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Abstract

Tn this paper the author introduces two concepts, i. 6. the concept of go-colled wv-socles
of primitive rings and the concept of a pair of dual modules. Then the author establishes a
general structure theorem for primitive rings with v-socles, which implies the well-known
structure theorem for primitive rings with usual non-zero socles.

Tt is well known that the investigation of structure of primitive rings is usually
restricted by their non-zero socles. There is almost nothing to do with the structure
of prinﬁitive rings without non-zero socles. Even if we study the structure of primitive
rings with non-zero socles, we are always concerned for their. properties of ﬁnite-fold
jransitivity. But in general, primitive rings are infinite-fold transitive, Thus for the
purpose of studying deeply the structure of primitive rings it is useful %o intrbduée
more general concepb of so-called p—socles™, Using the concept of v_—soéles and ¥,~fold
transitivity we shall in this paper characterize some basic proporties of y-socles. Then
in §2 we extend the notion of a pair of dual vector spaces t0 $he one of a pair of dual
_modules.‘ Besides, it permits us 1o associate with every primitive ring having y—soole a
pair of dual modules and then woe establish a general structure theorem for primitive
Tings with p—socles, which implies the Well-knowﬁ gtruoture theorem for .prix.niti:ve
rings with usual non-zero socles. | o ,

1. Before preceding our theory we shall discuss a few preliminaries. Throughout
this paper the term “yeotor space” without modifies will always mean left veotor space
over a division riﬂg and primitive ring B alWays mean dense subring of the complete
ring Q of all linear sransformations of a vector space. A primitive ring B is called

,~fold transitive if and only if for any subset {@}ier of linearly independent
clements @; and any subset {y:} scx of vechor space M thore exists an element r € R such
that @y =9 for i€ I, where the cardinal number of I, denoted by |I|, is smaller
than §,. Specially, we say that R is finitefold transitive if §,=%,. A primitive ring
R is called having the lergest §,~transitivity if B is \,—fold transitive and not ¥y4i—
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fold transitive. Twe primitive rings are called the same fold transitivity if
their largest transitivities are the same. Let Q be the complete ring of linear
transformations of vector space M, R a dense subring of Q. We always denote
T, ={w€ 2| p(w) <%,}, where p(w) denotes the rank of w. And we always mean
N (o) ={meM | mo =0} for any c€Q, and call N (o) the annihilator of o in m.

. Lemma 1.1. Let M be a left wector space over division ring F, Q the ring of linear
transformations, T, ={w€R|p(®) <%,}. Let B be a subring of Q which is N,~fold
sransitive, and S,=T NR. Supposs thai B, %8, for any ordinal number w<v. Then
&, is W,~fold transitive. -

Proof If ©,=0 for any ordinal number w<w, then » is not a limit ordinal
number, because if » is 2 Jimit ordinal number, then T,= Hv T,. From this it follows

that ,=T,NR= U (RNT,)=0. Hence v is not a limit number. It is easy 1o see
n<y .

shat there exists an elemnt o€ &, with p(0) =8yt Now we prove that RoRis $,~fold
jransitive. In faot, we have M= OFu®N (o), where N (o) is the annihilator of
terl

oin M, |I|=¥,-a Hence %Row?} @Fuwo. Denote {;}ses 88 @ sob Of F-linearly
€

independent elements, {b;} ey an arbitrary sob of elements of M and |J|<¥,. Then
thero exists an element rER such that ugr=usf or J€ JCI, since R is 8,—fold
transitive. On the other hand, there exists. an element s€R such that wos=>b; for
4 €J, since the seb {wio}ier I8 linearly independent. Therefore wras=Db; for & J. But
rosc RoRCS,. This implies that S, is ¥,~fold transitive.

Now we may assume that there exists an w<<y such that &,%0. By hypothesis for
our lemma we can choose an olement o€, such that p(o) =>%,. From the above
proof we know that RoR is §,-fold transitive, hence &, is ¥,—fold transitive. On the
other hand, by hypothesis we have S.# S, where p<a<y. Therefore S, is N.-fold
transitive. This completes our proof. |

Lemma 1.2. supposé &,=T,NR is 8,~fold transitive, then &, is ¥ ,—fold transitive
for any w<v.

Paoof Let {@itier denotes a set of linearly independent elements of M, |I|<Yy,
{y:}icr an arbitrary sot of elements of M. Then from the §,—fold transitivity of &, ib
follows that there exists an olement ¢ €@, such that #0=% for ¢€I. Hence
M= DF @ %@Fu;@)N (¢), where N (¢) = {nEM|2wo=0}, | 7| <8,. This implies

€X .

that Mo =D OFn0® ; @ Fuo. Hence there exists an .element o' €6, such that
4

w0’ =mo for 1€ 1 and wo'o=0 for j cJ. Clearly N (o) oo’ =0. Beocause {200 }ier 18
linearly independent, there exists an element "' €S, guch that moo’c" =Y for ¢€ 1.
Let v=00'c", then &:i7="Y: sor €I and uw=0 for jed, N(o)r=0. But v=00'c"
c€RNT,=&,. This proved that &, is §,~fold transitive.
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Theorem 1.1. Let R be a primitive ring which is N,~ fold tmnsztfwe, then R
~ have zero socle if and only if ©,=0.

Proof The sufficiency of the condition is clear. Now we are going to prove the
necessity of the condition. If &,=0 for all u<w, then by Lemma 1.1 either &,=0 or
©, is 8,-fold transitive. If the latter case occurs, then &, is No—fold transitive by
Lemma 1.2, hence R would have non-zero socle. This contradicts the assumption of
our lemma. Hence &,=0. Now we may assume ‘that there exists an ordinal number
w<v such that &,%#0. Let & be the least ordinal number of all number z<<y with
©,=©,. Then we have &,% &, for p<a. By the property of §,~fold transitivity of R
and Lemma 1.1 we can easily see that &, is §,~fold transitive. Hence &, is §,-fold

_transitive by Lemma 1.2 for w<a. This implies that B has non-zero socle. Thus we
have again a contradiction. - :

Definition 1.1. Let Q be the 'complete ring of linear transformations of M=
> @Fu;, R be a subring of 2. S,=T,NR. We call &, v-socle of R if and only if it

el

satisfies the following conditions: (1)&,QC6, (i1)S, is W,~fold fransitive(iii)if o €T,
and 0,26, then c €6,.

Theorem 1.2. Let R be a primitive ring with 8,~fold transitivity, ©,%0. Then
there exists an ordinal number u<v such that S, s p—socle and &, is also p—socle for
any p<ph. _ :

Proof TFirst we show that if &, is »-socle, then &, is p-socle for any p<v. For
this purpose we need only to check the conditions of Definition 1.1. |

(i) Let 0 €S, then M= ‘%} @Fu@®N (o), where |I|<¥,and N (o) as before.
Thus we have o= ;@Fu;a. Let » be an element of the ring @ of linear

transformations of M. Because R is §,~fold transitive, there exists an element rER
such fhat wor =wuoe for € I. From thig it is easy to see that cw=or. This proves
oQ= oRC®,. (ii)Since &, is ¥,~fold transitive, it follows that &, is ¥,-fold transitive
by Lemma 1.2. (iii)If ¢ €T, and o@,,Q@,,, then M= 2@1"’%@1\7 (0'), and Mo=
2@17’%0 where |T|<8,. Lot wil=y; for ¢€I, N (0-)1 0 then wlo=wo for ¢€1I,

N (0)1lo=N (0)o=0, hence oc=10. Now we want to prove that 1€ S,. In fact, since
{wo}icr is the sot of F-linearly independent elements, there exisits an element 7 €&,
such that w,gr=u;=ul for €I, and N(0)or=N(0)1=0. Hence ov=1€06,E8,
by the assumption. From above relation o =10 we get 0 € S,QCG,.

Now we want to show that if &,%0, then there exists u<» such that &, is
p~-socle, Certainly, we assume that &, is not »—socle. Then from the proof of (i) we
know that &,2C &, is always true only if R is §,-fold transitive. From the proof of
(iii) it follows that if &, is §,~fold transitive then &, satisfies the condition (iii) of
Definition 1.1. Therefore, when &, is not »-socle, &, is not ¥,-fold transitive too. By
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the proof of Pheorem 1.1, there exisits an ordinal number w<v such that &,%0 and
from this it follows that there exists an a< » such that &, is Ny-fold transitive. From
the above we can conclude that &, is a—socle. This completes the proof of our theorem.

Now from the proof of Theorem 1. 2 we can further. formulate the following
theorem. :

Theorem 1.3. Let R be 8,~fold iransitive primitive ring, than &, =T,NR is p-
socle if and only if &, is 8,~fold transitive. ‘

- Lemma 1.3. Let R b a primitive ring, S,=T,NR §, fold tmnsztwe, then &,
is a principle ideal if and only if v is not a limét ordinal number. :

Proof If v is not a limit ordinal number, then »-1 exists. By the property of
,~fold transitivity there exists an element o €&, such that p(¢) = §,_s. By the proof
of Lemma 1.1 we know that RoR is 8,—fold transitive. It needs only to proof RoR=
~ ©,. In fact, we need to prove that every N,—fold transitive ideal L contains &,. For
this purpose we let ¢ €8&,, then M ——-%} @Fu@N (o), and %0':&21 ®Fuo, where
L] <8,. Write I: ul=u; for 4€ I, N(0)l=0, then there exists:an +C L such that
uor=u=ul for ¢€I, N(o)or=N(c)l =0, hence l=0vE& RLCZL. On the other
hand we have lo'=0'€ LRC L. Thus &,C L. This proves &,=ReR.

- Oonversely, let » is a limit ordinal number and &,=RoR, ¢€6,. Suppose that
p(0) =8, and u<p. Then &,cT,. This contradiots that &, is ¥,~fold transitive.
Thus &, cannot be a principle ideal.

Theorem 1.4. Let R be a primitive ring with v-socle ©,=T,NR. Then R

contains an ideal chain &, 26,12+ 26,22+ 26, where w<rv, and every tdeal S, is
p—socle of R, every 8,~fold ideal of R contains S as well. If w is not o limit ordinal
nymber, then &, is principle. Let L be an non-2ero ideal of R fwzth LcT,, then L must
:be one of the &, of the above chain.
. Proof By Lemma 1.2 and Theorem 1 3, &, is u-soole. Hence S, %8, if and
‘only if oo, Where a, w<v. By the above lemma, if w is not limit ordinal number,
then &, is a pr1no1p1e ideal and any §,~fold transitive ideal contains S,. Heneo we
need only o prove the last assertion of the theorem. Since L0, LCT,, there exists
an u such that LT w and LcET, where A<<pu<». If w is not a limit ordinal number,
then LGT, . Hence there exists an element ¢ €L with p(o) =8,_;. From the
:property of ¥,~fold transitivity it follows that RoR is N,~fold transitive. Thus ¥,
RoRCLES,. If 1 is a limit ordinal number, then LT, for overy non-limit ordinal
number A<w. Hence there exists an element o€ L with p(¢) =8, such that No=N).
A similar argument as above can show that RoR'is Nu.i~fold transitive. Hence
RoR=6,,;58,, Thus L>G,, But A ig arbitrary, hence L28@,. From LCT NR it
follows that L=8,,. v

From this theorem we get the following well known result.
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Corollary Let Q be the ring of Zmear tmnsfoq*mwt%ons of M= 2 @Fu,;, then every

zdeal of Q must be an T,

Proposﬂzlon 11 Let R be pfrfbmztwe ring, then overy N~ fold transitive left ideal
of R contains &,.

Proof We write 0€S,. Then M= 2 @Fu®N (¢), N(o)={m € M|mo = 0},

and |I|<¥,. Smce L ig 8,~fold transitive, there exists an element v &L such that
wow =0 for icl. Olearly N (0') 0"5'—-0 =N (¢)o. Thus c=0v€ L.

Theorem 1.5. Let R be o prfbmfbtwe ring with zero socle Then every non-zero
ideal of R have the same tmns'bth,ty

Proof Let R be x,,—fold transitive bub not 8,,+1—fold transmve Sinoce the socle of
R is zero, then @,,-fO by Theorem 1.1, Hence every non-zero element o of R has
i'ank >4, It is clgar that We may assume that there exists an ordinal number u such
that &,=T,N R+0 and &, =0 for all A<yu. Hence y is not a limit ordinal number.
Therefore, every element of &, has rank ¥,_1, where u—1>». Now we prove that &,
is 8,~fold transitive. In fact, we can prove that the ideal RoR generafed by any
non-zero element ¢ of @ is 8,~ fold transitive. This is, because M= 2 @Fu; @ N (o),

Mo = ZQ—)FWT II | =8, Let {ui};e,, be a- set of linearly mdependent elements, {b:}+

a sot of elements of M. Since |J| <, it follows from the N,~fold transitivity of R
. fha,t there exists € R such that usr=1;. Hence ure =wo for s €JI. We have also
an element s€ B such that uros=wuos=b; for ¢ €J. Clearly ros€ RaRc:@ Thus &,
is 8,~fold transitive. '

On the other hand, let L be an 1dea1 of R and ¢ €L, then o belongs to some
G,=T,NR+*0 where v=>u. We can also show as before that RoR is §,-fold
transitive. Hence L is §,~fold transitive. This completes the proof of our theorem.

Theorem 1.6. Let R be a primitiv ring, then R has zero socle if and only if the
rank of any non-zero element of R is greater than the largest transitivity of R.

Proof The necessary part follows immediately from the proof of Theorem 1.5.
Now we want to show the sufficient part. If B has non zero socle, then B has element
with rank 1. This contradicts the assumption.

Theorem 1.7. Lst R be o primitive ring, then R has zero socle if and only if B
contains no right ideal of Q, where Q is the closure of R in the finite topology.

Proof If B contains aright ideal L ofQand o € L,o +#0,then M= 2@Fu¢@N (o),

Mo = DD Fuio, hence there exists an element o € Q such that yow=1u, wjocw=0 for
iel .

9% 4, 4, € 1. Let E; be an element of 2 such that w =, u;H;=0 for ¢+ 4, 4, jE I,
N (¢) E;=0. Hence H;=cw€ L, where ¢€ I. This follows that B has an non-zero socle.
Conversely, if B has an non-zero socle, then according to the proof of Theorem 1.2, R
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containg an non-zero right ideal of Q.

2. In this seotion we first introduce the concept of a pair of modules over ring
with identity, which extends the concept of a pair of dual vector space over division
ring. After this we study further the structure of primitive rings.

Lot M= E@Fu,; be a vector space over division ring F, R= %@Fu, be a

subspace of . Olearly, for any complementary vector space & of R, i. e. M=NDON,
there exists an idempotent element I such that nl =n for n€R and N=0. In this
situation we say that ! corresponds to N and denote I=1(N), then it is easy to see that
for any different complementary %, from %, the correponding idempotent elements
IR, and 1(N) are different. Now we choose an arbitréry such idempotent element [.
Let .o7* be the set of linear transformations from M into N and Q2 the ring of all
linear transformations of M, then o7 *=QI. In fact, if d*E.sz{ *, then it is clear a*=
ele Ql. OOnvefsély, Ql is a set of linear transformatibns of M into SR Hence QICQ*,
Therefore »7*=0l. Suppose that N; is an another complementary space of 9, and I, is
the corresponding idempotent element, wo can show that QI=0Ql;. Since for n€RN it
follows nl=nly=nll; and for n€R it follows nl=nlly=0, hence I=I;, QATQI,.
Similarly, we have QI;=Ql. This means that .o/*=0QI is independent on the ohoice of
complementary spaces of N, it is uniquely determinated by R. Of course, 7*=0I
determinats the subspace t=MQI. We have proved that the subspaces % and the left
ideals./*= QI of Q as above are one to one correspondent,

Now we consider the set .7 of linear transformations from % to M. We want to
show that &/=1Q. In fact, for any element ¢ € .27 there exists an element wE€IQ such
that na=nw for all nE€N. Hence /TIQ. Conversely, IQ2 is clearly a set of linear
transformations from  to M, hence =102, Therefore we have a pair of modules
=I1Q and o =01,

Lot o'=1Ql, then [ is the identity of . &/=1R2 is a left #~module and /*=Ql
is a right /~module.

We still denote 2 as the complete ring of M= E@Fu;, and ! is an idempotent

element of Q. Let =101, /=12, o/*=Ql, then M=NRADN (), where R is a subspace
and nl=n for all n€RN, N() ={z€M|al=0}. Olearly, &/*=0Ql and /=12 are the
complete rings of linear transformations of M to Nand of N to M respectively. Thig
means that the pair of dual m_oduies =12 and /*=Ql over H'=IQl are uniquely
correspondent to the subspace Nt of M. ’

Definition 2.1. As stated above, we call the subspace N the underlying space of the
pair of dual modules 7 =1Q2 and o7 =Ql over . Meanwhile, we call the & and o/*
are the underlying modules over ¢ of N.

Consider the pair of dual modules &/=1Q, "=l over H#'=1Ql. As usual we
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define the bilinear form as follows: (@, ¢*) =aa* for ¢€ ., a"€ ", COlearly, (&,
*) =4 We want to show that the bilinear form (&7, /%) is non-singular. In fact,
if a* € /% and Fa*=0, then we have QlQa*=0, hence ¢*=0. Similarly, if ¢ €.o7 and
a./*=0, then ¢=0,

Definition 2.2.  Let o/ =10, o *=Ql be a pair of dual modules over =101, M !
submodule of 27*. Suppose that a /' =0, then a=0 for a € /. Then (Jaf L") s called
a pair of dual modules over 7.

Definition 2.8. Let N be the underlying space of the pair of dual modules o7 =1Q,
&7 * =0l over A'=1Ql. We call the pair of dual modules (f, ') over A the 8, ~typical
dual modules over ¢ if 7" is 8,~fold tramsitivity of M toR, i.6. for any set of
F-linearly independent elements {@;}icr of M and any set of elements {yiticr of N with
| I| <8, there exists an element a’ € o/ such that v’ =y; for 4 € I.

Lemma 2.1. Lot /=R, H'=1Ql. Then the set of A -endomorphisms of left
W -module o is Q.

Proof Denote the set of J#~endomorphisms of &7 by 3. If ¢€Q and o=
then clearly =0, hence QT 3. Now we want to prove that Q=3. In fact, it is clear
that o/ =1Q=13. For I?=1 we have M=NAN (1), N= ﬁzt OFu, |I|=p(0), the rank of

l. Then there exists a sot {E‘}m 1 of idempotent elements with ranks 1 such that uH;=
w, w;H,=0 for é+4, ¢, §€I and N (1) H;=0. Clearly, El=1E;=E,; for ¢€I. Write
A=E.sf, then A;~ Blof = EQ=E Q3 for i € I. It is clear K;= EQECIQ=, 4,C
<7, hence every element of & can be induced in space 4; a K linear transformation.
Now we want to show that if €3 and 4,6=0, then ./¢=0.For this purpose we
_prove first, if ¢ €3 and A,0=0 for some A4;, € I, then A5 =0 for all 4,=E,Q, j€1I.
In fact, if it were false, i. e. there would exist @,0+0 for some element a;, then ag
above it follows o € 4,CQ, if we set o=a,0. By [2]we know that A;=E;2 as vector
space over K;=H;QF; is (, I)—isomorphic to 4;=H,Q2 as vector space over K;=
EQE;. We denote this (s, I)—isomorphism by S, then from ¢ €Q, A;6=0 it follows
that (H;0) S=(E,8)0C Ao = (4ia)5 C AG=0, hence E;o=0 and a;5=0. This
implies the contradiction with @;o 0. On the other hand %=§@Fw@]\f @, <=8,

10510, Tt follows from E0Q6 =0 that (105) =w((EHQE) =0 for i€ and N (1)
(1Q0) =0, hence .o =1Q0=0. This proves the above assertion. Now o i a /-
endomorphism of &, hence from .27c=0 it follows o=0. This proves that every
eloment of £ must be a zero endomorphism of .o if its induced linear transformation
in 4, is a zero one. Again, if oc ﬁ, then & is an induced K ~linear transformation of
A;. Hence there exists an element o of 2 such that ¢ is equal to ¢ in 4;, i,
A;(0—7) =0. But Qc{, hence o/ (0 —5) =0 by the above assertion. Then it follows
o =0 €Q. Therefore Q=40.
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Definition 2.8. Let Z/=IQ be a left module over =101, f is said to be @ A~
linear function from o to o if and only if f is @ A —homomorphism from left module
o over A to lefs module o over 4. Denote the set of such linear functions by o™, then
o* s said to be conjugate module of /. Olearly /™ is a right module over K.

Theorem 2.1. The conjugate module of o/ =1Q is o7 =Ll

Proof Tt is olear that QIC.o7*. It needs to prove &7*C.Ql. Let f €27, then f is
also a —endomorphism of J#~module =7, Hence f €Q by Lemma 2.1. But for any
olement a of .7 we have af =h=ajl for h€ . Therefore f=f1€Ql.

Definition 2.5. Let Q be the complote ring of linear tramsformations of wector
space MW= 2 @Fu over F. An element 1 of Q is called tdempotont relative to basis

{w}icr Of and only if there ewists @ subset T of I' such that wl=w for $€1 and ul=0
for jeI'\1.

Theorem 2.2. Let R be a dense ring of the complete ring of - limear
transformations, then R is 8,~fold transitive if and only if IR=1Q for all idempotent
relative to a basis {w}icr with rank of 1<<8,.

Proof The necessary condition is clear from the proof of 'I‘heorem 1.2, (i). Now
wé prove the sufficient condition. Let {wi}cr be a got of linearly independent elements
of the vector space M= 2 @Fw and {y}ic; an arbitrary set of I, |I|<¥,. Then

there exists a subset {u,},;,5 o of {u;}iE r such that o€ 2 @Fu for §€I. We have M=
2 OFu® Z @Fu;, where |I*| <§,. Hence there exists an element o € Q such that

wiw=1; for ¢ E I therefore there exists an idempotent element §* such that wl*=w for
i€ I*, and ul*=0 for j€I'\I". Since I"R=1"Q, there exists an eloment r € R such that
ayr =y, for 4 € I. This means that B is N,~fold transitivity.

Corollary. Let R be a dense subring of the complete ring. Q of Uinear
transformations, &,=T,N R. Then &, is v-socle if and only if 16,=12 for wll
idempotent dlements 1 relative to a basis {wticr with ramk of 1<8,.

Denote (o, ') as a pair of dual modules over " and L(A, A= {mEQ|w&¢ !
o}, G (s, A)={l|l EL(, '), and the rank of Z<&4,,} =T,%(, L").
Then we have the following theorem:

Theorem 2.8. (Structure theorem with non-timit ordinal number) Let v be an
non-Yimit ordinal number, then the following conditions are equivalent:

() R is a primitive ring with v—socle S,

(II) R is a 8,~fold transitive ring of linear tramsformations of a wector space m
over division ring F containing an non-zero element with rank<$,_1,

(ITI) there ewists a pair of dual modules (&, "y over A" such that B is a subring
of L (L, ") containing the G, (o, L) A.

Proof (I)=> (IIT). By assumption &, =T,NR is v—socle. Hence &, is ¥,~fold




No. 2 ON THE STRUCTURE OF PRIMITIVE RINGS 141

transitive. Then there exists an idempotent element €&, with rank of I=¥,_; such
that RIQ=©, (see the proof of Theorem 1.2(III)). Write &/=IR, &/'=Rl. By
Theorem 2.2 we havé o7/ =IR=1Q. We want to prove that G, (o7, &') =8,. In fact,
if 0 €6, (o, '), then 0./’ /', hence 66,58,. From the property of »—socle it
follows that o €8,. Henoe G, (o7, &) =8,. Conversely, it is clear &,56, (7, &)
by the definition of @, (s7, /). We want to prove that &, (&, /") =G, (o, ') L.
Since &/=IR=1Q, it then follows immediately. Finally we want to- prove that (7,
&) is a pair of &,~typical dual modules. Let 9% be the underlying vector space of the
pair of modules &7 =1Q and o/*=Ql over A =1Ql, 9&=§ @Fu, M =%} QFu,®ONQ),

N () = {s€ M |2i=0}, and the rank of I=|I| =¥,_. Then by Definition 2.3 we need
only to prove that 2/’ =Rl is §,~fold transitive from M to N. Let {ai}icr be a sot of
linearly independent elements of M with | I'| <8y, {g}icr bo a sot of arbitrary
elements of N, then there exists an element s € R such that @y =y, for ¢€I’, since R
is §,~fold transitive. From yl=y; it follows immediately that r =1l € Rl=.¢".
(IID)—>(T). Let (7, o7’) be a pair of ¥,~typical dual modules over 7, and o/ =
1Q *=0l, '=1QL. Let R be the underlying subspace of the pair of .« and o7’ over
A, %=%@Fu;, | I| =the rank of I=¥,—y, wl=1 for ¢€ I. Since ./’ is a H~subspace

of *, ' ' T’ Lot {w}icr be a sot of linearly independent elements of M, |I’]
<8, and let {y;}cr be linearly independent elements of %, {z}icr any set of M. Then
from the ¥,~fold transitivity of =7’ it follows that there exists an element o €A’
such that wa’=1; for ¢€ I’ and an element w €2 such that Yy =2 for 4€I’. Honce
x@w=2 for ¢€I’. Since dw €', o' of i3 8,~fold transitive. On the other hand,
from o7’ f' it follows ' (A, /') . Since 'T,, then ' CQ,(, ’).
Therefore @, (o, ") is 8,~fold transitive. Since &, =T',NR2C, (7, L"), S,
is §,~fold transitive. By Theorem 1.3 &, is v—socle.

(I)—(III) is clear. Now we need only to prove (II)—>(I). If R is ¥,~fold
transitive and contains an élement ¢ with rank=2¥,_;, then, by the foregoing proof,
RoQ is 8,~fold transitive and contains in R. Hence RoQ=&,. This completes the
proof. |

Corollary Let v be an non-limit ordinal number. Suppose that there evists @ pair
of 8,~typical dual modules (o, ") such that L (L, A" )DRDOG, (A, A')st, then
G, (A, ')A =G\ (A, ') =A' A =&, and A’ =G, H, &,='Q.

Proof In the proof of Theorem 2.3, we see that «&/’<7 is 8,~fold transitive and
6,26, (¥, ') A2l o/. On the other hand, since /.7 is a left ideal of R, by
Proposition 1.1 2/’o/2&,. This proves that G, (, &) Af =" /=C,. It is clear
that ©,=T,NRET, N L (A, ') =G, (L, ). If c€G,(H, '), then o' T ",
hence ¢, ,. Using the property of v—socle we have o € ©,. Hence &, (7, &) =6,.
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Finally we see thaﬂ@,,%=.5a¢’&f%=d’%=d’, L'Q=C, A Q=A' AQ=A" A =S,
This completes our proof,

Remark. If we set »=0, i. 0. &, the socle of R, then it follows immediately the
well-known structure theorem of primitive ring with non-zero socle.

Theorem 2.4. (Structure theorem with limit ordinal numbers). Let v be a Vimit
ordinal number, then the following conditions are equivalent:

(i) R is a primitive ring with v—socle, A

(i) R ds 8,~fold transitive and R contains an element with rank==$, for any non-
limit ordinal number p<v,

(iii) there ewists a pair of N, ~typical dual modules (Ja(", &) such that L (L,
) DROG, (A, L)AL, for every non-limvit ordinal number w<wv.

Proof (i)—>(iii). Suppose that &,=T, N R is p—socle, then for any w<», S, is
N,—Told transitive by Lemma 1.2. Hence if my<<us<w, then we have 8,58, and

&, = [ ©,, where x may be assumed as non-limit ordinal number. From Theorem
n<v

2.8 it follows that for every non-limit ordinal number w< vy there exists a pair of
8,~typical dual modules (7, &7;) over ,=1,Ql, such that ¥ (<, «,)DRDE,
(A, A,)L,. This completes the proof of (i)—>(iii). Now we prove (iii)—>(1). In
fact, for every non-limit ordinal number w<» there exists a pair of §,~typical dual
modules (7, %7,) by the assumption such that (7, &) DROG, (L, L)AL,
From the above corollary, it follows that &, is ¥,—fold transitive. Hence &,= ] &,

w<v
is 8,~fold transitive. Therefore &, is »—socle by Theorem 1.3.

Finally we want to prove that (i)and (ii) are equivalent. If (i) is true, then R is
§,~fold transitive. Accoding to Lemma 1.2, &, is §,~fold transitive for every mnon-
limit ordinal number u<». Hence there exists an element I,€&, with rank=¥,_;.
This implies that (ii) is true. Conversely, if (ii) is true, then &, %0 for every u and
Cus8.,ES, for uy<ps<v. By Lemma 1.1, &, is §,~fold transitive. Applying
Theorem 1.3 we see that &, is »—socle. Hence (i) is true. This completes the proof.

Remark 1. Theorem 2.3 implies the well-known structure theorem, if we set
v=0, i, e. §,=¥o.

Remark 2. Denote M= DI ®Fu, and Q the complete ring of F-linear

tel’

transformations of M. Let I: wl=w, for ¢€I and ul=0 for j&€I'\I. Then there
exists a sot {H}icp such that wH;=d; for ¢, jEI". Write &/=1Q, &/*=0Ql and o’
a submodule of &7* over A'=IQl, let Ai=EQ, Ai=x/"H, K,=FEQE, for icI.
Denote Z(4;, 4;) ={0€Q|wdi S A4;}. Then it is clear L (o, A ) ¥ (4], 4),
T4, 4]) ={wc L4, 4}), and the rank of w<co}S,. In fact, 4] is a subspace of
Af=QF, over K, i. o. AK,C 4], diC*E;=QFE;=A4;. On the other hand, if
of'C’, then o' BiC ' By, i. o. 0 A;E 4. Hence Z (&, L) ¥ (4, 4]). We
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have Z (4, A)DL (oA, A ’)DRD@,,:ﬁ%(A, Al). This refines the well-known
chain £ (4, A))DROF (4, A4i) of usual structure theorem. "

Remark 3. Suppose that the condition(iii) of Theorem 2.4 is true, then
N & (A, #,)DR2G,= ] Gu(i, A L) ALy= HG‘”(JJM ) g\ A ul e

pi<v
Definition 2.6. A primitive ring R with v-sode &, is saidito bs. mavimal if B
cannot be imbedded propeﬂy in another primitive ring R’ with tk@same y-socle. -

Theorem 2.5. Let v be a non-limit ordinal number. Then a primitive ring B with
y—socle ©, i mawimal if and only if R is isomorphic to @ ring F(A, A" where
(£, ') is a pair of 8,~typical dual modules.

Proof Of course, we may assume that B is a sukring of the complete ring Q ef
linear transformations of a vector space. We prove first the necessity of the condition. |
Let ! be an idempotent element of &, with rank ¥,_;, and denote /=IR, «/'=Rl,
S'=1Rl, then we have &,CRCZ(, &’). Since R is maximal by assumption,
hence R=% (o, s/"). Now we prove the sufficiency of the condition. If R=Y (s,
/") 58,, then by Corollary of Theorem 2.3 8,4 =sf". If LoR=YF(s, o')DC,
and &, is y—socle of L, then LS,c,. Hence L/’ C.o/’. This proves that LE.Z (7,
/"), Hence £ (&, &) is maximal. |

Remark. Theorem 2.5 generalizes the well-known theorem, if Gy=0, is usual
socle of primitive ring (see p. 88 Theorem 1[1]).
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