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Abstract

Many zero-one laws for the ‘quasi-additive functional and quasi-additive operator are
proved. The results may be especially applied to the abstract Wiener measure space. As an
application, we give a generalization of a remarkable result of the c-additivity of a Graussian
eylinder probability due to L. Gross.

Using the results and the ideas in [1], we disoussed the zero-one law for the
ergodic quasi-invariant measures in[2], and it was shown that a sequence of quasi-
linear funoctional either converges a. e. or diverges a. e. The results may be especially
applied to the abstract Wiener measure space. As an application, we gave.a
generalization of Ladan-Shepp’s Theorem for Gaussian measure. _

In [2], we showed that the ergodis quasi-invariant measures is one which
preserves some important properiii_es of Gaussian measure. In this paper, using Xia
Dao-Xing inequality, we discuss further - the zero-one laws for the ergodic quasi-
invariant measures and give the more general results.

Let G be a linear topological space, % be the Borel o-field in @, and Q= (G, %,
@) a regular probability measure Space, which is quasi-invariant and ergodic with
respect to measurable transfomation group ®. There exists a suitable (see[1]) topology
7 on ® such that (&, T')is a connected topological group of the socond category with
the first axiom of countability satisfied. Tn this paper, we always assume that Q=(,
B, w) satisfies the conditions described above, unless it is noted specially.

Lot £ (g) be a real measurable function on (&, %) with the following property:for
each h € ®,there exists a real number 7 (k) and a subset EweB, w(H,) =0 such that

(hg) =5 (9) +F ®)
for any g€ E;.Then f is called a. quasi—additiire functional on (@, %, ) with respect
t0 ® (see [1]), and we say that 7 is induced by f. It is easy to know that f(I) =0,
and F (h7t) = —F () , F (hi*ha) =7 (hs) +F (ho) for any hy, he€8.In particular, if @ isa
maximal franslation quasi-invariant quasi-continuous linear subspace of @, © may be

regarded as a translation quasi-invariant transfomation group. According to [1], the
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s—topology on & satisfies the conditions described above. Olearly, the quasi-linear
functional is a quasi-additive functional.

According to [1], we introduce the notion of a pair of quasi-convex functions.
Let Q= (@, %, 1) be a measure space which is quasi-invariant with respect to &, p(g)
be a measurable function on @ and » (h) be a function on group ©, with the following
Ppropercties:

(i) 0<p(g)<os,

(ii) for each hE®, there exists a p—null set B, such that

() <p(9) +p(hg)
for any g€ H,
(iii) p(h) is a convex function on the group @, i. e. p(h)>0, »(I) =0, and
P (ruh") <P (ha) + 5 (ha)
for any hy, ha €G.

Then p(g) and p(h) is oalled a pair of quasi-convex funotions on £2 with respect
to ©.

Here we quote Xia Dao-xing inequality (see [1]) as our lemma.

Lemma 1. Let Q= (Q, &, w)bé a regular probability measure space, which is
quast-invariant with respect to measurable transfomation group &; T & suitable topology
on © such that (8, T°) is a topological group of the second category with the first awiom
of countability satisfied, then for every set ACB with O<u(d)<co there is @
neighborhood V 4 of unit element I in (8, T )and a positive constant O such that

sup 50 <O | o(g)du(g)

Jor every pair of quasi-convex funciions on Q w. r. t. ©..

By Lemma 1, we may give the following theorem, the proof of which is similar
10 the Theorem 3 in[2]. '

‘Theorem 1. Lot Q= (G, &, w) bea regular probability measure space, ergodic
and quasi-invariant with respect to the measurable iransfomation group & on Q; and T~
a suitable topology (see [1]) on ® such that (&, T7) is @ connected topological group of
the second category with the first aviom of countability satisfied. If fi(g)i=1, 2, -is @
sequence of quasi-additive functional on Q w. x. t. ©, then we have the Sollowing zero-one
law

p,{ g Ig Jfi(9) converges} =‘O 6r 1,

In the following theorem we give a zero-one law for the convergence in measure
of quasi-additive functionals. It may be regarded as a generalization of the Theorem
3.2.10 in [1]. Let AC@, A€ P, wo restrict 2 t0 4, and induce a measure space
Q= (4, #NA, m). A sequence {fi(¢9)} of the measurable functions on O is
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convergent in measure on 4, if we restrict the sequence to A and it is convergent in
measure on Qy.
Theorem 2. Under the assumpiions of Theorem 1 and assumption that

{fi(g)}i=1, 2, --is a sequence of quasi-additive Sfunctional, i fi(g) either converges in
: §=1

measure on Q to @ quasi-additive functional or doesn’t converge in measure on any Seb
AE B with uw(4)>0,

Proof If 2 Si(g) converges in measure on some set A € % with u(4)>0, there exists
8 subsequence {kn} such that E fi(g) converges almost everywhere on A. By
Theorem 1, 2 fi(g) converges a. e. to some measurable function f (g) on 0,

there exists a u-null set B such that for any g€ G\ B we have flg)= llmz fi(9).

It is easy to kmow that the a. e. limit f(g) of a sequence of quasi-additive
funectionals is a quasi-additive functional. In fact, for each hle@ﬁ there exists a seb
nC B, u(EBr)=0 such that

Trn (09) =Fi, (9) +Trn ()
for any g€ E5. Set Hy= 01 (B3 1E2) UEUhRE, where E is mentioned above,
n=
then w(H,) =0. Passing to the limit with n, we see that for g€ B lin Fr. (B) exists;

denoting the corresponding limit by F(h), we have

fhg) =f()+F (), g€ B,
Thus, f(g)is a quasi-additive functional on Q.

Tt follows that for any subsequence of §,(g) =§n1 fi(9) we may find again a
subsequerice converging a. e. to some quasi-additive functional fo(g). In order to
show that ‘ﬁl fi(g) converges in measure to quasi-additive functional f(g) on whole
G, it is sufficient to prove that for every subsequence of {8, (_g)},we have fo(g9) =f(9)
almost everywhere dn Q. In fact, bj the assumption, g: f; (9) converges in meagure on

A with (4)>0, hence, we have fo(g) =f(¢)a. e. on A. Let F(g)=Ffo(9) —f(9),
then F(g) is also a quasi-additive functional and for g€ A F(g)=0a.e. By Lemma
1 we seo that there exists a neighborhood V4 of I in (6, ) and a positive constant
C such that

sup | F (h) I<0L|F (¢) IdMCg) =0,

hence, for hEVa F(B)=0, it follows that F(h)=0 on the whole ®&. Let
E={g|F(g)=0}, then EDA. Since  is ergodio with respect to &, in order to prove
w(E) =1, it will suffice to show that E is a quasi-invariani set under ® in #. In fact,
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for each A€ & there exists a u—null set F. If g€ K\ F, we have

F(hg) =F (g) +F(h) =0,
Thus, hg € F for every g€ E\F, i. e. E\h*ECF and then w(E\h1E)=0. In the
same way, we can geb u(H\hH) =0, and by the assumption that ,u, is quasi-invariant
w.r.t. S, w(WE\E)=0,i. e. u(H4h™*E) =0, and K is a quasi-invariant set. Thus,
the theorem is completely proved.

Corollary 1. If {fi(g), =1, 2, -} is a sequence of quasi-additive functionals,
then {fi(¢)} either converges in measure on Q to o quasi-additive functional or doesn’t
converges in measure on any set B € B with positive measure.

Let R be the real number field, & the Borel o—field in R. Setting (B, %) = (R,

B) i=1, 2, +-, we denote the product measure spéwe by (B>, #>), where R°°==f]1£ R,
B>=R B, Lot q(x1, @5, --+) be a mapping of B> to R,. If ¢(a) =¢(—=) for every
é=1

o= (o) € R>, then we say that ¢ is an even. ¢(») is called symmetrio if
q(iwi, @y, oev, T, ) =Q(£U1, Xg, ***,. Ty, )

for all choices of signs + and all € R>, ¢() is subadditive if ¢(z+9) <g¢(x) +¢(y)
for any #, y € R~. ' ’

Theorem 3. Let Q= (@, B, w)satisfy the assumptions of Theorem 1, g(x) be an
even subadditive measurable mapping of (B>, #*) to R.. If {fi(¢9)} is an arbitrary
sequence of quasi-additive funotional, then

wlglsap ¢(72(9), fa(9), =) fa(9), O, 0, +++) <oo}=0Oorl.
Proof It is convenient to set II,(x) = (#1, *+*, @, 0--) and
gn(2) =q(II,@) =q (@1, **, %, 0, 0:2),
F(9) = (fr(g)) may be regarded as R~-~valued random variable. Let
A={g|sup g»(f(9)) <oo}.

If w(4) =0, then the theorem holds. If 14 (4) >0, then there exists a measurable st
A’c A such that w(A4") >0 and sup ¢.(f(¢9)) <M for g€ A’, where M is some constant.

Now, in order to apply the Lemma 1, first of all, we point out that ¢,(f(g)) and
2.(F (k)) is a pair of quasi-convex functions on & w, r. ¢. &. In fact, for every hE®
we have ‘

In(F 1)) <qu(F ) +F(9)) +2u(F () = 2u(F (h)) +u(f ()

for almost all g € @. By Lemma 1, there exists a positive constant C and a neighborhood
Vauof Iin (8, ) such that | .

s G, (FO)<O | 6(f(9))du(o) <OMu(4),
Hence, for'any hEV 4, SUP g (F () <O’M -/.o(A) <oo. Moreover, because (&, .7) is

conneoted and 2.(F(h)) is convex, We get sup ¢a (F(h)) <oo for all RE®,
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Simultaneously, we have
sup ¢a(f (hg)) <sup g» (f (9)) -+sup ga(F(#))

for almost all g € @. Similar to the proof of Theorem 2, we can show that 4 is a quasi-
invariant set. Since p is ergodic w. . t. & and ©(A4)>0, we have w(4)=0 and the
Theorem is thus proved.

Corollary 1. Let {fi(9)} i=1, 2, «-:be dsequence of quasi-additive functionals,
0<p<oo, then

u{g@ | f:(9) IP<°°}=0 or 1,

Corollary 2. Under the assumptions of Corollary 1, we have

7 {ylsgp Iﬁf;(g)l<°°}=0 or 1,

Corollary 8. Let || be a measurable norm on (R=, #=). If {fi(9)}i=1,2, -,
is an arbitrary sequence of quasi-additive functionals, then

plglsup|IL.f(g) [ <oo}=0or 1
where f (9) = (f1(9), f2(9), =, fa(9), =),

Similarly, we may introduce the quasi-additive operator. Leb (Z, ) be a
normed linear space, (H, % )be measurable linear épace, and F(g) be FE-valued
measurable function. If for each h € ®, there exists an element F(h) € E and p—null
set K, such that

F(hg) = F () +F 3
for every g€ Hj, then we say that F(g) is an H—valued quasi-additive operator on Q
w. r. t. &. The proof of the following theorem is similar to that of Theorem 1, so we
omit its proof.
Theorem 4. Let Q= (G, &, w) satisfy the assumptions of Theorem '1, (B, |
be a normed linear space, (B, B) be a measurable linear space. Let |+ |1 be @ measurable
norm on (B, B, and B be the completion of H in norm | «| . If {Fi(g)} is a sequence of

- B-valued quasi-additive operators, then

M{g‘an Fi(g9) converges in B} =0or 1,
==

If, in addition, ¢ (ws, @a, +-) is an even subadditive measurable functional from
(B, #>) to R,, then
pig|sup q(F1(g), *+, Fu(9), 0, 0, ---) <oo}=0orl,

Corollary 1. Let {fi(g)} be a sequence of quasi-linear functfionals.va lels ds @
measurable semi-norm, then for any sequence {e.} in B

u{glsgp1'§f¢(g)e¢
Corollary 2. Let {fi(9)} be a sequence of quasi-linear functionals,

, <00}=Ovor 1,

ol

1b60
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E ||
' ,w{glé_,: fi(g)e; converges in B}=O orl,

Especially, let Q= (G, &, u) be an abstract Wiener measure w. r. t. Hilbert space H.
Jor each o€ H, there ewists a quasi-linear functional ©(g) on Q w. r. 3. H such that «(g)
induces Uimear functional z(y) on H, and z(y)=(y, ®) foryE€H. Let -], be a
continuous semi-norm on Hilbert space H, and B be the completion of H in |+ |1, then for
any sequence {e,} in H

contimuous semi-norm on (H,

) B be the completion of (H,

1) H the’n'

,u,{g' g a:(g9)e; converges in B} =0orl,

Thus, we see that it is natural to introduce the notion of the measurable semi-
norm in the sense of Gruss in oder to discuss the o-additivily of Gaussian oylinder
probability.

Finally, let us disocuss the zero-one law for the stochastic boundedness of the
sequence of the random variables (measurable fﬁnction). Let Q= (G, %, u) be a
probability measure space and § denote the space of all real valued measurable
functions on Q. The § equipped with the topology of convergence in measure is a
topological vector space. Then each elemeni in § may be regarded as a random
variable. If a subset M of the radom variables is a bounded set in. §, then A4 is called
stochastic bounded. It is easy to verify that a set M S is stochastic bounded iff for
arbitrary e>-0 there exists a posifive constant ¢ such that

plglf(9) | > <s
for every f€ M.

Lot MS and A€ Z with u(4)>0. If we restrict M to 4 and it is bounded in
measure on £, then, for convenience, we say that M is stochastic bounded on 4. It
is clear that the stochastic boundedness is weaker than the boundedness almost every-
where. :

Theorem &. Let Q= (G, B, ) satisfy the assumptions of Theorem 1, {F(g)} be
a sequence of H-valued quasi-additive operators, q(x) be symmetric convex measurable
mapping from (B=, B=) to R,. Let 8,(¢9) =q¢(IL,F) =q(F1(g), Fa(g), ++, Fulg), O,
0, --). If {8.(g)} is stochastic bounded on any A with u(A4) >0, then {S,(g)} must be
stochastic bounded on @, and we have

wig|sup S.(g) <oo} =1,

Proof Let t>0 and define the stopping time w. r. t. {S,(¢)}, by

T (g9) =inf{j|8;(g) >1}.
Then

{9|T(9)<n}={glggq(ﬁ’i(g), e, Fi(g), 0, 0, =) >1},

For 1<j<n, we put
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Zn.’i= (Fl) °*% F.‘h —FJ'+1; °0t _Fm O; 0"'))

and we have
1 1
fo:'ﬁ'zﬂi'*—"ﬁ" Znn.
Since ¢(#) is a convex function on E~, we have
8y=9(Zy) <% 9(Zn) +5 1(Zm) =-%— ¢ (Zuy) 5 S,

If T (g) = j, then, by the definition of T, 8;>1,
and {g€A|T(g) =} {g€A|T(9) =], Su>i}
U{g€4|T(9)=4, 9(Zm) >t}

Hence, s (T=7 <wa(T=j, 8u>%) +pa(T =], q(Z,;)>t). Since ¢() is symmetrio,
then ¢(Zm) =¢(Z wi)» and

pa(T=5) <2us(T=j, 8s>1).
Summing over j=1, «--, n, we have :

,UIA{glgaﬁ Q(Fi(g); °*% F‘(g)) 0; Ol "')>t}

= a{g| T<n} <2u4(8,>1),
by the agsumption, {S,} is stochastio bounded on A4, for s >0 there exists some positive
constant ¢ such that wa(S,>t) <e for n=1, 2, ---. Henoe,
wafglsup g(Fs, +, Fy, O, 0, ) <oo}=u(4)>0,

by Theorem 4, u{g|sup ¢(Fy, -+, Fy, 0, 0-++) <o} =1, and {S,} is stochastic bounded
¢

on the whole @, and the Theorem is proved.
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