exp (yu)}

K~oo

i , K
__S_}{im inf H; oxp (2 |y |20 éllzim inf exp (2n“/ 23 || 2B | &l | 2q)
-r00 k= -r00 k=1

=exp(2n®?.Dn~% M) Ze, (28)

where ¢>>0 is a constant. For any >0
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P(T'=s) Soxp(—ni s) E {exp(nic Tz>}<cexp< nits), (29)
hence
» P(Tl=g)<o0, (30)
n=1

by Borel-Cantelli’s lemma
P(limsupTi>e)=PTr=e, 1. 0.) =0, 31)

since e is arbitrary, we have
P(limsupT7>0) =0,

n—00

limsup77,=0 a. s. (32)

For any given ¢>>0, choose a fixed integral number K such that &<<e/2 for all
k>K. By (20), there exists no such that, when n=no

11t — - & &y 18 - &
Ea,ﬂ,e = (Dn~%)2 kgl D k <—§. (33)
For n=n,, let
' ={k|k>K, Ufp=n M}, (84)

then D, is a finite set with probability one since |T,| <o a. s., denoting dy the

~ number of elements in D,, we have
S anens 3 Db -4, 1;33 W =d,
thus 2 A= /2 implies d,=N. So we have
P(TVz&) P{ 3 ameli=5}
k<K 2
=P {There exist at least N of subscripts F>K

= (35)

such that |e,]| = (a,.kn%) -1}
< (DP Lol 2 (@n®0) ™11 5 (Tlawl "0 B la|*)"
< (DMn~ ") = (DM)"n ", | (36)

by the choice of IV, 7 N>1, therefore

2 P(T"=¢g) <oo for any given &>0, ’ 37
n=1
The same reasoning as before gives ‘
limsupZy =0 a.s. | (88)

700

From (26), (82) and (88), it follows that
limsup7,=<0 a.s. (39)

From (89), replacing é; by 6y, One gots
liminf7,=0 a.s. . : (40)

7300
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Now (21) follows from (89) and (40). The Lomma is proved. -
Lemma 8. Supposs ey, eq, «+ are mutually independently disiributed H|e,|*<M

<o for some 0<A=1, Foy=0 whon 2<ASL (b=1, 2, ), and

oo . 1
_ kZlP(le,;]<lo2Ts)<oo for every >0, - - - - (41)
Then we have ‘1 ’ o -
Twln TZ‘, ,.ke,oﬁ)Oasn-»oo - , (42)
. k=1 '
where {ew, k=1, - n; n= 1 2, -} is any triangle sequence of real mebers satisfying
the condition :
n 4
| Ecﬁkél, (48)
Proof Let . o :
. _|n ey, when k<n,
Q=
0, when &>n,
then

R -1
| awe| =n "% <k"% , when k=n,

" (44)
wné%}!awlm = 7021 leZ|*/n< ( 2 c,,k> Sn"' for all n, _

so that, by Lemma 2 with g=A, 8= -2—17\1- and a=3, (42) holds.

- Similarly, we have
Lemma 4. Suppose 61, 6q, *** are mutually independentlly distributed, He,=0, He}
SEM<oo (k=1, 2, «), and (41) holds with A=1, then (43) impliss (42),

§ 3. Proof of the Theorems

Proof of Theorem 1. First of all, we prove thé,t the condition (2) is equivalent
to (2). To do this, write g (&) =P(|¢|>a), g¢i(o)= P(le|>2), F(o)=1—q(a),
Fy(#) =1—q;(#) . Assume that (2') holds, then for VA>0, A>0

j::;”dﬁ (@) = -—J:ﬁﬂg (@) = — 474 (4) +27\,ﬁw2’“‘1§ (o) dw, (45)
| A%q (4) éj L, 2™dF ()—>0 as A—> oo, (46)

therefore ' - | |
o J 2% G F () = 2xf ' (@)do, (4

By 9(03) =supg,(z) =q (v), we have

Jo 2“1q(w)dmsj M1y (a;)olw<oo | | (48)

i, e., condition (2) is satisfied. Conversely, suppose that (2) holds, then g(@) is a
decreasing funotion with ¢(0-) =1 and g(o0) =0. In fact, if g(c0) =6>0, then
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J ) o*1q (o) do= OJ @1 ds = oo for A>0, (49)

-~ this contradicts (2). Choose any a, | @, then ¢ (w,) =q(x); on the other hand, for Ve
>0, there exists 4o such .that g¢,(#)=q¢(®)—e/2, and ¢.(2s) =¢.(®) —g/2 for all
sufficiently large n by the right continuity of ¢, (@), thus ¢(@s) =¢:(@s) =4 (@) —e/2
=q(z) — s for sufficiently large n, from this, right continuity of g(#) is obtained.
Therefore, F(w)=1—¢(#) furnishes the distribution function of some random
variable ¢, and by (45) '
j: o*dF () __<__27LLT g (o) olzvv< o, (50)
i, o., He®< oo, thus the condition (2') is satisfied.
Tt is well known that, if {X,} is a sequence of independent r.v.’s, and there

exists a r. v. X such that B| X |?<oo (0<p<2), and P(|X,|>w) <P(|X|>w) for
~ V #=0and V n, then

llmn”E(Xk wk) 0 a.s.

. oo

where a; =0 or EX}y, according to 0<p<1 or 1<p<2 respectwely (see[1], p 242),

Therefore
) _;l_ n ‘ .
limn * 21 (2—a)=0 a.s., : (51)
; Ao Fo==
where ¢=0 or ¢, according to 0<A<1 or 1=A<2 respeotively.
By (45) and (47), noticing g, (¢) =g (), we have

L a4y (o) é%,[o o gy, (w) dwé%jo o lq (w) da=E|e|™,

Bley|»=<E|¢|* & M<oo for all b, , (52)
- On the other hand, for any >0,

| 2’__°_:P<|eki>zo%s> 31 P(E|>F%e) = 3 P(IE|»>ke)

igP<’jem<|ew.s<j+1>em>

&

= 5P (e < [¢] 2 (+1) %) S I <oo. C)
Applying Lemma 8 (when 0<A=1) or Lemma 4 (when 1<A<<o0), noticing r.=p,
‘we have '

1 7 n )
n 7’?(20,%6;0) 250 asn—>oo, (54)
By'(5), (1) and (54), Theorem 1 is proved. .
Proof of Theorem 2. To begin with, we quote a result in[2] (refer t0[8], p. 317):
Let {X,} be a sequence of 1ndependent r.v. s with BX,=0, there exists a r.v. X
such that BX?<oo and '
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.}b_ 1 P(|X|>a) SP(| X |>0) for all sufficiently laxge o and n, (55)
write B, = Igl Vi (Xy), then when
tim _inf By/n>0, | (56)
we have
lim sup =1 a.s. 1))

e A/ ZB 1og log B,
Suppose tha,t the conditions of Theorem 2 are satisfied, then for #>0? and all &
P(lei—0?| >2) =P (6> 0"+3) <P (>0 +a) =P (|6 —0?| >0)., (58)
Thus{e} — ¢} and ?—o? can serve as {X,} and X respectively in (55). Writing A,
=~/2B, log log B, , we have

lim sup -;LL— él (6i—0) =1 a.s.
n k=

n—oo

(59)
lim mf——— 2 (i—0=—1 a.s.
By (9), there exists a constant 4>0 such that -
Bn Ba o 21'12 for all sufficiently large n, N ‘(60)

g0 that, by (54) with A=2

lim 1 2 (2 o,.;kek) Sllm An . rE" <§ c,,jkek> =0 a.s. (615

fl~ro0 h” J=1 §=1

On the other hand, we have

n(62—o?) _ n Ly s2 3 nrao?
~2B,loglogB, (n—17n)hy kgl (e=0®) + (n—17s) ha
n 7 ‘ 2 ] _
m ;; ( 2 0mk"k> ’ (62)
and ,
lim 9 <lim An ¥pe?=0, (63)

fi—00 (n T, ")h R0
therefore (10) holds, and Theorem 2 is proved.
Proof of Theorem 8. Without loss of generality, assume that ¢?=1. By a well
-known theorem (gee[8], p. 806), under conditions (9) and (11) we have
lim sup -%——é (6i—1) =1 a.s.

,, (64)
liminf 43} (@2—1) = -1 a.s.
f~>co hn k=1

To simplify the writing, let s,= élE (Z%|10gZ,|1*%), and use ¢ to denote a positive
k=

constant which may take diffrent value in each appearence. By (11), we have
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Sp=cn, (65)
so that, when n>>16 we have

4 . NNe < E(Z%|1og Z;| 1% By S Syt
4) < - k Tt A < ok SOk—1
k=216P<lekl>'k )_k=16 (v —1)2 [log («/ k& —1)]*+ —Gk=216 k(log k)1+®

& 1 1 Sn
éc{k§6 S [ k(ogh)*® (k+1) (log(F+1))~+ ] + (n+1) (log (n+1)*+2 }

2z 1 1 n }
< : -
"0{12136 k[ kQogk)**®  (h+1) (log(k+1))** ] + (n+1) (Jog (n-+-1)*+°
S 1
= ——e
_ck=216 k(log k)1+® <0 (66)
hence _
o 1
2_,11’([3,,[>k4) <00, 67)
argueing in the same way, for any ¢>>0, we have ,
_ M s
k}_]lP(lekI>lo48)<oo, (68)
Therefore, By Lemma 4, (61) holds, and (10) is proved.
Acknowledgement

The author would like to express his thanks to Professor Chen Xiru, under whose
guidance this paper is completed.

References

[1] Loéve, M., Probability Theory, Van Norstrand, 1960.

[2] Bgorov, V. A., Obobilenie feoremy Hartmana-Vintnera o zakome poviornogo logarifma, Vestnik
Leningrad Univ., 7(1971), 22—28.

[8] Petrov, V., Sums of Independent Random Variables, Springer-Verlag, 1975.




