ON THE STRUCTURE OF PRIMITIVE RINGS

XU YONGHUA (许永华)

(Institute of Mathematics, Fudan University)

Abstract

In this paper the author introduces two concepts, i. e. the concept of so-colled ν -socles of primitive rings and the concept of a pair of dual modules. Then the author establishes a general structure theorem for primitive rings with ν -socles, which implies the well-known structure theorem for primitive rings with usual non-zero socles.

It is well known that the investigation of structure of primitive rings is usually restricted by their non-zero socles. There is almost nothing to do with the structure of primitive rings without non-zero socles. Even if we study the structure of primitive rings with non-zero socles, we are always concerned for their properties of finite-fold transitivity. But in general, primitive rings are infinite-fold transitive. Thus for the purpose of studying deeply the structure of primitive rings it is useful to introduce more general concept of so-called ν -socles^[3]. Using the concept of ν -socles and \aleph_{ν} -fold transitivity we shall in this paper characterize some basic properties of ν -socles. Then in §2 we extend the notion of a pair of dual vector spaces to the one of a pair of dual modules. Besides, it permits us to associate with every primitive ring having ν -socle a pair of dual modules and then we establish a general structure theorem for primitive rings with ν -socles, which implies the well-known structure theorem for primitive rings with usual non-zero socles.

1. Before preceding our theory we shall discuss a few preliminaries. Throughout this paper the term "vector space" without modifies will always mean left vector space over a division ring and primitive ring R always mean dense subring of the complete ring Ω of all linear transformations of a vector space. A primitive ring R is called \mathbf{x}_{ν} -fold transitive if and only if for any subset $\{x_i\}_{i\in I}$ of linearly independent elements x_i and any subset $\{y_i\}_{i\in I}$ of vector space \mathfrak{M} there exists an element $r \in R$ such that $x_i r = y_i$ for $i \in I$, where the cardinal number of I, denoted by |I|, is smaller than \mathbf{x}_{ν} . Specially, we say that R is finitefold transitive if $\mathbf{x}_{\nu} = \mathbf{x}_0$. A primitive ring R is called having the lergest \mathbf{x}_{ν} -transitivity if R is \mathbf{x}_{ν} -fold transitive and not $\mathbf{x}_{\nu+1}$ -

Manuscript received september 16, 1980.

fold transitive. Two primitive rings are called the same fold transitivity if their largest transitivities are the same. Let Ω be the complete ring of linear transformations of vector space \mathfrak{M} , R a dense subring of Ω . We always denote $T_{\nu} = \{\omega \in \Omega \mid \rho(\omega) < \aleph_{\nu}\}$, where $\rho(\omega)$ denotes the rank of ω . And we always mean $N(\sigma) = \{m \in \mathfrak{M} \mid m\sigma = 0\}$ for any $\sigma \in \Omega$, and call $N(\sigma)$ the annihilator of σ in \mathfrak{M} .

Lemma 1.1. Let \mathfrak{M} be a left vector space over division ring F, Ω the ring of linear transformations, $T_{\nu} = \{\omega \in \Omega \mid \rho(\omega) < \aleph_{\nu}\}$. Let R be a subring of Ω which is \aleph_{ν} -fold transitive, and $\mathfrak{S}_{\nu} = T_{\nu} \cap R$. Suppose that $\mathfrak{S}_{\nu} \neq \mathfrak{S}_{\mu}$ for any ordinal number $\mu < \nu$. Then \mathfrak{S}_{ν} is \aleph_{ν} -fold transitive.

Proof If $\mathfrak{S}_{\mu}=0$ for any ordinal number $\mu<\nu$, then ν is not a limit ordinal number, because if ν is a limit ordinal number, then $T_{\nu}=\bigcup_{\mu<\nu}T_{\mu}$. From this it follows that $\mathfrak{S}_{\nu}=T_{\nu}\cap R=\bigcup_{\mu<\nu}(R\cap T_{\mu})=0$. Hence ν is not a limit number. It is easy to see that there exists an elemnt $\sigma\in\mathfrak{S}_{\nu}$ with $\rho(\sigma)=\aleph_{\nu-1}$. Now we prove that $R\sigma R$ is \aleph_{ν} -fold transitive. In fact, we have $\mathfrak{M}=\sum_{i\in I}\oplus Fu_i\oplus N(\sigma)$, where $N(\sigma)$ is the annihilator of σ in \mathfrak{M} , $|I|=\aleph_{\nu-1}$. Hence $\mathfrak{M}\sigma=\sum_{i\in I}\oplus Fu_i\sigma$. Denote $\{\overline{u}_i\}_{i\in I}$ as a set of F-linearly independent elements, $\{b_j\}_{j\in J}$ an arbitrary set of elements of \mathfrak{M} and $|J|<\aleph_{\nu}$. Then there exists an element $r\in R$ such that $\overline{u}_ir=u_j$ f or $j\in J\subseteq I$, since R is \aleph_{ν} -fold transitive. On the other hand, there exists an element $s\in R$ such that $u_i\sigma s=b_i$ for $i\in J$. But $r\sigma s\in R\sigma R\subseteq\mathfrak{S}_{\nu}$. This implies that \mathfrak{S}_{ν} is \aleph_{ν} -fold transitive.

Now we may assume that there exists an $\mu < \nu$ such that $\mathfrak{S}_{\mu} \neq 0$. By hypothesis for our lemma we can choose an element $\sigma \in \mathfrak{S}_{\nu}$ such that $\rho(\sigma) \geqslant \aleph_{\mu}$. From the above proof we know that $R\sigma R$ is \aleph_{μ} -fold transitive, hence \mathfrak{S}_{ν} is \aleph_{μ} -fold transitive. On the other hand, by hypothesis we have $\mathfrak{S}_{\alpha} \neq \mathfrak{S}_{\nu}$ where $\mu < \alpha < \nu$. Therefore \mathfrak{S}_{ν} is \aleph_{α} -fold transitive. This completes our proof.

Lemma 1.2. suppose $\mathfrak{S}_{\nu} = T_{\nu} \cap R$ is \aleph_{ν} -fold transitive, then \mathfrak{S}_{μ} is \aleph_{μ} -fold transitive for any $\mu < \nu$.

Paoof Let $\{x_i\}_{i\in I}$ denotes a set of linearly independent elements of \mathfrak{M} , $|I| < \aleph_{\mu}$, $\{y_i\}_{i\in I}$ an arbitrary set of elements of \mathfrak{M} . Then from the \aleph_{ν} -fold transitivity of \mathfrak{S}_{ν} it follows that there exists an element $\sigma \in \mathfrak{S}_{\nu}$ such that $x_i \sigma = x_i$ for $i \in I$. Hence $\mathfrak{M} = \sum_{i \in I} \oplus Fx_i \oplus \sum_{j \in J} \oplus Fu_j \oplus N(\sigma)$, where $N(\sigma) = \{x \in \mathfrak{M} \mid x\sigma = 0\}$, $|J| < \aleph_{\nu}$. This implies that $\mathfrak{M} \sigma = \sum_{i \in I} \oplus Fx_i \sigma \oplus \sum_{j \in J} \oplus Fu_j \sigma$. Hence there exists an element $\sigma' \in \mathfrak{S}_{\nu}$ such that $x_i \sigma \sigma' = x_i \sigma$ for $i \in I$ and $u_j \sigma' \sigma = 0$ for $j \in J$. Clearly $N(\sigma) \sigma \sigma' = 0$. Because $\{x_i \sigma \sigma'\}_{i \in I}$ is linearly independent, there exists an element $\sigma'' \in \mathfrak{S}_{\nu}$ such that $x_i \sigma \sigma' \sigma'' = y_i$ for $i \in I$. Let $\tau = \sigma \sigma' \sigma''$, then $x_i \tau = y_i$ for $i \in I$ and $u_j \tau = 0$ for $j \in J$, $N(\sigma) \tau = 0$. But $\tau = \sigma \sigma' \sigma'' \in R \cap T_{\mu} = \mathfrak{S}_{\mu}$. This proved that \mathfrak{S}_{μ} is \aleph_{μ} -fold transitive.

Theorem 1.1. Let R be a primitive ring which is \aleph_{ν} -fold transitive, then R have zero socle if and only if $\mathfrak{S}_{\nu}=0$.

Proof The sufficiency of the condition is clear. Now we are going to prove the necessity of the condition. If $\mathfrak{S}_{\mu}=0$ for all $\mu<\nu$, then by Lemma 1.1 either $\mathfrak{S}_{\nu}=0$ or \mathfrak{S}_{ν} is \mathfrak{S}_{ν} -fold transitive. If the latter case occurs, then \mathfrak{S}_{0} is \mathfrak{S}_{0} -fold transitive by Lemma 1.2, hence R would have non-zero socle. This contradicts the assumption of our lemma. Hence $\mathfrak{S}_{\nu}=0$. Now we may assume that there exists an ordinal number $\mu<\nu$ such that $\mathfrak{S}_{\mu}\neq 0$. Let α be the least ordinal number of all number $\tau\leqslant\nu$ with $\mathfrak{S}_{\tau}=\mathfrak{S}_{\nu}$. Then we have $\mathfrak{S}_{\rho}\neq\mathfrak{S}_{\alpha}$ for $\rho<\alpha$. By the property of \mathfrak{S}_{ν} -fold transitivity of R and Lemma 1.1 we can easily see that \mathfrak{S}_{α} is \mathfrak{S}_{α} -fold transitive. Hence \mathfrak{S}_{μ} is \mathfrak{S}_{μ} -fold transitive by Lemma 1.2 for $\mu<\alpha$. This implies that R has non-zero socle. Thus we have again a contradiction.

Definition 1.1. Let Ω be the complete ring of linear transformations of $\mathfrak{M} = \sum_{i \in \Gamma} \bigoplus Fu_i$, R be a subring of Ω . $\mathfrak{S}_{\nu} = T_{\nu} \cap R$. We call \mathfrak{S}_{ν} ν -socle of R if and only if it satisfies the following conditions: (i) $\mathfrak{S}_{\nu}\Omega \sqsubseteq \mathfrak{S}_{\nu}$ (ii) \mathfrak{S}_{ν} is \mathfrak{R}_{ν} -fold transitive (iii) if $\sigma \in T_{\nu}$ and $\sigma \mathfrak{S}_{\nu} \sqsubseteq \mathfrak{S}_{\nu}$ then $\sigma \in \mathfrak{S}_{\nu}$.

Theorem 1.2. Let R be a primitive ring with \aleph_{ν} -fold transitivity, $\mathfrak{S}_{\nu} \neq 0$. Then there exists an ordinal number $\mu \ll \nu$ such that \mathfrak{S}_{μ} is μ -socle and \mathfrak{S}_{ρ} is also ρ -socle for any $\rho \ll \mu$.

Proof First we show that if \mathfrak{S}_{ν} is ν -socle, then \mathfrak{S}_{ρ} is ρ -socle for any $\rho < \nu$. For this purpose we need only to check the conditions of Definition 1.1.

Thus we have $\mathfrak{M}\sigma = \sum_{i \in I} \oplus Fu_i \oplus N$ (σ), where $|I| < \aleph_\rho$ and $N(\sigma)$ as before. Thus we have $\mathfrak{M}\sigma = \sum_{I} \oplus Fu_i \sigma$. Let ω be an element of the ring Ω of linear transformations of \mathfrak{M} . Because R is \aleph_ν -fold transitive, there exists an element $r \in R$ such that $u_i \sigma r = u_i \sigma \omega$ for $i \in I$. From this it is easy to see that $\sigma \omega = \sigma r$. This proves $\sigma \Omega = \sigma R \subset \mathfrak{S}_\rho$. (ii) Since \mathfrak{S}_ν is \aleph_ν -fold transitive, it follows that \mathfrak{S}_ρ is \aleph_ρ -fold transitive by Lemma 1.2. (iii) If $\sigma \in T_\rho$ and $\sigma \mathfrak{S}_\rho \sqsubseteq \mathfrak{S}_\rho$, then $\mathfrak{M} = \sum_{i \in I} \oplus Fu_i \oplus N(\sigma)$, and $\mathfrak{M}\sigma = \sum_{i \in I} \oplus Fu_i \sigma$, where $|I| < \aleph_\rho$. Let $u_i 1 = u_i$ for $i \in I$, $N(\sigma) 1 = 0$, then $u_i 1 \sigma = u_i \sigma$ for $i \in I$, $N(\sigma) 1 \sigma = N(\sigma) \sigma = 0$, hence $\sigma = 1\sigma$. Now we want to prove that $1 \in \mathfrak{S}_\rho$. In fact, since $\{u_i \sigma\}_{i \in I}$ is the set of F-linearly independent elements, there exists an element $\tau \in \mathfrak{S}_\rho$ such that $u_i \sigma \tau = u_i = u_i 1$ for $i \in I$, and $N(\sigma) \sigma \tau = N(\sigma) 1 = 0$. Hence $\sigma \tau = 1 \in \sigma \mathfrak{S}_\rho \sqsubseteq \mathfrak{S}_\rho$ by the assumption. From above relation $\sigma = 1\sigma$ we get $\sigma \in \mathfrak{S}_\rho \Omega \sqsubseteq \mathfrak{S}_\rho$.

Now we want to show that if $\mathfrak{S}_{\nu} \neq 0$, then there exists $\mu \leqslant \nu$ such that \mathfrak{S}_{μ} is μ -socle. Certainly, we assume that \mathfrak{S}_{ν} is not ν -socle. Then from the proof of (i) we know that $\mathfrak{S}_{\nu}\Omega \sqsubseteq \mathfrak{S}_{\nu}$ is always true only if R is \mathfrak{S}_{ν} -fold transitive. From the proof of (iii) it follows that if \mathfrak{S}_{ν} is \mathfrak{S}_{ν} -fold transitive then \mathfrak{S}_{ν} satisfies the condition (iii) of Definition 1.1. Therefore, when \mathfrak{S}_{ν} is not ν -socle, \mathfrak{S}_{ν} is not \mathfrak{S}_{ν} -fold transitive too. By

the proof of Theorem 1.1, there exists an ordinal number $\mu < \nu$ such that $\mathfrak{S}_{\mu} \neq 0$ and from this it follows that there exists an $\alpha < \nu$ such that \mathfrak{S}_{α} is \mathfrak{S}_{α} -fold transitive. From the above we can conclude that \mathfrak{S}_{α} is α -socle. This completes the proof of our theorem.

Now from the proof of Theorem 1.2 we can further formulate the following theorem.

Theorem 1.3. Let R be \aleph_{ν} -fold transitive primitive ring, then $\mathfrak{S}_{\nu} = T_{\nu} \cap R$ is ν -socle if and only if \mathfrak{S}_{ν} is \aleph_{ν} -fold transitive.

Lemma 1.3. Let R be a primitive ring, $\mathfrak{S}_{\nu} = T_{\nu} \cap R \mathfrak{S}_{\nu}$ -fold transitive, then \mathfrak{S}_{ν} is a principle ideal if and only if ν is not a limit ordinal number.

Proof If ν is not a limit ordinal number, then $\nu-1$ exists. By the property of \aleph_{ν} -fold transitivity there exists an element $\sigma \in \mathfrak{S}_{\nu}$ such that $\rho(\sigma) = \aleph_{\nu-1}$. By the proof of Lemma 1.1 we know that $R\sigma R$ is \aleph_{ν} -fold transitive. It needs only to proof $R\sigma R = \mathfrak{S}_{\nu}$. In fact, we need to prove that every \aleph_{ν} -fold transitive ideal L contains \mathfrak{S}_{ν} . For this purpose we let $\sigma \in \mathfrak{S}_{\nu}$, then $\mathfrak{M} = \sum_{i \in I} \bigoplus Fu_i \bigoplus N(\sigma)$, and $\mathfrak{M}\sigma = \sum_{i \in I} \bigoplus Fu_i\sigma$, where $|I| < \aleph_{\nu}$. Write l: $u_i l = u_i$ for $i \in I$, $N(\sigma) l = 0$, then there exists an $\tau \in L$ such that $u_i \sigma \tau = u_i = u_i l$ for $i \in I$, $N(\sigma) \sigma \tau = N(\sigma) l = 0$, hence $l = \sigma \tau \in RL \sqsubseteq L$. On the other hand we have $l\sigma = \sigma \in LR \sqsubseteq L$. Thus $\mathfrak{S}_{\nu} \sqsubseteq L$. This proves $\mathfrak{S}_{\nu} = R\sigma R$.

Conversely, let ν is a limit ordinal number and $\mathfrak{S}_{\nu} = R\sigma R$, $\sigma \in \mathfrak{S}_{\nu}$. Suppose that $\rho(\sigma) = \aleph_{\mu}$ and $\mu < \nu$. Then $\mathfrak{S}_{\nu} \subset T_{\mu}$. This contradicts that \mathfrak{S}_{ν} is \aleph_{ν} -fold transitive. Thus \mathfrak{S}_{ν} cannot be a principle ideal.

Theorem 1.4. Let R be a primitive ring with ν -socle $\mathfrak{S}_{\nu} = T_{\nu} \cap R$. Then R contains an ideal chain $\mathfrak{S}_{\nu} \supseteq \mathfrak{S}_{\nu+1} \supseteq \cdots \supseteq \mathfrak{S}_{\mu} \supseteq \cdots \supseteq \mathfrak{S}_{0}$, where $\mu < \nu$, and every ideal \mathfrak{S}_{μ} is μ -socle of R, every \mathfrak{S}_{ν} -fold ideal of R contains \mathfrak{S}_{μ} as well. If μ is not a limit ordinal number, then \mathfrak{S}_{μ} is principle. Let L be an non-zero ideal of R with $L \subset T_{\nu}$, then L must be one of the \mathfrak{S}_{μ} of the above chain.

Proof By Lemma 1.2 and Theorem 1.3, \mathfrak{S}_{μ} is μ -socle. Hence $\mathfrak{S}_{\mu} \neq \mathfrak{S}_{\alpha}$ if and only if $\alpha \neq \mu$, where α , $\mu < \nu$. By the above lemma, if μ is not limit ordinal number, then \mathfrak{S}_{μ} is a principle ideal and any \mathfrak{S}_{μ} -fold transitive ideal contains \mathfrak{S}_{μ} . Hence we need only to prove the last assertion of the theorem. Since $L \neq 0$, $L \subset T_{\nu}$, there exists an μ such that $L \subset T_{\mu}$ and $L \not\subset T_{\lambda}$ where $\lambda < \mu < \nu$. If μ is not a limit ordinal number, then $L \not\subset T_{\mu-1}$. Hence there exists an element $\sigma \in L$ with $\rho(\sigma) = \mathfrak{S}_{\mu-1}$. From the property of \mathfrak{S}_{ν} -fold transitivity it follows that $R\sigma R$ is \mathfrak{S}_{μ} -fold transitive. Thus $\mathfrak{S}_{\mu} \subseteq R\sigma R \subseteq L \subseteq \mathfrak{S}_{\mu}$. If μ is a limit ordinal number, then $L \not\subset T_{\lambda}$ for every non-limit ordinal number $\lambda < \mu$. Hence there exists an element $\sigma \in L$ with $\rho(\sigma) = \mathfrak{S}_{\alpha}$ such that $\mathfrak{S}_{\alpha} \geqslant \mathfrak{S}_{\lambda}$. A similar argument as above can show that $R\sigma R$ is $\mathfrak{S}_{\alpha+1}$ -fold transitive. Hence $R\sigma R = \mathfrak{S}_{\alpha+1} \supset \mathfrak{S}_{\lambda}$. Thus $L \supset \mathfrak{S}_{\lambda}$. But λ is arbitrary, hence $L \supseteq \mathfrak{S}_{\mu}$. From $L \subseteq T_{\mu} \cap R$ it follows that $L = \mathfrak{S}_{\mu}$.

From this theorem we get the following well known result.

Corollary Let Ω be the ring of linear transformations of $\mathfrak{M} = \sum_{i \in \Gamma} \bigoplus Fu_i$, then every ideal of Ω must be an T_{ν} .

Proposition 1.1 Let R be primitive ring, then every \aleph_{ν} -fold transitive left ideal of R contains \mathfrak{S}_{ν} .

Proof We write $\sigma \in \mathfrak{S}_{v}$. Then $\mathfrak{M} = \sum_{I} \bigoplus Fu_{i} \bigoplus N(\sigma)$, $N(\sigma) = \{m \in \mathfrak{M} \mid m\sigma = 0\}$, and $|I| < \mathfrak{S}_{v}$. Since L is \mathfrak{S}_{v} -fold transitive, there exists an element $\tau \in L$ such that $u_{i}\sigma\tau = u_{i}\sigma$ for $i \in I$. Clearly $N(\sigma)\sigma\tau = 0 = N(\sigma)\sigma$. Thus $\sigma = \sigma\tau \in L$.

Theorem 1.5. Let R be a primitive ring with zero socle. Then every non-zero ideal of R have the same transitivity.

Proof Let R be \aleph_{ν} -fold transitive but not $\aleph_{\nu+1}$ -fold transitive. Since the socle of R is zero, then $\mathfrak{S}_{\nu}=0$ by Theorem 1.1. Hence every non-zero element σ of R has rank $\geqslant \aleph_{\nu}$. It is clear that we may assume that there exists an ordinal number μ such that $\mathfrak{S}_{\mu}=T_{\mu}\cap R\neq 0$ and $\mathfrak{S}_{\lambda}=0$ for all $\lambda<\mu$. Hence μ is not a limit ordinal number. Therefore, every element of \mathfrak{S}_{μ} has rank $\aleph_{\mu-1}$, where $\mu-1\geqslant \nu$. Now we prove that \mathfrak{S}_{μ} is \aleph_{ν} -fold transitive. In fact, we can prove that the ideal $R\sigma R$ generated by any non-zero element σ of \mathfrak{S}_{μ} is \aleph_{ν} -fold transitive. This is, because $\mathfrak{M}=\sum_{I}\oplus Fu_{i}\oplus N(\sigma)$, $\mathfrak{M}\sigma=\sum_{I}\oplus Fu_{i}\sigma$, $|I|=\aleph_{\mu-1}$. Let $\{\bar{u}_{i}\}_{i\in J}$ be a set of linearly independent elements, $\{b_{i}\}_{J}$ a set of elements of \mathfrak{M} . Since $|J|<\aleph_{\nu}$, it follows from the \aleph_{ν} -fold transitivity of R that there exists $r\in R$ such that $\bar{u}_{i}r=u_{i}$. Hence $\bar{u}_{i}r\sigma=u_{i}\sigma$ for $i\in J\subset I$. We have also an element $s\in R$ such that $\bar{u}_{i}r\sigma s=u_{i}\sigma s=b_{i}$ for $i\in J$. Clearly $r\sigma s\in R\sigma R\subset \mathfrak{S}_{\mu}$. Thus \mathfrak{S}_{μ} -fold transitive.

On the other hand, let L be an ideal of R and $\sigma \in L$, then σ belongs to some $\mathfrak{S}_{\tau} = T_{\tau} \cap R \neq 0$ where $\tau \geqslant \mu$. We can also show as before that $R\sigma R$ is \mathfrak{S}_{ν} -fold transitive. Hence L is \mathfrak{S}_{ν} -fold transitive. This completes the proof of our theorem.

Theorem 1.6. Let R be a primitiv ring, then R has zero socle if and only if the rank of any non-zero element of R is greater than the largest transitivity of R.

Proof The necessary part follows immediately from the proof of Theorem 1.5. Now we want to show the sufficient part. If R has non zero socle, then R has element with rank 1. This contradicts the assumption.

Theorem 1.7. Let R be a primitive ring, then R has zero socle if and only if R contains no right ideal of Ω , where Ω is the closure of R in the finite topology.

Proof If R contains a right ideal L of Ω and $\sigma \in L$, $\sigma \neq 0$, then $\mathfrak{M} = \sum_{i \in I} \oplus Fu_i \oplus N(\sigma)$, $\mathfrak{M} \sigma = \sum_{i \in I} \oplus Fu_i \sigma$, hence there exists an element $\omega \in \Omega$ such that $u_i \sigma \omega = u_i$, $u_j \sigma \omega = 0$ for $i \neq j$, $i, j \in I$. Let E_i be an element of Ω such that $u_i E_i = u_i$, $u_j E_i = 0$ for $i \neq j$, $i, j \in I$. $N(\sigma) E_i = 0$. Hence $E_i = \sigma \omega \in L$, where $i \in I$. This follows that R has an non-zero socle. Conversely, if R has an non-zero socle, then according to the proof of Theorem 1.2, R

contains an non-zero right ideal of Ω .

2. In this section we first introduce the concept of a pair of modules over ring with identity, which extends the concept of a pair of dual vector space over division ring. After this we study further the structure of primitive rings.

Let $\mathfrak{M} = \sum_{i \in I} \oplus Fu_i$ be a vector space over division ring F, $\mathfrak{N} = \sum_{i \in I} \oplus Fu_i$ be a subspace of \mathfrak{M} . Clearly, for any complementary vector space $\overline{\mathfrak{N}}$ of \mathfrak{N} , i. e. $\mathfrak{M} = \mathfrak{N} \oplus \overline{\mathfrak{N}}$, there exists an idempotent element l such that nl = n for $n \in \mathbb{N}$ and $\overline{\mathbb{N}}l = 0$. In this situation we say that l corresponds to $\overline{\mathbb{R}}$ and denote $l=l(\overline{\mathbb{R}})$, then it is easy to see that for any different complementary $\overline{\mathfrak{N}}_1$ from $\overline{\mathfrak{N}}$, the corresponding idempotent elements $l(\overline{\mathfrak{N}}_1)$ and $l(\mathfrak{N})$ are different. Now we choose an arbitrary such idempotent element l. Let \mathscr{A}^* be the set of linear transformations from \mathfrak{M} into \mathfrak{N} and Ω the ring of all linear transformations of \mathfrak{M} , then $\mathscr{A}^* = \Omega l$. In fact, if $a^* \in \mathscr{A}^*$, then it is clear $a^* =$ $a^*l \in \Omega l$. Conversely, Ωl is a set of linear transformations of $\mathfrak M$ into $\mathfrak N$. Hence $\Omega l \subseteq \Omega^*$. Therefore $\mathscr{A}^* = \Omega l$. Suppose that $\overline{\mathfrak{N}}_1$ is an another complementary space of \mathfrak{N} , and l_1 is the corresponding idempotent element, we can show that $\Omega l = \Omega l_1$. Since for $n \in \mathbb{N}$ it follows $nl = nl_1 = nll_1$ and for $\overline{n} \in \overline{\mathbb{R}}$ it follows $\overline{nl} = \overline{nll_1} = 0$, hence $l = ll_1$, $\Omega l \subseteq \Omega l_1$. Similarly, we have $\Omega l_1 \sqsubseteq \Omega l$. This means that $\mathscr{A}^* = \Omega l$ is independent on the choice of complementary spaces of \Re , it is uniquely determinated by \Re . Of course, $\mathscr{A}^* = \Omega l$ determinate the subspace $\mathfrak{R} = \mathfrak{M}\Omega l$. We have proved that the subspaces \mathfrak{R} and the left ideals $\mathscr{A}^* = \Omega l$ of Ω as above are one to one correspondent.

Now we consider the set \mathscr{A} of linear transformations from \Re to \Re . We want to show that $\mathscr{A} = l\Omega$. In fact, for any element $a \in \mathscr{A}$ there exists an element $\omega \in l\Omega$ such that $na = n\omega$ for all $n \in \Re$. Hence $\mathscr{A} \subseteq l\Omega$. Conversely, $l\Omega$ is clearly a set of linear transformations from \Re to \Re , hence $\mathscr{A} = l\Omega$. Therefore we have a pair of modules $\mathscr{A} = l\Omega$ and $\mathscr{A}^* = \Omega l$.

Let $\mathcal{H}=l\Omega l$, then l is the identity of \mathcal{H} . $\mathcal{A}=l\Omega$ is a left \mathcal{H} -module and $\mathcal{A}^*=\Omega l$ is a right \mathcal{H} -module.

We still denote Ω as the complete ring of $\mathfrak{M} = \sum_{i \in \Gamma} \oplus Fu_i$, and l is an idempotent element of Ω . Let $\mathscr{K} = l\Omega l$, $\mathscr{A} = l\Omega$, $\mathscr{A}^* = \Omega l$, then $\mathfrak{M} = \mathfrak{N} \oplus N(l)$, where \mathfrak{N} is a subspace and nl = n for all $n \in \mathfrak{N}$, $N(l) = \{x \in \mathfrak{M} \mid xl = 0\}$. Clearly, $\mathscr{A}^* = \Omega l$ and $\mathscr{A} = l\Omega$ are the complete rings of linear transformations of \mathfrak{M} to \mathfrak{N} and of \mathfrak{N} to \mathfrak{M} respectively. This means that the pair of dual modules $\mathscr{A} = l\Omega$ and $\mathscr{A}^* = \Omega l$ over $\mathscr{K} = l\Omega l$ are uniquely correspondent to the subspace \mathfrak{N} of \mathfrak{M} .

Definition 2.1. As stated above, we call the subspace \Re the underlying space of the pair of dual modules $\mathscr{A} = l\Omega$ and $\mathscr{A}^* = \Omega l$ over \mathscr{K} . Meanwhile, we call the \mathscr{A} and \mathscr{A}^* are the underlying modules over \mathscr{K} of \Re .

Consider the pair of dual modules $\mathcal{A} = l\Omega$, $\mathcal{A}^* = \Omega l$ over $\mathcal{H} = l\Omega l$. As usual we

define the bilinear form as follows: $(a, a^*) = aa^*$ for $a \in \mathcal{A}$, $a^* \in \mathcal{A}^*$. Clearly, $(\mathcal{A}, \mathcal{A}^*) = \mathcal{K}$. We want to show that the bilinear form $(\mathcal{A}, \mathcal{A}^*)$ is non-singular. In fact, if $a^* \in \mathcal{A}^*$ and $\mathcal{A}a^* = 0$, then we have $\Omega l \Omega a^* = 0$, hence $a^* = 0$. Similarly, if $a \in \mathcal{A}$ and $a\mathcal{A}^* = 0$, then a = 0.

Definition 2.2. Let $\mathscr{A} = l\Omega$, $\mathscr{A}^* = \Omega l$ be a pair of dual modules over $\mathscr{K} = l\Omega l$, $\mathscr{A}'a$ submodule of \mathscr{A}^* . Suppose that a $\mathscr{A}' = 0$, then a = 0 for $a \in \mathscr{A}$. Then $(\mathscr{A}, \mathscr{A}')$ is called a pair of dual modules over \mathscr{K} .

Definition 2.3. Let \mathfrak{N} be the underlying space of the pair of dual modules $\mathscr{A} = l\Omega$, $\mathscr{A}^* = \Omega l$ over $\mathscr{K} = l\Omega l$. We call the pair of dual modules $(\mathscr{A}, \mathscr{A}')$ over \mathscr{K} the \mathfrak{S}_{μ} -typical dual modules over \mathscr{K} if \mathscr{A}' is \mathfrak{S}_{μ} -fold transitivity of \mathfrak{M} to \mathfrak{N} , i.e. for any set of F-linearly independent elements $\{x_i\}_{i\in I}$ of \mathfrak{M} and any set of elements $\{y_i\}_{i\in I}$ of \mathfrak{N} with $|I| < \mathfrak{S}_{\mu}$ there exists an element $a' \in \mathscr{A}'$ such that $x_i a' = y_i$ for $i \in I$.

Lemma 2.1. Let $\mathscr{A}=l\Omega$, $\mathscr{K}=l\Omega l$. Then the set of \mathscr{K} -endomorphisms of left \mathscr{K} -module \mathscr{A} is Ω .

Proof Denote the set of \mathscr{K} -endomorphisms of \mathscr{A} by $\widetilde{\Omega}$. If $\sigma \in \Omega$ and $\mathscr{A}\sigma = 0$, then clearly $\sigma = 0$, hence $\Omega \subseteq \widetilde{\Omega}$. Now we want to prove that $\Omega = \widetilde{\Omega}$. In fact, it is clear that $\mathscr{A} = l\Omega = l\widetilde{\Omega}$. For $l^2 = l$ we have $\mathfrak{M} = \mathfrak{N} \oplus N(l)$, $\mathfrak{N} = \sum_{i \in I} \oplus Fu_i$, $|I| = \rho(l)$, the rank of 1. Then there exists a set $\{E_i\}_{i\in I}$ of idempotent elements with ranks 1 such that u_iE_i u_i , $u_j E_i = 0$ for $i \neq j$, i, $j \in I$ and $N(l) E_i = 0$. Clearly, $E_i l = l E_i = E_i$ for $i \in I$. Write $A_i = E_i \mathscr{A}$, then $A_i = E_i l \mathscr{A} = E_i \Omega = E_i \widetilde{\Omega}$ for $i \in I$. It is clear $K_i = E_i \Omega E_i \subseteq l \Omega l = \mathscr{K}$, $A_i \subset I$ \mathscr{A} , hence every element of $\widetilde{\Omega}$ can be induced in space A_i a K_i -linear transformation. Now we want to show that if $\tilde{\sigma} \in \tilde{\Omega}$ and $A_i \tilde{\sigma} = 0$, then $\mathcal{A} \tilde{\sigma} = 0$. For this purpose we prove first, if $\tilde{\sigma} \in \tilde{\Omega}$ and $A_i \tilde{\sigma} = 0$ for some A_i , $i \in I$, then $A_j \tilde{\sigma} = 0$ for all $A_j = E_j \Omega$, $j \in I$. In fact, if it were false, i. e. there would exist $a_i \tilde{\sigma} \neq 0$ for some element a_i , then as above it follows $\sigma \in A_i \subset \Omega$, if we set $\sigma = a_i \widetilde{\sigma}$. By [2] we know that $A_i = E_i \Omega$ as vector space over $K_i = E_i \Omega E_i$ is (ψ, I) -isomorphic to $A_i = E_i \Omega$ as vector space over $K_i =$ $E_i\Omega E_i$. We denote this (ψ, I) -isomorphism by S, then from $\sigma \in \Omega$, $A_i\widetilde{\sigma} = 0$ it follows that $(E_j\sigma)$ $S = (E_jS)\sigma \subseteq A_i\sigma = (A_ia_j)\widetilde{\sigma} \subseteq A_i\widetilde{\sigma} = 0$, hence $E_j\sigma = 0$ and $a_j\widetilde{\sigma} = 0$. This implies the contradiction with $a_i \widetilde{\sigma} \neq 0$. On the other hand $\mathfrak{M} = \sum_{l \in I} \bigoplus Fu_l \bigoplus N(l)$, $\Omega \subset \widetilde{\Omega}$, $l\Omega\widetilde{\sigma} \sqsubseteq l\Omega$. It follows from $E_i\Omega\widetilde{\sigma} = 0$ that $u_i(l\Omega\widetilde{\sigma}) = u_i((E_il)\Omega\widetilde{\sigma}) = 0$ for $i \in I$ and N(l) $(l\Omega\tilde{\sigma})=0$, hence $\mathcal{A}\tilde{\sigma}=l\Omega\tilde{\sigma}=0$. This proves the above assertion. Now $\tilde{\sigma}$ is a \mathcal{K} endomorphism of \mathscr{A} , hence from $\mathscr{A}\tilde{\sigma}=0$ it follows $\tilde{\sigma}=0$. This proves that every element of $\widetilde{\Omega}$ must be a zero endomorphism of \mathscr{A} if its induced linear transformation in A_i is a zero one. Again, if $\widetilde{\sigma} \in \widetilde{\Omega}$, then $\widetilde{\sigma}$ is an induced K_i -linear transformation of A_i . Hence there exists an element σ of Ω such that σ is equal to $\tilde{\sigma}$ in A_i , i.e. $A_i(\sigma-\tilde{\sigma})=0$. But $\Omega\subset\tilde{\Omega}$, hence $\mathcal{A}(\sigma-\tilde{\sigma})=0$ by the above assertion. Then it follows $\sigma = \widetilde{\sigma} \in \Omega$. Therefore $\Omega = \widetilde{\Omega}$.

Definition 2.4. Let $\mathcal{A} = l\Omega$ be a left module over $\mathcal{K} = l\Omega l$, f is said to be a \mathcal{K} -linear function from \mathcal{A} to \mathcal{K} if and only if f is a \mathcal{K} -homomorphism from left module \mathcal{A} over \mathcal{K} to left module \mathcal{K} over \mathcal{K} . Denote the set of such linear functions by \mathcal{A}^* , then \mathcal{A}^* is said to be conjugate module of \mathcal{A} . Clearly \mathcal{A}^* is a right module over \mathcal{K} .

Theorem 2.1. The conjugate module of $\mathcal{A} = l\Omega$ is $\mathcal{A}^* = \Omega l$.

Proof It is clear that $\Omega l \subseteq \mathscr{A}^*$. It needs to prove $\mathscr{A}^* \subseteq \Omega l$. Let $f \in \mathscr{A}^*$, then f is also a \mathscr{K} -endomorphism of \mathscr{K} -module \mathscr{A} . Hence $f \in \Omega$ by Lemma 2.1. But for any element a of \mathscr{A} we have af = h = afl for $h \in \mathscr{K}$. Therefore $f = fl \in \Omega l$.

Definition 2.5. Let Ω be the complete ring of linear transformations of vector space $\mathfrak{M} = \sum_{i \in \Gamma} \bigoplus Fu_i$ over F. An element l of Ω is called idempotent relative to basis $\{u_i\}_{i \in \Gamma}$ if and only if there exists a subset I of Γ such that $u_i l = u_i$ for $i \in I$ and $u_j l = 0$ for $j \in \Gamma \setminus I$.

Theorem 2.2. Let R be a dense ring of the complete ring of linear transformations, then R is \aleph_v -fold transitive if and only if $lR = l\Omega$ for all idempotent relative to a basis $\{u_i\}_{i \in \Gamma}$ with rank of $l < \aleph_v$.

Proof The necessary condition is clear from the proof of Theorem 1.2, (i). Now we prove the sufficient condition. Let $\{x_i\}_{i\in I}$ be a set of linearly independent elements of the vector space $\mathfrak{M} = \sum_{i\in I^*} \bigoplus Fu_i$ and $\{y_i\}_{i\in I}$ an arbitrary set of \mathfrak{M} , $|I| < \aleph_{\nu}$. Then there exists a subset $\{u_i\}_{i\in I^*}$ of $\{u_i\}_{i\in I^*}$ such that $x_i \in \sum_{i\in I^*} \bigoplus Fu_i$ for $i\in I$. We have $\mathfrak{M} = \sum_{i\in I^*} \bigoplus Fu_i \oplus \sum_{I\subseteq I^*} \bigoplus Fu_j$, where $|I^*| < \aleph_{\nu}$. Hence there exists an element $\omega \in \Omega$ such that $x_i \omega = y_i$ for $i\in I$, therefore there exists an idempotent element I^* such that $u_i I^* = u_i$ for $i\in I^*$, and $u_i I^* = 0$ for $j\in I\setminus I^*$. Since $I^*R = I^*\Omega$, there exists an element $r\in R$ such that $x_i r = y_i$ for $i\in I$. This means that R is \aleph_{ν} -fold transitivity.

Corollary. Let R be a dense subring of the complete ring Ω of linear transformations, $\mathfrak{S}_{\nu} = T_{\nu} \cap R$. Then \mathfrak{S}_{ν} is ν -socle if and only if $l\mathfrak{S}_{\nu} = l\Omega$ for all idempotent elements l relative to a basis $\{u_i\}_{i \in \Gamma}$ with rank of $l < \mathfrak{S}_{\nu}$.

Denote $(\mathscr{A}, \mathscr{A}')$ as a pair of dual modules over \mathscr{K} and $\mathscr{L}(\mathscr{A}, \mathscr{A}') = \{\omega \in \Omega \mid \omega \mathscr{A}' \subseteq \mathscr{A}'\}$, $G_v(\mathscr{A}, \mathscr{A}') = \{l \mid l \in \mathscr{L}(\mathscr{A}, \mathscr{A}'), \text{ and the rank of } l < \aleph_v\} = T_v \mathscr{L}(\mathscr{A}, \mathscr{A}').$ Then we have the following theorem:

Theorem 2.3. (Structure theorem with non-limit ordinal number) Let ν be an non-limit ordinal number, then the following conditions are equivalent:

- (I) R is a primitive ring with ν -socle \mathfrak{S}_{ν} ,
- (II) R is a \aleph_{ν} -fold transitive ring of linear transformations of a vector space \mathfrak{M} over division ring F containing an non-zero element with rank $< \aleph_{\nu-1}$,
- (III) there exists a pair of dual modules $(\mathcal{A}, \mathcal{A}')$ over \mathcal{K} such that R is a subring of $\mathcal{L}(\mathcal{A}, \mathcal{A}')$ containing the $G_*(\mathcal{A}, \mathcal{A}')\mathcal{A}$.

Proof (I) \rightarrow (III). By assumption $\mathfrak{S}_{\nu} = T_{\nu} \cap R$ is ν -socle. Hence \mathfrak{S}_{ν} is \mathfrak{R}_{ν} -fold

transitive. Then there exists an idempotent element $l \in \mathfrak{S}_{\nu}$ with rank of $l = \mathfrak{S}_{\nu-1}$ such that $Rl\Omega = \mathfrak{S}_{\nu}$ (see the proof of Theorem 1.2(III)). Write $\mathscr{A} = lR$, $\mathscr{A}' = Rl$. By Theorem 2.2 we have $\mathscr{A} = lR = l\Omega$. We want to prove that $G_{\nu}(\mathscr{A}, \mathscr{A}') = \mathfrak{S}_{\nu}$. In fact, if $\sigma \in G_{\nu}(\mathscr{A}, \mathscr{A}')$, then $\sigma \mathscr{A}' \subset \mathscr{A}'$, hence $\sigma \mathfrak{S}_{\nu} \subseteq \mathfrak{S}_{\nu}$. From the property of ν -socle it follows that $\sigma \in \mathfrak{S}_{\nu}$. Hence $G_{\nu}(\mathscr{A}, \mathscr{A}') \subseteq \mathfrak{S}_{\nu}$. Conversely, it is clear $\mathfrak{S}_{\nu} \subseteq G_{\nu}(\mathscr{A}, \mathscr{A}')$ by the definition of $G_{\nu}(\mathscr{A}, \mathscr{A}')$. We want to prove that $G_{\nu}(\mathscr{A}, \mathscr{A}') = G_{\nu}(\mathscr{A}, \mathscr{A}')\mathscr{A}$. Since $\mathscr{A} = lR = l\Omega$, it then follows immediately. Finally we want to prove that $(\mathscr{A}, \mathscr{A}')$ is a pair of \mathfrak{S}_{ν} -typical dual modules. Let \mathfrak{N} be the underlying vector space of the pair of modules $\mathscr{A} = l\Omega$ and $\mathscr{A}^* = \Omega l$ over $\mathscr{K} = l\Omega l$, $\mathfrak{N} = \sum_{i \in I} \oplus Fu_i$, $\mathfrak{M} = \sum_{i \in I} \oplus Fu_i \oplus N(l)$, $N(l) = \{x \in \mathfrak{M} | xl = 0\}$, and the rank of $l = |I| = \mathfrak{S}_{\nu-1}$. Then by Definition 2.3 we need only to prove that $\mathscr{A}' = Rl$ is \mathfrak{S}_{ν} -fold transitive from \mathfrak{M} to \mathfrak{N} . Let $\{x_i\}_{i \in I'}$ be a set of linearly independent elements of \mathfrak{M} with $|I'| < \mathfrak{N}_{\nu}$, $\{y_i\}_{i \in I'}$ be a set of arbitrary elements of \mathfrak{N} , then there exists an element $r \in R$ such that $x_i r = y_i$ for $i \in I'$, since R is \mathfrak{N}_{ν} -fold transitive. From $y_i l = y_i$ it follows immediately that $r = rl \in Rl = \mathscr{A}'$.

(III) \rightarrow (I). Let $(\mathscr{A}, \mathscr{A}')$ be a pair of \aleph_{ν} -typical dual modules over \mathscr{K} , and $\mathscr{A} = l\Omega \mathscr{A}^* = \Omega l$, $\mathscr{K} = l\Omega l$. Let \mathfrak{N} be the underlying subspace of the pair of \mathscr{A} and \mathscr{A}' over \mathscr{K} , $\mathfrak{N} = \sum_{i \in I} \mathfrak{P} F u_i$, $|I| = \text{the rank of } l = \aleph_{\nu-1}$, $u_i l = u_i$ for $i \in I$. Since \mathscr{A}' is a \mathscr{K} -subspace of \mathscr{A}^* , $\mathscr{A}' \mathscr{A}' \subseteq \mathscr{A}'$. Let $\{x_i\}_{i \in I'}$ be a set of linearly independent elements of \mathfrak{M} , $|I'| < \aleph_{\nu}$ and let $\{y_i\}_{i \in I'}$ be linearly independent elements of \mathfrak{N} , $\{z_i\}_{i \in I'}$ any set of \mathfrak{M} . Then from the \aleph_{ν} -fold transitivity of \mathscr{A}' it follows that there exists an element $a' \in \mathscr{A}'$ such that $x_i a' = y_i$ for $i \in I'$ and an element $\omega \in \Omega$ such that $y_i \omega = z_i$ for $i \in I'$. Hence $x_i a' \omega = z_i$ for $i \in I'$. Since $a' \omega \in \mathscr{A}' \mathscr{A}'$, $\mathscr{A}' \mathscr{A}$ is \aleph_{ν} -fold transitive. On the other hand, from $\mathscr{A}' \mathscr{A}' \subset \mathscr{A}'$ it follows $\mathscr{A}' \subset \mathscr{A}(\mathscr{A}, \mathscr{A}')$. Since $\mathscr{A}' \subset T_{\nu}$, then $\mathscr{A}' \subset G_{\nu}(\mathscr{A}, \mathscr{A}')$. Therefore $G_{\nu}(\mathscr{A}, \mathscr{A}') \mathscr{A}$ is \aleph_{ν} -fold transitive. Since $\mathfrak{S}_{\nu} = T_{\nu} \cap R \supseteq G_{\nu}(\mathscr{A}, \mathscr{A}') \mathscr{A}$, \mathfrak{S}_{ν} is \aleph_{ν} -fold transitive. By Theorem 1.3 \mathfrak{S}_{ν} is ν -socle.

(I) \rightarrow (III) is clear. Now we need only to prove (II) \rightarrow (I). If R is \aleph_{ν} -fold transitive and contains an element σ with rank = $\aleph_{\nu-1}$, then, by the foregoing proof, $R\sigma\Omega$ is \aleph_{ν} -fold transitive and contains in R. Hence $R\sigma\Omega = \mathfrak{S}_{\nu}$. This completes the proof.

Corollary Let ν be an non-limit ordinal number. Suppose that there exists a pair of \mathfrak{A}_{ν} -typical dual modules $(\mathscr{A}, \mathscr{A}')$ such that $\mathscr{L}(\mathscr{A}, \mathscr{A}') \supset R \supset G_{\nu}(\mathscr{A}, \mathscr{A}')\mathscr{A}$, then $G_{\nu}(\mathscr{A}, \mathscr{A}')\mathscr{A} = G_{\nu}(\mathscr{A}, \mathscr{A}') = \mathscr{A}'\mathscr{A} = \mathfrak{S}_{\nu}$ and $\mathscr{A}' = \mathfrak{S}_{\nu}\mathscr{K}$, $\mathfrak{S}_{\nu} = \mathscr{A}'\Omega$.

Proof In the proof of Theorem 2.3, we see that $\mathscr{A}'\mathscr{A}$ is \aleph_{ν} -fold transitive and $\mathfrak{S}_{\nu} \supseteq G_{\nu}(\mathscr{A}, \mathscr{A}') \mathscr{A} \supseteq \mathscr{A}'\mathscr{A}$. On the other hand, since $\mathscr{A}'\mathscr{A}$ is a left ideal of R, by Proposition 1.1 $\mathscr{A}'\mathscr{A} \supseteq \mathfrak{S}_{\nu}$. This proves that $G_{\nu}(\mathscr{A}, \mathscr{A}') \mathscr{A} = \mathscr{A}'\mathscr{A} = \mathfrak{S}_{\nu}$. It is clear that $\mathfrak{S}_{\nu} = T_{\nu} \cap R \sqsubseteq T_{\nu} \cap \mathscr{L}(\mathscr{A}, \mathscr{A}') = G_{\nu}(\mathscr{A}, \mathscr{A}')$. If $\sigma \in G_{\nu}(\mathscr{A}, \mathscr{A}')$, then $\sigma \mathscr{A}' \sqsubseteq \mathscr{A}'$, hence $\sigma \mathfrak{S}_{\nu} \sqsubseteq \mathfrak{S}_{\nu}$. Using the property of ν -socle we have $\sigma \in \mathfrak{S}_{\nu}$. Hence $G_{\nu}(\mathscr{A}, \mathscr{A}') = \mathfrak{S}_{\nu}$.

Finally we see that $\mathfrak{S}_{\nu}\mathcal{K} = \mathcal{A}'\mathcal{A}\mathcal{K} = \mathcal{A}'\mathcal{K} = \mathcal{A}'$, $\mathcal{A}'\Omega = \mathfrak{S}_{\nu}\mathcal{K}\Omega = \mathcal{A}'\mathcal{A}\Omega = \mathcal{A}'\mathcal{A} = \mathfrak{S}_{\nu}$. This completes our proof.

Remark. If we set $\nu=0$, i. e. \mathfrak{S}_0 the socle of R, then it follows immediately the well-known structure theorem of primitive ring with non-zero socle.

Theorem 2.4. (Structure theorem with limit ordinal numbers). Let ν be a limit ordinal number, then the following conditions are equivalent:

- (i) R is a primitive ring with ν -socle,
- (ii) R is $\$_{\nu}$ -fold transitive and R contains an element with rank = $\$_{\mu}$ for any non-limit ordinal number $\mu < \nu$,
- (iii) there exists a pair of \mathbf{X}_{μ} -typical dual modules $(\mathcal{A}_{\mu}, \mathcal{A}'_{\mu})$ such that $\mathcal{L}(\mathcal{A}_{\mu}, \mathcal{A}'_{\mu}) \supset R \supset G_{\mu}(\mathcal{A}_{\mu}, \mathcal{A}'_{\mu}) \mathcal{A}_{\mu}$ for every non-limit ordinal number $\mu < \nu$.

Proof (i) \rightarrow (iii). Suppose that $\mathfrak{S}_{\nu} = T_{\nu} \cap R$ is ν -socle, then for any $\mu < \nu$, \mathfrak{S}_{μ} is \mathfrak{S}_{μ} -fold transitive by Lemma 1.2. Hence if $\mu_1 < \mu_2 < \nu$, then we have $\mathfrak{S}_{\mu_1} \subseteq \mathfrak{S}_{\mu_2}$ and $\mathfrak{S}_{\nu} = \bigcup_{\mu < \nu} \mathfrak{S}_{\mu}$, where μ may be assumed as non-limit ordinal number. From Theorem 2.3 it follows that for every non-limit ordinal number $\mu < \nu$ there exists a pair of \mathfrak{S}_{μ} -typical dual modules $(\mathscr{A}_{\mu}, \mathscr{A}'_{\mu})$ over $\mathscr{K}_{\mu} = l_{\mu}\Omega l_{\mu}$ such that $\mathscr{L}(\mathscr{A}_{\mu}, \mathscr{A}'_{\mu}) \supset R \supset G_{\mu}$ $(\mathscr{A}_{\mu}, \mathscr{A}'_{\mu}) \mathscr{A}_{\mu}$. This completes the proof of (i) \rightarrow (iii). Now we prove (iii) \rightarrow (i). In fact, for every non-limit ordinal number $\mu < \nu$ there exists a pair of \mathfrak{S}_{μ} -typical dual modules $(\mathscr{A}_{\mu}, \mathscr{A}'_{\mu})$ by the assumption such that $\mathscr{L}(\mathscr{A}_{\mu}, \mathscr{A}'_{\mu}) \supset R \supset G_{\mu}(\mathscr{A}_{\mu}, \mathscr{A}'_{\mu}) \mathscr{A}_{\mu}$. From the above corollary, it follows that \mathfrak{S}_{μ} is \mathfrak{S}_{μ} -fold transitive. Hence $\mathfrak{S}_{\nu} = \bigcup_{\mu < \nu} \mathfrak{S}_{\mu}$ is \mathfrak{S}_{ν} -fold transitive. Therefore \mathfrak{S}_{ν} is ν -socle by Theorem 1.3.

Finally we want to prove that (i) and (ii) are equivalent. If (i) is true, then R is \aleph_{ν} -fold transitive. According to Lemma 1.2, \mathfrak{S}_{μ} is \aleph_{μ} -fold transitive for every non-limit ordinal number $\mu < \nu$. Hence there exists an element $l_{\mu} \in \mathfrak{S}_{\mu}$ with rank= $\aleph_{\mu-1}$. This implies that (ii) is true. Conversely, if (ii) is true, then $\mathfrak{S}_{\mu} \neq 0$ for every μ and $\mathfrak{S}_{\mu_1} \subsetneq \mathfrak{S}_{\mu_2} \subsetneq \mathfrak{S}_{\nu}$ for $\mu_1 < \mu_2 < \nu$. By Lemma 1.1, \mathfrak{S}_{ν} is \aleph_{ν} -fold transitive. Applying Theorem 1.3 we see that \mathfrak{S}_{ν} is ν -socle. Hence (i) is true. This completes the proof.

Remark 1. Theorem 2.3 implies the well-known structure theorem, if we set $\nu = 0$, i. e. $\aleph_{\nu} = \aleph_{0}$.

Remark 2. Denote $\mathfrak{M} = \sum_{i \in \Gamma} \oplus Fu_i$, and Ω the complete ring of F-linear transformations of \mathfrak{M} . Let $l: u_i l = u_i$ for $i \in I$ and $u_j l = 0$ for $j \in \Gamma \setminus I$. Then there exists a set $\{E_i\}_{i \in \Gamma}$ such that $u_i E_j = \delta_{ij} u_i$ for $i, j \in \Gamma$. Write $\mathscr{A} = l\Omega$, $\mathscr{A}^* = \Omega l$, and \mathscr{A}' a submodule of \mathscr{A}^* over $\mathscr{K} = l\Omega l$, let $A_i = E_i \Omega$, $A'_i = \mathscr{A}' E_i$, $K_i = E_i \Omega E_j$ for $i \in I$. Denote $\mathscr{L}(A_i, A'_i) = \{\omega \in \Omega \mid \omega A'_i \subseteq A'_i\}$. Then it is clear $\mathscr{L}(\mathscr{A}, \mathscr{A}') \subset \mathscr{L}(A'_i, A'_i)$, $\mathfrak{F}(A_i, A'_i) = \{\omega \in \mathscr{L}(A_i, A'_i), \text{ and the rank of } \omega < \infty\} \subset \mathfrak{S}_{\nu}$. In fact, A'_i is a subspace of $A^*_i = \Omega E_i$ over K_i , i. e. $A'_i K_i \subseteq A'_i$, $A'_i \subset \mathscr{A}^* E_i = \Omega E_i = A^*_i$. On the other hand, if $\mathscr{A}' \subset \mathscr{A}'$, then $\mathscr{A}' E_i \subseteq \mathscr{A}' E_i$, i. e. $\mathscr{A}'_i \subseteq A'_i \subseteq A'_i$. Hence $\mathscr{L}(\mathscr{A}, \mathscr{A}') \subset \mathscr{L}(A_i, A'_i)$. We

have $\mathscr{L}(A_i, A_i')\supset \mathscr{L}(\mathscr{A}, \mathscr{A}')\supset R\supset \mathfrak{S}_{\nu}\supset \mathfrak{F}(A_i, A_i')$. This refines the well-known chain $\mathscr{L}(A_i, A_i')\supset R\supset \mathfrak{F}(A_i, A_i')$ of usual structure theorem.

Remark 3. Suppose that the condition (iii) of Theorem 2.4 is true, then $\bigcap_{\mu<\nu} \mathscr{L}(\mathscr{A}_{\mu}, \mathscr{A}'_{\mu}) \supset R \supset \mathfrak{S}_{\nu} = \bigcup_{\mu<\nu} G_{\mu}(\mathscr{A}_{\mu}, \mathscr{A}'_{\mu}) \mathscr{A}_{\mu} = \bigcup_{\mu<\nu} G_{\mu}(\mathscr{A}_{\mu}, \mathscr{A}'_{\mu}) \longrightarrow \bigcup_{\mu<\nu} \mathscr{A}'_{\mu}\mathscr{A}_{\mu}.$

Definition 2.6. A primitive ring R with ν -socle \mathfrak{S}_{ν} is said to be maximal if R cannot be imbedded properly in another primitive ring R' with the same ν -socle.

Theorem 2.5. Let ν be a non-limit ordinal number. Then a primitive ring R with ν -socle \mathcal{E}_{ν} is maximal if and only if R is isomorphic to a ring $\mathcal{L}(\mathcal{A}, \mathcal{A}')$ where $(\mathcal{A}, \mathcal{A}')$ is a pair of \mathcal{R}_{ν} -typical dual modules.

Proof Of course, we may assume that R is a subring of the complete ring Ω of linear transformations of a vector space. We prove first the necessity of the condition. Let l be an idempotent element of \mathfrak{S}_{ν} with rank $\mathfrak{S}_{\nu-1}$, and denote $\mathscr{A}=lR$, $\mathscr{A}'=Rl$, $\mathscr{K}=lRl$, then we have $\mathfrak{S}_{\nu}\subset R\subset \mathscr{L}(\mathscr{A},\mathscr{A}')$. Since R is maximal by assumption, hence $R=\mathscr{L}(\mathscr{A},\mathscr{A}')$. Now we prove the sufficiency of the condition. If $R=\mathscr{L}(\mathscr{A},\mathscr{A}')\supset\mathfrak{S}_{\nu}$, then by Corollary of Theorem 2.3 $\mathfrak{S}_{\nu}\mathscr{K}=\mathscr{A}'$. If $L\supset R=\mathscr{L}(\mathscr{A},\mathscr{A}')\supset\mathfrak{S}_{\nu}$ and \mathfrak{S}_{ν} is ν -socle of L, then $L\mathfrak{S}_{\nu}\subset\mathfrak{S}_{\nu}$. Hence $L\mathscr{A}'\subseteq\mathscr{A}'$. This proves that $L\subseteq\mathscr{L}(\mathscr{A},\mathscr{A}')$. Hence $\mathscr{L}(\mathscr{A},\mathscr{A}')$ is maximal.

Remark. Theorem 2.5 generalizes the well-known theorem, if $\mathfrak{S}_0 = \mathfrak{S}_{\nu}$ is usual socle of primitive ring (see p. 88 Theorem 1[1]).

References

[1] Jacobson, N., Structure of ring, Amer. Math. Soci. Colloq. Publ., 37 (1956).

[2] Xu Yonghua., A Theory of rings that are isomorphic to the complete rings of linear transformations (I), Acta Math. Sinica, 22 (1979), 204—218.

[3] Xu Yonghua, A theory of rings that are isomorphic to the complete rings of linear transformations (IV), Acta Math. Sinica, 22 (1979), 556—568.