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Abstract

8. Smale posed the following problem as one of “Problems of Present Day Mathematlcs

Is havmg an attracting periodic orbit (i.e. havmg a periodic sink or source) a generm
property for diffeomorphisms of the 2—sphere S _ B

In this paper, we will proye that having a per10d1c sink or source isa generle property
for f ¢ Diff! (8%, and therefore glve an aﬁﬁrmatrve answer to the a,bove Smale’s problem

Let Diff" (M) ‘be the set of all 0'—d1f‘eomorph1sm from a O’ mamfold M to 1tself
endowed with the Whitney 0f~topology Diff* (M) becomes then a Baire space (seo [1]
chap. 0, [2] chap. II). A property (of f€ Diffr (M)) P(f) is said tobe O" generic,
if the set {f € Diff" M) IP( )} contains a Baire residual subset of Dlﬁ"’ (M) (see [31):

A pomt PE M is called an n—periodic pomt of f € Diff" (M), if n i the least posmve o

integer m such that f’" (p)=p. An n—penodlc point p of fis sa1d o bo hyperbohc if
every eigenvalue A of Df*(p) satisfies ] %1, In particular an n—perlodlc point p of

f is called a periodic source (sink), if every ergenvalue A of Df*(p) satisfies |A| >1

(al<t).
The following problem has attracted people S attentmn
Is having a periodic source or sink a generlc property for d1ffeom0rphlsms of the -
2-gphere?

Actually, since 1962, some similarly formulated problems have been ment1oned

by 8. Smale and others at symp0s1a (see [4, p. 4941, [5, p.3501, [8, p. 61]). For . .
‘instance, in 1974, at the symposium entitled “Mathematmal Developments Arlsmg
from Hilbert Problems”, 8. Smale posed the followmg problem as one. of “Problems
of Present Day Mathematics”: ' _

Is having an attracting periodic orbit a generie property for diffeomorphisms of
the two-sphere $% ([6, p. 61}, a posmve or nega,trve attracting per1od10 orbit is an
orbit through a periodio sink or source.) '

In 1974, Plykin (lnpum) [7 p. 259] proved that every Axmm A drﬂ’eomorphlsm L
of 2-sphere has a per1od1c source or smk '

- Manuseript received April 22, 1981.
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Now, by combining the use of the recent results of Liao Shan Tao (8. D. Liao)™
- and the result of Plykin mentioned above, we can prove the following theorem.
Theorem. Having a periodic source or sink is @ generic property for f € Di ff* (S")
Aotually we shall prove that the set

= { FEDIff*(8%) | f has at least a periodic source or sink }

is an open and dense subset of Diff*(8%). We remind that every homeomorphism of §?
has at least a periodic point by usual arguments on topological degree and Lefschetz
number.

Proof of Theorem Because of the local stability property of a hyperbolic periodio
point (see [1] chap. 2), it is obvious that % is an open subset of Diff* (8%). So the
only thing to be proved is the density of % in Diff'(S§%),

Write

& = {g€ Diff*(8?) |all the perlodlc points of g are hyperbohc}
and @ ’=int & (the interior of ¥ in the whitney O* topology of Diff* (§7).)
By the Kupka-Smale Theorem (see [1] chap. 2), ¥ is a residual subset in Diff* (Y.
So.it is dense in Diff*(8%). By Theorem II in [8, p. 9], g€ ¥° is Q-stable, and then
by Theorem I in [8, p. 9] it satisfies Axiom A. It follows then from the result in [7,
p. 259] that every g€ ¥° has a periodie source or sink. So ¥°C.S.

Now, consider any g€ ¥\ %° Clearly, any C* neighborhood of g eontains some
hE Diff'(8?)\ %. Then % has an n-periodic point p such that Dh"(p) has an eigenvalue

Ay satisfying |As]| =1. Let As be the other elgenvalue of Di"(p). There are two possible
cases, namely |Aq|>1 or Ihgl <.

Write =h1(p) (O<j<n, Po=pn=D).

First choose open nelghborhoods ofp;, U;, V;, W;, satisfying the following cond1t10ns
1) W;(A<<j<n) are disjoint, WoCW;
i) U,cV,cV,cW; (0<j<n); |
iii) A(W;) CUjsr (O0<j<n—1);
iv) there are local coordinate maps @; such that @;(p;) =0,
9;(U)=DQ), 9;(V)) =D(2), ¢;(W;) =D(3) (O<j<m),
where D(r) denotes the open disc of radius » in R? with center ab origin.
Next, choose 0=“bump” function §: R*—>R? to satisfy the following conditions:
5(u) ={ 3, u€ D(1),
, uD(2),
0<d(w) <1, u€ R?,
Define n,; R?~>R'and k, S§*—>8* as follows,
o ne(u) =148 (u), u€ B?, in case |Aa|>1,
e (u) =1— 88 (), u€ R?, in case |Ag] <,
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» ¢;E1(‘773(¢,(ﬂ?))?,.;-i(}b(W))), wEWb 0<j<n—11
k(w) {h(w), | 2€ 82 EJ:W,-.

Obviously such % belongs to O*(82, §7). In W; (0<<j<n—1), the local representations
of & are _ '

b3 () = @ssa0kop7™ (u) =n, (u) by (w), u€D(3),
where hi(u) =@jrachopi™ (w), u€ D(3). :
With ¢ sufficiently small, b can be arbitrarily O* olose to h in each V; (o<j<n— 1) ,

while Io h outsuie the set U Vi So k can be O close to h on whole 5%, énd

k€ D1ff (8.
obviously p is an n—periocio point of & and
DF*(p) = Dk (pny) o Dk (y_s) o+-+o Dk ()

= ((16) Dh(ps-1)) o (L&) Dh(pu-s)) o+++o((11) Dh(p))

= (L£e)"Dh"(p) .
The e1genvalues of Dk"(p) is = (L+e)™; (=1, 2), Incase |As|>1, py= (148)"As
satisfy |wi|>1 (i=1, 2), and thus p is a periodic source of k. In case |As|<1, wi=
(1—8)"\; satisfy |w;| <1 (6=1, 2), and thus p is a periodic sink of 4.

To sum up, for arbitrary f€ Diff*(S?) there is g€ ¥ sufficiently O* close to f. If
g€ 9°, wo already have g€ &. If g€ %\ %", then there iy h€ Diff* (§7)\ ¥ sufficiently
C* close to g, and hence there is k€. constructed above which is sufficiently C* close
10 k. This proves the density of .% in Diff*(8?). The proof of our theorem is complete.

The author wishes to thank Professor Liao Shantao (S. D. Liao) for his advice
and encouragement.
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