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Abstract

Let (Q, &, p) be a probabilty space with an mcreasmg family {3" }i»0 Of sub-o-flelds
satisfying the usual conditions. The following results are obtained: for f € BMO, we have
f=g~h with g, h € BLO; if in addition, f satisfies . - . .

E(ed | F )<Ko E(e"“f”" |#) <K
then for s>0 arbitrary, g, h can be chosen such that g, '€ BLO, and
B (919799 | g—t)<ga’ o0y B(e®00 | 7, <Ga, e
and for weights 2, we have : o
C2€4,N8e= 24237? with z,eAlnS i=1, 2
where S'= {weights 2; Oop-<2p<Cop-, V stoppmg times T, outs1de 2 null set} s

§1. Introduction

In elaborating a probab111st1c proof of Garnett-J ones’s theorem on the distance in
BMO to L=, Varopoulosm has defined the motion of y—graded sequence of stoppmg
times and showed tha.t this nofion may be used to prove Jones’s theorem on the
factorization of A, weights. But, his argument works only under the hypothesis- “H”

(i. e. “continuous path hypothesm”) owing to the fact that his. y-graded function T

defined too restrictedly.

In order to apply the notion of y-graded éequence of stopping times to martingales
with jumps, we have generalized the notion of y-graded function in Long'®, Now, we
devote the application of this generalization to the subjects, indicated by the title of
this paper, We shall consider principally the martingales with digcrete times, but the
arguments will work effectivelly also for. those with continuous tlmes We shall discuss:

this case briefly.

Manuscnpt rece1ved September 17, 1981



118 : CHIN. ANN. OF MATH. Vol. 4 Ser. B

Let us begin with several concepts and notations. Let Q, #, u) be a complete
probability space and {#,},0 be an increasing family of sub-o-fields of # with %,
trivial and & = \/37 Several spaces or classes of martingales Whmh we shall deal

with are 01ted as follows

Definitions 1. " BMO and BLO

A martingale f= (f.) 0 of L (i. e. an unifOrmly,'integra,ble martingale) is said
to be of BMO, if

1 zato =-SEP" E(|f = fo-sl | Fu) | u< o0, 1)
A real martingale f= (f,)us0 of L* is said to be of BLO, if »
Iflsro=inf {C, f,—f<C, |f.— f,,_il <O, a. 0. Vn}<oco, (2)

2. logd, s, «>0, B>0,
A real martmgale F={(fn)uso of L* is said to be of log4,,s, >0, 8>0, if

E(e““”’ﬂ’[ﬂ) SKq <oo* a. e, Vn,

3)
- E(e“"‘f""’v[ﬂ,,)7<K,g<oo, a. e, Vn.,
3. BD. - ‘
A martingale f= (£,) .0 is said to be of BD, if :
If|zn= SuP"f n=fn-1e <°° 4 @

4. y-graded sequence of stopping tlmes _
A sequence {T';}i of stopping times is called a y—graded sequence, if {T,}7 is
increasing and ‘ :
BA{Ti11<00}) | F )<y, a. 0., 0<y<L, . . B)
b. 4, ' '
Let 2 be strictly positive and be of L*, z= (2,) w0, Zo=H (]| Z)**, Such z=(2,)ns0
is called a weight. A weight 2= (z,,)m, is called a A,, weight, 1<p<oo if

sup|]z,,E(z~p— [.27)”‘11[“<O < oo, for 1<p<<>o 2.<C2, a. 0, Vn, for p=1, (6)
and there ex1sts 9 1<q<oo such that 2€ Aq, in symbols A UAq, for p=oco0,

A we1ght 2= (z,.) 0 18 Sald to be of § (or 8+, or, S ), if o
02, 1<%, <023, a. e. Vn, , )
(or 2,<XO%y-3, oOr 2,23<C%,, respectively) 4 .
- We take several most elelﬁentaljy facts concerning these spaces or classes for

granted. For exa’mple‘

* K(or C, ) is denoted a8 a constant. When the parameters on which the constant depend are needed to
be emphasized, we indicate it oy subscnpts Asg usually, the constant denoted ‘by same symbol is not necessarily
the same, even in the same expression. ‘ .

** There is a convention: for f € L1, f,, stands for E(f|#,) except when otheawise specified.
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Assertions 1. Woe have
Re L*cBLOCBMO,

3 L 1F Laso<f L mio<2[f ..

2. Woe have that if f€ BM O (or BLO or logAa 2), SO does p= f fT, Where T 1s
any stopping time. More precisely '

Tl swo<<| 1 2o, o
|l 26<<|f | 520, - ' (8)

B (¢%o-vw | gz‘n)%c‘< K., E(e—ﬂ@—mi[ yﬂ>%< K,
with K a K s unchanged. __ : -
8. "We have that logAd, (logd,, g, when'a'<e, B/'< ,3, and that
© RoBMO= ] log Ao BD.

aﬂ>

4. We have
A CAq, 1<p<q<oo

The main results of this paper are summarized as follows. In § 2 we prove that
every real BMO martingale may be decomposed as difference of two BLO martingales,
and that every f of logAa sN BD, for any >0, may be decomposed as f=g—h with
g€ BLON10g Ass,; hE BLON log AB_B,,,, V7>0. In § 3, we prove that every z of
A,N S may be fetorized as 2=2.25"7 with 2,€ 43NS, ¢=1, 2, The significance of this
factorization was shown by Jones™. In § 4 we show briefly that all results of §§ 2, 3,
still hold in continuous times case.

§ 2. Decomposition of BMO martingales

Lemma 1. Real f= ( f,,),,>o€ 1og A g, © ﬁ

E(eallg“)ﬁE(e—Bfly’)§<Ku 3<oo o (3)/
Corollary 1. f€log 4., ’bﬁ 1 A with 8 *‘%T
Lomma 2. Let {T%}5 be a y-graded sequence, and {by(w)}T be a sequence of
measurable funotwns satisfying

0<by(w) <B, by(w) measurable with respect fo F r,, (9)

Then | |
L p=2h@1({Th<eo}) €BLO | - (10)
with '
olao<2E Toloos g2 (1)

=
Furthermore, for all >0 satisfying 66 <%, we hawe |

sup| (6% | F,) | .<o0, @
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Proof Since {T;,}l is y-graded, we have
| {Tx< oo} | —BEEQA{T <o) [ F )
=E(E (1({Tu<°°})1({Tn 1 <o} | F i)
<vE A({Tw1<o3)< <y o
and 21({T,9<00}) E LA, |

00f£2VVﬂﬂl

_Th1s shows that l{Tk<00}\—-—>0 Tk—->oo a. e,

7+ fixed, consider the partition. {X{Ym
X(m) = {T1<'n oo T,,.<n Tm+1>n},
X0 ={Ty>n}, -

X ={T,<n, Vm= 1 2, «+}. ; -
N Frm. We want 10 est1ma,1',e (<p,, (p)l(X ),

bk(w)l({Tk<00})1(X (™) are measurable with

Now, for n G

No’oe that ]X‘"’l =0 and. XMmEF -
“m=0, 1, «, Since, when 1<k<m,
and by (w) >0, we have
Xy = E(svl(X ™) | F)

(bk(w)l({Tk<°°})1(X"’”) lﬂ'..), o

respect 10 f a1
cvnl(X‘"’)) =E(p| Fw(

S @L< 1) + 3 B

k=1

g 90)1(2("’")- =2 (bn(w)l({Tn<°°})1(X"”’)13’«»)

-3 bk<w>1<{m<oo}>1<x<m>>

Te=m-+

< E E(E(bn(w)l({TKoo})l(X"”’)le%-,,,ﬂ)l&"n)

Bt

g S —-m=1 . _ B
_ .<Bk2 Y -f:—;;;

=m+1

Analogously, we have also e
E(|p—ognsl | F L&) —E(lqp—¢p,,_1t1(X$:">) | F W)

..E(\ i bk(w>1({Tk<oo})1(X(m))

k=m+

E E(bk(w)l({Tu<°°})1(X‘"") 15’ n—l)l F »)

’ k=m+

<B X B A{TR<ooN1EI) |7, )

k=m

+B 3 E(l({Tn<°°}>1(‘X'('m))\y =)

<2B kg \|E(1({Tk<oo}>l%mu)llw\lBy

o inequalities in (11).

This completes the proof of tw
we have

It rema,ms 130 ‘prove (12). For a>0,

# |+| denote the u—measure
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2 B(oxp(@(p—gn) | FLEP) = B 3] explalp— ) LXPNIXL) | 7,)
~B(3 {3 @L< LX) |

o 3 B@1({Ti<eop1(x) |7 Hxe | 77)

<3 E( (exp {0 3 1<{Tk<oo}>}|=%,,+, )|#) 1. (18)

for all m. We have

exp {aB b 1<{Tu<oo}>} 245 (2 1<{Tk<oo}>)

k=m-+1 k=int1

Now, we want to obta,m the umform ostimate of

"E(exp {aB 3 1({T<oon)} | #r)

S (“B)l i (]0 m)'l({Tn<°° Tk+1_°°})

=0

’M8 =

<{Tn<oo}>}|.%m, <S5 (omypon
____io 21 geowk,yk -1

Substituting this estimate 1nto (13), we get (12) prov1ded « satlsfymg ve*B<L1,

The proof of the lemma is, concluded. , :

Remark. Itisin Long™ that such generahzed y-graded functlon with 0<b,<B
replaced by |b;|<B was mtroduced and its BMO-norm was estimated.

Lemma 3. Let {T)} be yo~gmded soquence. Let {Ak}l be & sequence of sets
satzsfymg A {Ty<oo}, A€ Fry,, and

- EQ (Arm) I? ) <71, % O R € 7Y

Let {bk}l be a sequenoe of funomons swtfz,s fymg O<b;,<B cmd by (w) measumble with

respect to 37 Tye Then there e:msts a y—graded sequence (qu,th y-— 1717‘ : assummg Y1
0

small such thait 'y<1 ) {34}1 and a soquenos {0;:}1 of functwns satis fying O<O'j (@)<B,

_ cmd O; (co) fmewswmble fwzth respect to Fy, 5 such that

L R N sv zbkl(Ak) EO 1({Sa<°°}) 9. e 15)
Proof Deﬁne . : : : '
1o (w) =O n,(co) —mf{z>nj_1(w) wEA,} §= 1 2,
First of all, we prove {n;(w) =k} € #y, by induction. We have
| s, m(e)=inf{i>0, €A},
{my=k} =41 N N A1 N 4 E Fr,", ,
Now, suppose that {1 =1} € Fr,, Yb=1, =, k=1, Then . .

* For a set A, we denote the complementary set of 4 by 4'.
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k-1 -1
=1t = U (st n4en () 45))€ Fa.
Now, Vj=1, 2, .-, define o
Tﬂj((l)) (CO) > Yy (w) <‘o°:

|
R N
Then, each 8 is a stopping time. This is due to
{8~k =J{m=T N {T\=k}) € F, Vh=0, 1, -~

And because {n;} and {T';} are both increasing, {8;} is also increasing. In additibn,
we have also {n;=k} € F5,. In fact, because, Yn=0, 1, e
{ny=h} N {S;=n} = {ny=k} N {Th=n} € Z..

Now we proceed to prove that {§;}7 is y= 11'

(16)

L _oraded.
e grade

VEk=>1, we have _ ’
E(l({3f+1<°°})l%j)1({m k}) = E(l({3;+1<°°})1({n) B | Fr)

-8 (1( () 4)| #n) Lm=k) < 3 BAM) 1ff )1t =HD)
<i§17 Y5t = 13'1%,

and for k=o0, we have (noticing: {n;= oo} € F; g,)
E@A({8j+1<o0}) | Fs)1({n;=o0}) = 15?(1({t5';+1<<>°1 N {ny=o0}) lfs,) 0

This proves _ EQ({S;r1<00}) | Fs) < < , Vi=1,

Now, we define , ' :
G-z{ b,y nﬂ'<°°1
! 0) ny==
Then 0<0;<B, and 0;(w) is measurable with respect to Fy,, due to
{C';E 4N {8S;=n}= U({n;—k} N{Ty=n} N {0:E€E4}) EF, (A Borels in C)

It Temains to prove p=0, a. e.

17y

Let w € 2. Supposing wQ&U A,, then gv(w) =0, and H(w) 0 too, because of ny (co)

=00, V4. Supposing w € A,.l NN A,,,, then g(w) =by, + +++--b,,. But due to 1y (w) < oo,
Si(w) <oo (since @€ 4,,), =, nj(w) <o, §; (w) <00, and ny.3(w) =00, we have also

ﬂUAc

J=1.4=

0(w) =0+ +C;= b,,,+ +b,U —-q;(co) Notme elgo

a. ©.

=0. This proves ¢=90,

Thus, the lemma, is proVed completely.

Remark. When b;=1, the lemma is due to VaropoulosElj but the condition there
may not be sufficient. '

Theorem 1. Every real martingale f 0 f BMO oan be aecomposed as f =g— h+(p,
where g, h& BLO, ¢& L™, : :
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Proof Since f€ BMO, by virtue of John-Nirenberg’s theorem,.there exists a>0
stuch that (sce [2] for example)
E (@ F) <K\ <o, a. e,
For A>0 to be determined late, define
fO=f~E(f), Ti=inf {n, |fPO| >0}, fOP=f—fr, i=1, 2, -, (18)
where f&=E(f®|F#,).
Since fE*P=f,—fr.u, then Fé+D—0 when n<T¢, hence T w1>Ty Thus, {T}7 is
increasing. Furthermore, we have
E (697" | Fy,,.) > B 119
> g% B¢ "“’I.fx'".,)l — 3a|f}‘;‘j;| > g% ( {T¢+1 < oo})
and K> E (e | F3) = BB @ | Fp) | Fr).
Thus, we have '
EQ{T1<00}) | Fr) <Ko, : (19)
That is to say, {T';}T is a y-graded sequence with y=K.e™* (assummg A to be enough
large). o
Since {T'}7 is 7—graded,' T;—> oo, a. e, and f?—>0, a. e., and {T;=00}C{ fOD
=0}. Let Ty=0. Then fr,=H(f). Thus, we get the decomposition of f as follows

F=B) =3 Fr—fro) =28
=S AT <o) =S () LUT <00} + B FRLUT = ),

F=g=hrp, o= FA{Ti=oo]) + B(f), 9= UT:<oo}).  (20)
Noting that |ff1({T;=o00})|<A, and that {fBL({T,=00}) £0}'s aTe mutually
disjoint (C{T,_1<oo, Ti=o0}), we have

lele<<|E(f) | +A.
Since (f)*(or(f$)") is positive, and measurable with respect to Z,, and bounded
uniformly with the uniform bound A+ |f | s
7821 <A LF© Lo <At | 5o, @1)
Then by virtue of Lemma 2, g, »€ BLO.

The proof of the theorem is thus finished.

Remarks 1. The idea of this proof is due to Varopoulos™. The notion of BLO
and the decomposition of BMO as difference of BLO in classical case are due fo
Coifman-Rochberg™. | '

2. By means of a decomposition of BMO of Garsia™, we can obtain the decompo-
sition of f&€ BMO '

| | J=9—h+o.
with |9l 510+ | 2] 20+ | @] =<C|f | 5300,
Now, we refine the preceding decomposition.
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Theorem 2. Let f&log Aq,sNBD. Then for any >0, we have the decomposition

of f
, - f=gmhte
with g€ L™, and '

. g€ BLON1og Au-c,v RE BLO N 10g Ag—s,; Yr>0,
Proof Tt is easy to see, for min (o, B), 53y B R
: _ E(eﬁ”—jM ) <K g<oo, a. ©. ‘
‘Ag done in the proof of Theorem 1, We can got a Yo= K ~#-graded sequence Ty
and a decomposition of f - S .
o feghre
y=flf‘w‘31 (4), A={w€ (T <00}, >0},

h=—31fA1(B), Bi={0€ (T <00}, f <0},

p-SI AT =N+ B

~ Note that A€ Fr. and BE(1(4) | Z: 1) <Y1 K -, The latter follows from
T kB | Fa) = HEE Fn) | F2)
> B (¢*5¢ —Fod T | Fr) > E(e1( Au) | Fr)e
Note alse that b= f$) is measurable with respect 0 Fpoand
A<bl(A) <M+ |7 | z2eo.
o exist a y-graded sequeﬁce
large) and a sequence {C}%
mma. 2,-a,.nd

Thus, by virtue of Lemma 3, ther {S,-}i". (With y=K.o %/
(L= K %) <1, provided A is enough of functions, such
that ({8537, {C;}T) 18 a._}_pai_r;sq.t_isfying the condition of Le

| g-Swa(a) =3oAS <D,

- We have known @€ L, 9, h€BLO. It remains o prove that. for >0 given

arbitrarily, we have that - _ o e | | o

L g€ log Ages,e, hE10B Asmsrs Vo3>0, |

provided A is chosen enough mgé. we aim ab ¢ _ﬁrst.' For &>0, choose 08>0, 0s>0
| se A such,‘tha,t = |

guch that (8;+02) a<é, then choo uch
RS A VAFIAS (L+3)A,

Ko7/ (L~ Kat™) <ot

Thus, we have
gl r0)rg(L=toh — T A
By means of Temma 2, we get finally ' - :
‘ B (@290 | F)< K., 2,690, - (28)
- Similarly, but more simply, since (T} is already K Befﬁ’"—graded, we have '
' ' (28)’

(g0 | F ) <K au<o0.

Since g, h€ BLO, Y7>>0, we have g€ log Aus,v> hE log Ass, v
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The proof of the theorem is concluded.,

Remark. We are almost in a position to prove the factomzatlon theorem of A4,
weights. We postpone this to § 3,

-§3. 'Factorization of 4, weights

Before proving the main theorem of this section, we prove the following lemmas.

Lemma 4. Real martingale f= (fu)nso€ BMO, iff there emists A#0 such that
=€ A4,NS, p>1. And, f= (f.) € BLO, iff, there ewisis A >0 suohthat, 2= € A, N 8.

Proof -Let real f€ BMO, then f&log Aa'g N BD. Thus ¢ € A, with p satisfying

-§-=——L— And since

p—1" o , .

' E (e | F) <Ke"', a. e., : (24)

we have E(¢"| F,) <Ke*'»< Kottt K< KE (6" | F ).

That is to say ¢/ € §*. Similarly, € 8-, I € BLO, then we have

B (e | F)<Ke"'"< Ko+l lsre < K g™

that is to say 2=e* € A;.

Conversely, let z=6"€ 4,NS. Then we have (24) Wlth o replaced by . Thus we
‘have o L .
: ehf "—1<E (8"’ I 'g_n—l) gKE (elf I yn) <K6Lfn — eﬂ.fn‘f'ﬂa(l’,
: L » ‘ fn—1<f0+o.

Similarly, we have also | . -

: | Fa<[fu-1t O

That is to say f€ BD. Since we have already that fE log A, for certain &, 8>0, so

that f€ BMO. Furthermore, if 6¥ € 44N S, we have '

< B (eM| F,) <K' =e"+¥,
fo$fHe, a0, Vn,

That is to say f € BLO. -
The lemma is thus proved. :
Lemma §. (reverse Holder s inequality). Let 2 be @ weight of A, N S*, then them

 ewists e>0 such that . . ,

I | B | F)<Ket, a e, Vo, | (@)
We take this for granted, the proof is Teferred to Doléans-Dade; Meyer™, '
Lemma. 6. Letzbea fwezght of ANS, -then there ‘is s>0 such that 2*+°€ A, nS

1<p<oo,

. Proof To begm with, consider 1< p< oo. Denote U-—z Fi' U E(Ulﬁ’" ,,) Tt is
eagy 1o se0 tha.t € Ay 1ff UE A,,, Furthermore ‘we have..

'1=E(z" “lf,,)f’<E(z|,3f,-,)__E(z Ig‘") 7 ~z,,U""1<K (26)
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Thus, 2€ 4,N S, if UE 4, n S. By means of Lemma 5, we know that there exist a>0,
B>0, such that -

zn< E (Z:H-“ [g‘n) m <K1’k«'n, v

U.<E(U*| F) T7<K,U,
Obviously, for s=min(a, B), (27). with a=g=s still holds. Thus, from (26), (27)
we have

(@)

(B (5| F) BT | F,)7 ) T < Kz (KU, )< K1 KK,

B | F) B+ 5 | F )< (KK =K,
This proves z'**C 4,. As regards #*+*€ S, it follows from 2€ S and (27) with a=e.
When p=1, the proof is much simpler, only a half of (27) is needed.
\ Theorem 3. Let 2=6' be a weight. Then 2€ A, nS o ff 2=2423"" with z;E AiNS,
i= 1 2, :
Proof Suppose that 2= ziz%“’ with z,—-e’ ‘e A1 NS, i=1, 2, We have
E(zlz 3| F) B () 7T lf)”"1

1

=F (2285 270 | F )25 P B (2, = 205 20| F ) ”‘1z‘1
: KK B2 Fo) st KB (29| F o)t 42 =K Ky, :
This proves z€ A,. Furthermore, from Lemma 4, we have f,€ BLO, hence f € BMO.
This and B (6’| .F,) <Ke' together imply z=6'€ . :
Now, suppoese z=6'€ 4,N 8. By virtue of Lemma 6, there is §>0 such that z**
€ A,NS. From Corollary 1 and Lemma 4, we have f€logdy.,, EFS NBD. Now an
: ‘ =

.application of Theorem 2 to f gives

fl=f1 __fﬂl

with fi1=g+@, fa=h (or f1=g, fa=h—¢) satislying
f1€ BLONlog Ai4s,7,

0<3<s, V>0,
f2€ BLONTog Azss , o

By means of Lemma 4 agam we have

e+nEC 4,0 8, eﬁf’EAiﬂS |
Since, by virtue of Holder’s inequality, we know that if w€ 45 and 0<3<1, so does
@’. Then from this

, L 51=j6h€A1ﬂS, 22=8-‘%THEA1“S.
'Thus, 2=6' =6'g™ P =P
realize the required factorization of z. The theorem is thus proved. |

‘Remarks 1. Wedon’t know if the condition 2€ S is superfluous for the truth of
the theorem. But, we will show that this condition is reclly necessary for Lemma 4
and Lemma 6. An example of Bonami-Lepingle'™ shows that Lemma 6 is no longer -
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true without 2 € 5. We take an example to show so does this assertion for Lemma 4.
On probability space (Q, F, u), we take Fo= (¢, Q), F1=Fy=+=F. Then in
thi§ cagse, BLO=BMO =L, but

A, = {positive z, 2€ I}, 7€ LﬁT} l<p<on,

Ay = {positive z, 2>>a>0}, a=const,
Thus logA &EBMO, log A1¢EBLO, i. e. Lemma 4 fails to be true We know that the
proof of Theorem 3 depends heavily on Lemma 4 and Lemma 6. Without Lemma 4,
we don’t know if {f{} are still uniformly bounded and without Lemma 6, we don’t

know if 6"€ A; and, ¢ P* E A still hold.
2. For weight problem, the condition S occurs often and holds in many cases.
For example under a regular condition considered by many authors such as
BAF) | F2)<dBAF) | ),
Vn and VF¢E 34‘ d=const., the conditisn § is an immediate consequence‘ of 4,
condition (vi’a (26)). |

§ 4. Continuous times case

‘ Let (2, &, u) be a probability space, and let {Z}:.o be an increasing family of
sub-o—fields of .# satisfying the usual conditions, i. e. F, complete (assuming Z, be
trivial in éddition) {F}im0 right continuous, and F# -—=\/ Z. In this case, Theorems

" 1 2 and 38 still hold, and all arguments remain almost unchanged. It is sufficient to
show when the care is needed. We begin with the definitions.
A martingale f= (f1) o of L* is said to be of BM 0, if*

| £l s =sup| E(|f —Ffr-| | Fr) [ <00, |
T is taken through all stopping times; (1)’
ig said to be of BLO, if it ig real, and
Iflsro=inf {C, fi—f<O, |dfr|=|fr—Ffr-| <O, V¢, T, outside a null sot} < oo
| @)’
ig said to be of log4,, s, if (8) or its epuivalence (8)’ with n replaced by ¢ holds; it is
said to be of BD, if _
| sp=sup| 4f].<co. (&
A weight 2 is said to be of A,, if (6) holds with n replaced by #; it is said to be of
S (or 8*, or §7), if (7) holds with n replaced by 7', n—1 by 7.
Note that in preceding definitions, all statement concerning times ¢ can be
substituted by that concerning stopping times 7'. Roughly speaking, an assertion (or

* As shown by Meyer(Sém. Prob. Lect. Notes in Math., 511(1976),p 348) that this definition is equavalent
to usual one.
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condition) holds for ‘all #’s, so it does for all T”s (T stopping times), except those
concerning left limit. This may be seen sometimes immediately, sometimes by a limit
argument such as: for any T, define IR

5V EEL 17,0, with F,,k—{ b <r< 7“;1}

Then T\, and T, ta,kes only. dlscrete values. Thus, an assertlon holds for all ts S0

it does for T,, and due to the right contlnmty, so does for T'in genera,l

By means of thls observation, we have yet four assertions in §1 with a shght
modification, i. e. |@]sxo<< Il zao i replaced by []q)" o<2|f]smo in assertion 2.
Furthermore, Lemma 1, Corollary 1, and Lemma 3 still hold obviously: For the proof
of Lemma 2, only the part concerning the estimate of |@|suo is slightly complex, but
it has been done in Long™. For the proof of the Theorem 1, it is needed to appeal to
John-Nirenberg Theorem the proof of which has also occured in [2]. The proofs of
the Theorem 2, Temma 5 and 6, and Theorem 8 remain unchanged with a frivial
modification. The proof of the Lemma 4 will be finished by the substitution 6f n by T
in the original proof.
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