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Abstract
In this article we prove that certain kmds of mhomoweneous terms can smoothen the

solution for first order quasilinear hyperbohc systems globally in time provlded that the
initial data are small. : :

§1 Ihtroduction |

For the Cauchy problem of first order quasilinear hyperbolic systems it is well-
known that even if the initial data are very smooth, in. general, a. smooth: solution
exists only locally in time-and singularities may appear in a finite time. It was '
disoussed. in [1] how the presence of various damping and dissipation mechanisms may
influence the smoothness of the solution. In the same direotion, we consider here the
.influence of a special kind of dissipative mhomogeneous term and establish the
existence and uniqueness of global smooth solutions. . _

Congider the following Cauchy problem for a first order system of 1nhom0geneous :
hyperbohc balance laws:

ot | ow .
u(a, 0) o), — oo L gL 00, S L@

where 4= (uy, -+, u,)" is the unknown veotor funetion, f (u) and g(u) aze glven |

| { 3f(“) +g(u) =0, '-—00<a;<00 0<t<°°  1 V(l)

smooth vector funotions of v with S - .
| | B
~and ¢ () is smooth, = b o B R SEN
‘System (1) is hyperbolic on the domain under cons1derat10n 1f
1) The nXn matrix Vf.(u) hasn real eigenvalues: R
@), Mu), ?»»(u), @
2) Vf (u) is d1agona11zable i. e. - . R
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det £ (u) 0, ®)

where
f {1 (w) N .
cw-{ B9 e
. Z” &u) . : oo
and §(u) = (Qu(w), La(w), -, {w(w)) is a loft eigenvector corresponding to A
L)V (W) =M (u) | (M
By (3), g(w) can be rewritten as ’
g -By, | ®)
where B(u) = (By;(u)) is a nXn matrix with
B(0)=Vg(0). 9)
Let
A(w) =diag{As(u), Aa(w), «+-, Ma(u)}, S (10)

The main results in this paper are the following:
Theorem 1. Assume that (3) holds and the matriez

= (ay;) = (0)Vg(0)L7(0) | (11)
s row diagonal dominant: . N .
“u>§|“ul (=1, -, m), (12)

where, in (11), {* denotes the inverss matriz of {. Furthermore, let {(u), A(w) and
B(u) be smooth, then the Cauchy problem (1), (2) admits a unique global smooth solution
‘u=u(®, t) on t=0 which decays exponentially as t—> oo, provided that the O* norm of
‘the initial data ¢ (@) is sufficiently small. . '

“Theorem 2. The conclusion of Theorem 1 holds ¢f (12) is replaced by the following
‘weaker condition that there ewists @ diagonal matriz v with y#0 (=1, -, n) such
that the matriz ysfy™ is row diagonal dominant. v

" The results in this paper generalize and make more precise the results in [4] for

the one-dimensional case. ,

We should note that our assumption (12) or even the corresponding weaker
condition in Theorem 2 do not cover, for example, the case of the one-dimensional

— #}=0; ’ ‘ ‘
{ms (13

damped wave equation

Wt“‘“(“)x‘}"v:o,.
For a global existence theorem for this special system see [5].
The proofs of Theorem 1 and 2 will be given in the next section.

'§ 2. Pfoofs of Theoi*e‘ms

Multiplying (1) by { from the left and using (7), we obtain the characteristic
form
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L) 20w L (W) Se+ AW @u=0, (14)
where A(a):(A,,(a)_) =§<u>B<u>c-1 (. < d5)

Wo note, in view of (9), that 4(0) =7, i. e., 4;(0) =ay(¢, j=1, -, ). It is now
clear that the assertion of Theorem 1 follows easily from the following lemma.
Lemma 1. Assume that the matric A(0) =.f satisfies (12) and that {(w), A(u)
and A (w) are smooth Then, if the O* norm of the initial data <;b(a;) is sufficiently small,
there ewists a unique global smooth solution u=u(w, ) on t3>0 for the Cauchy problem;
(14), (2) and this solution decays exponsntially as t—>oco.
_ Pfroof Without loss of generality, we can supposé in what follows that the O*
norm of £ (u), A(u) and B(w) is bounded and -
|det ¢ |u|=>Do>0 (Dy'is donstant),  ~t-ivd (500 v (16)
In order to obtain the existence of the global smooth solutlon it, sufﬁces to prove that
if the initial data ¢ (&) have a small O norm then the 01 norm -of the smooth solutlon
u=u(w, ¢) defined on the domain A S I R
; R(T) ={(%, 2) |0<¢<T, —co<w<o0} | (17>
does not depend on 7. - E.
Rewrite (14) in the form

2‘, CU(“)( Y +M(u) _3_@_&1) +2(Azj(u)—Aza(o))zkllm(’w)uk
+2% ZCﬂo(’“)uk—O (I=1, n. P - (18)

Lot Cefmue 0 an)
be the I-th characteristic curve passing through the point (t a;) , which satisfies :

{-i ~Mue, fils 4 9)), e
fit, @) =, ' R
Setting S Lo
Uz=2k:§m(u)uk o : o (21)
and - | o ‘ :
V¢=6XP(ﬁut)‘Uz, : - o (22)

it is easy to see that

331;1 () 2L 3Vz — oxp (aut) {2[3&; () 2 (U ) an (u)]

~ S0y ) — 44 O] Da @) ~exp @) Falyd=1, =, m), @)
V=T ()= Ecm@)(ﬁm 1=0, —oco<lg<Coo, |

Integra,tmg the I-th equa,tmn of (23) along the I-th characteristic curve, we got
Vitt, 2) ~UPCA0 4, )+ [ {oxparm) [ 30 (2 43, 2

=S - Ay O) S )] —exp(a) Sa Uy dr, (29
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then |

Ty, @) =exp(~at) U°(f(0 @)+, {exp(a,,(q,-_m.[? (Pl

DY ag"“‘))w 314y () —~ 450)) 33 L))
";',—exp<au<w ) Saltd,

in Wh1eh the integration is carried along the oha,raoterlstlc (v, filw; a:))
Wo have B , _ ,

B o P sy 2 (B o
o TR0 =5 ; “ou ( PT H”( W) - )

'System (18) together with (21) iniply that T

| B pz £ 0) Lo () 0) 22— 33 0974) A (DT,

_ Where {xe (lo p= 1 -, n) denote the elements of {1, Thus introducing
| wi Gty Wim B, |

it follows from (26) an‘d (27) that

agl} (u> +. h (ﬁ) 3&; <u) == 2 .P Iis (u) W@ -+ 2 Qlw (u) Aps (u) Us;

%’:" “3 R W,+§ 1) 4 o
itlvthioh- e - A .
( Pys() = "gw <“> 29 (1) Ly (26) Mg () cmcw +3) 3@’(“) M) L% (),

kpm

| Qo) = — 3 L) 3@(“) o),
| B3 C""(u) c,,,,,(u)xp(u)cm(u), .
EEA Sk,,(u) = ‘“Ckp(u)
Then, from (25) we have . _
) U;(t @) =exp(— ctut) (fd(f;(O £, m))

(25)

ey
@

(28) -

(29)

(30)

j {exp (o (T‘ ~t)). [2 (2 P s (u) Ws +2 Qm: (’“) Aps (u) Us) 2 C" (w)T,

- 2 (Ala () — Az; (0) ) Ui] - 9XP (au (’6‘ t)) 2 a/uUf}d’b'

Moreover 1f e set o | : _
b. H;=éxp (wzgt) ‘Wz o

and differentiate (18) with respect to #, it follows in a similar way that

(31)

(32)
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9;‘? a2 aH L~ oxp(aut) -3} (————QCM IRORLION

— aZU auy 3(&;;7»;) a(_Aszm) o )
exp (at) (2 w3 LS RS X R gy oo
+2 (A () — Aw (0) ) Wﬂ) — 6Xp (wut) 2 %Wh |
H ’w?(‘”) Zlm(¢)¢k(w), =0, —coLp<Loo,
Integratmg the I-th equation along the I~th characteristio curve and using (29) ,

we obtain

W, w)-—exp( ayt) Wi (£ (0; &, @) N ,
+[ {opantr— [ S P @W B0 0) 40T -STWs

52 az” (2 Ry (w) W, +2 Skp (u) Ags(W)Uy) * 2 ckrW
23 a(Cz;?\,;) t’*ﬁ"’W W E ?(gligik) CerBSW U EHRTIENE

ks .
- 2 (4y (“) — A4;(0)) Wi] —exp (ay(v—1%)) Z‘ %Wa} dw, (84
-
) U~ sup Ui, |, UQ =T, ()
W= s (Wi, 9, @) =@, (36)
and ' ' R ” TR T -
a= mm {aa}. | RGN

We can easily obtam from (31) tha,t
U,(t)<e “tOo—l—J' {Dsexp (an(z—1))* W () U(m‘) +U2 (7:)]

+exp (Gu('ﬂ t)) EiwulUj('D')}d’F R T (38)
where ' .
o= sup on (a:) | = SUP IE Cm (4’) ¢k| (89)
. : —-M<m<°° . -ao<q;<oo .
and D; (=1, 2, +=+) will denote throughout varlous fized consta,nts
Since j exp (au(v— t)) dr= —- (1 exp(—~aut) ), i

it follows on account of (12)
i@ IquU;('v)dr\J' oxp (au(e - ) Sa |dz- U(t)

Sla| |
<E_ U<t><dU<t>, | S (@)

where - o
Elaul : » -
d ma'x j=l=l 1. L R N (41)

Then (88) gives
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U () < exp(~at) Oot [ Dioxp(a(o—1)) - (W ()T () +T*(x) ),

In a similar way (34) gives

Wi () < éxp (- wt); -0y + J: {D3 exp(a(v—1)) . (W2 (7:) ;I-W U (7))

+oxp(au(—1)) By | W (s,
Wl_xere o . _ ; _
S g e W @) | = sup "'lgcnx@-qsu.
Therefore o e
W(t)< FoR(~a): 0t j Dwxp(a(r t)) (W”(r)—l—W(r)U(v))dv.
Let -

: S XQ=UE+W @)
Combining (42) and (45) 11; is Qasﬂy seen that

X(t)\

PN
[SEYUE B

1 exp( wt) (O’o—}—O'l) +J D5exp(a(fv t)) Xs(r)dr

I‘;efﬁng \

. R4 .=X(t)eXP(\,‘“), )
(47) can be written as’ ; -

Y (i)<y <00+01)+j Dsexp(-hwt) PAw)dr, |
Consider
dit(t) —D5 exp( as) Zs(t) ,

. .
Z_T1 d«%+09 t=0,"

We then have the estimation - . .
Y (t) <z (t) .
But I ‘\ K .\’ \: 3 . . v. ‘ ‘.f -
;z(t)__ 1i—d. y
. —d_ . 5 _ _
g e (e
Therefore, if Op+Cy ig s0-small that "

Uo+0'1
1—d
then . 7T
.\-\2<00+01>
<Z\o )
Z(t)\ i—g

“@> 2D-~

‘hénoe
X () <2_(Q°_'L032. exp(—at),

(42)

(43)

(49

(45)
(46)
40
(48)

(49)

'(50)

(1)

(2)

- (83)

(54)

(55)

’Tﬁﬁs, by the definition of X (¢), the lem_ma, and thénceforth Theorem 1, is proved.
Remark 1. Assumption (12) in Theorem 1 is similar to the assumption in [2]
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for establishing the corresponding global existence of discontinuous golutions for the
Cauchy problem (1), (2). ’

By means of the method in [8], multiplying the I-th equation of (18) by a real
number y,7%0, the matrix 27 can be replaced by vsdy~, where

y=diag {1, 73, ***, ¥n}. (56)

Thus Theorem 2 follows from Theorem 1. .

Remark 2. In a similar way as in Lemma 1, we can also prove the following

Lemma 2. Suppose that the matric A(0) =.of satisfies (12) and that C(u), A(uw)
are smooth. Suppose further that any one of the following additional hypotheses holds

(i) A(u) =A(0) _ G
or (i) Ly =1. (58)

Then, if @ defined by (87) s sufficiently large, there ewists @ unique global smooth
solution w=u(w, ) on =0 for the Cauchy problem (14), (2) and this solution decays
ewponentially as t—>oo. '

From Lemma 2. we can get the corresponding result for the Cauchy problem (1),
2.
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