ON THE ZERO-ONE LAWS FOR THE ERGODIC QUASI-INVARIANT MEASURES

YANG YALI (杨亚立)

(Institute of Mathematics, Fudan University)

Abstract

Many zero-one laws for the quasi-additive functional and quasi-additive operator are proved. The results may be especially applied to the abstract Wiener measure space. As an application, we give a generalization of a remarkable result of the σ -additivity of a Gaussian cylinder probability due to L. Gross.

Using the results and the ideas in [1], we discussed the zero-one law for the ergodic quasi-invariant measures in [2], and it was shown that a sequence of quasi-linear functional either converges a. e. or diverges a. e. The results may be especially applied to the abstract Wiener measure space. As an application, we gave a generalization of Ladan-Shepp's Theorem for Gaussian measure.

In [2], we showed that the ergodis quasi-invariant measures is one which preserves some important properties of Gaussian measure. In this paper, using Xia Dao-Xing inequality, we discuss further the zero-one laws for the ergodic quasi-invariant measures and give the more general results.

Let G be a linear topological space, $\mathscr B$ be the Borel σ -field in G, and $\Omega = (G, \mathscr B, \mu)$ a regular probability measure space, which is quasi-invariant and ergodic with respect to measurable transfomation group $\mathfrak G$. There exists a suitable (see [1]) topology $\mathcal F$ on $\mathfrak G$ such that $(\mathfrak G, T)$ is a connected topological group of the second category with the first axiom of countability satisfied. In this paper, we always assume that $\Omega = (G, \mathcal B, \mu)$ satisfies the conditions described above, unless it is noted specially.

Let f(g) be a real measurable function on (G, \mathcal{B}) with the following property: for each $h \in \mathcal{G}$, there exists a real number $\tilde{f}(h)$ and a subset $E_h \in \mathcal{B}$, $\mu(E_h) = 0$ such that

 $f(hg) = f(g) + \tilde{f}(h)$

for any $g \in E_h$. Then f is called a quasi-additive functional on (G, \mathcal{B}, μ) with respect to \mathfrak{G} (see [1]), and we say that \tilde{f} is induced by f. It is easy to know that $\tilde{f}(I) = 0$, and $\tilde{f}(h_1^{-1}) = -\tilde{f}(h_1)$, $\tilde{f}(h_1 \cdot h_2) = \tilde{f}(h_1) + \tilde{f}(h_2)$ for any $h_1, h_2 \in \mathfrak{G}$. In particular, if \mathfrak{G} is a maximal translation quasi-invariant quasi-continuous linear subspace of G, \mathfrak{G} may be regarded as a translation quasi-invariant transfomation group. According to [1], the

Manuscript received December 15, 1980.

s-topology on S satisfies the conditions described above. Clearly, the quasi-linear functional is a quasi-additive functional.

According to [1], we introduce the notion of a pair of quasi-convex functions. Let $\Omega = (G, \mathcal{B}, \mu)$ be a measure space which is quasi-invariant with respect to \mathfrak{G} , p(g) be a measurable function on G and $\widetilde{p}(h)$ be a function on group \mathfrak{G} , with the following propercties:

- (i) $0 \leqslant p(g) \leqslant \infty$,
- (ii) for each $h \in \mathfrak{G}$, there exists a μ -null set E_h such that

$$\tilde{p}(h) \leq p(g) + p(hg)$$

for any $g \in E_h$,

(iii) $\tilde{p}(h)$ is a convex function on the group \mathfrak{G} , i. e. $\tilde{p}(h) \geqslant 0$, $\tilde{p}(I) = 0$, and $\tilde{p}(h_1h_2^{-1}) \leqslant \tilde{p}(h_1) + \tilde{p}(h_2)$

for any $h_1, h_2 \in \mathcal{G}$.

Then p(g) and $\widetilde{p}(h)$ is called a pair of quasi-convex functions on Ω with respect to \mathfrak{G} .

Here we quote Xia Dao-xing inequality (see [1]) as our lemma.

Lemma 1. Let $\Omega = (G, \mathcal{B}, \mu)$ be a regular probability measure space, which is quasi-invariant with respect to measurable transformation group \mathfrak{G} ; \mathcal{F} a suitable topology on \mathfrak{G} such that $(\mathfrak{G}, \mathcal{F})$ is a topological group of the second category with the first axiom of countability satisfied, then for every set $A \in \mathcal{B}$ with $0 < \mu(A) < \infty$ there is a neighborhood V_A of unit element I in $(\mathfrak{G}, \mathcal{F})$ and a positive constant C such that

$$\sup_{h \in \mathcal{V}_A} \tilde{\rho}(h) \leqslant C \int_A \rho(g) d\mu(g)$$

for every pair of quasi-convex functions on Ω w. r. t. G.

By Lemma 1, we may give the following theorem, the proof of which is similar to the Theorem 3 in [2].

Theorem 1. Let $\Omega = (G, \mathcal{B}, \mu)$ be a regular probability measure space, ergodic and quasi-invariant with respect to the measurable transformation group \mathfrak{G} on Ω ; and \mathcal{F} a suitable topology (see [1]) on \mathfrak{G} such that $(\mathfrak{G}, \mathcal{F})$ is a connected topological group of the second category with the first axiom of countability satisfied. If $f_i(g)i=1, 2, \cdots$ is a sequence of quasi-additive functional on Ω w. r. t. \mathfrak{G} , then we have the following zero-one law

$$\mu \left\{ g \mid \sum_{i=1}^{\infty} f_i(g) \text{ converges} \right\} = 0 \text{ or } 1.$$

In the following theorem we give a zero-one law for the convergence in measure of quasi-additive functionals. It may be regarded as a generalization of the Theorem 3.2.10 in [1]. Let $A \subset G$, $A \in \mathcal{B}$, we restrict Ω to A, and induce a measure space $\Omega_A = (A, \mathcal{B} \cap A, \mu)$. A sequence $\{f_i(g)\}$ of the measurable functions on Ω is

convergent in measure on A, if we restrict the sequence to A and it is convergent in measure on Ω_A .

Theorem 2. Under the assumptions of Theorem 1 and assumption that $\{f_i(g)\}_{i=1, 2, \dots}$ is a sequence of quasi-additive functional, $\sum_{i=1}^{\infty} f_i(g)$ either converges in measure on Ω to a quasi-additive functional or doesn't converge in measure on any set $A \in \mathcal{B}$ with $\mu(A) > 0$.

Proof If $\sum_{i=1}^{n} f_i(g)$ converges in measure on some set $A \in \mathcal{B}$ with $\mu(A) > 0$, there exists a subsequence $\{k_n\}$ such that $\sum_{i=1}^{k_n} f_i(g)$ converges almost everywhere on A. By Theorem 1, $\sum_{i=1}^{k_n} f_i(g)$ converges a. e. to some measurable function f(g) on Ω , i. e. there exists a μ -null set E such that for any $g \in G \setminus E$ we have $f(g) = \lim_{n \to \infty} \sum_{i=1}^{k_n} f_i(g)$.

It is easy to know that the a. e. limit f(g) of a sequence of quasi-additive functionals is a quasi-additive functional. In fact, for each $h \in \mathfrak{G}$ there exists a set $E_h^n \in \mathcal{B}$, $\mu(E_h^n) = 0$ such that

$$f_{k_n}(hg) = f_{k_n}(g) + \widetilde{f}_{k_n}(h)$$

for any $g \in E_h^n$. Set $E_h = \bigcup_{n=1}^{\infty} (E_h^n \cup h^{-1}E_h^n) \cup E \cup h^{-1}E$, where E is mentioned above, then $\mu(E_h) = 0$. Passing to the limit with n, we see that for $g \in E_h \lim_{n \to \infty} \tilde{f}_{k_n}(h)$ exists; denoting the corresponding limit by $\tilde{f}(h)$, we have

$$f(hg) = f(g) + \tilde{f}(h), g \in E_{h_{\bullet}}$$

Thus, f(g) is a quasi-additive functional on Ω .

It follows that for any subsequence of $S_n(g) = \sum_{i=1}^n f_i(g)$ we may find again a subsequence converging a. e. to some quasi-additive functional $f_0(g)$. In order to show that $\sum_{i=1}^n f_i(g)$ converges in measure to quasi-additive functional f(g) on whole G, it is sufficient to prove that for every subsequence of $\{S_n(g)\}$, we have $f_0(g) = f(g)$ almost everywhere on Ω . In fact, by the assumption, $\sum_{i=1}^n f_i(g)$ converges in measure on A with $\mu(A) > 0$, hence, we have $f_0(g) = f(g)a$. e. on A. Let $F(g) = f_0(g) - f(g)$, then F(g) is also a quasi-additive functional and for $g \in A$, F(g) = 0 a. e. By Lemma 1 we see that there exists a neighborhood V_A of I in $(\mathfrak{G}, \mathcal{F})$ and a positive constant C such that

$$\sup_{h\in\mathcal{V}_A}\big|\widetilde{F}(h)\big|\leqslant C\!\int_{A}\big|F(g)\big|d\mu(g)=0,$$

hence, for $h \in V_A$, $\widetilde{F}(h) = 0$, it follows that $\widetilde{F}(h) = 0$ on the whole \mathfrak{G} . Let $E = \{g \mid F(g) = 0\}$, then $E \supset A$. Since μ is ergodic with respect to \mathfrak{G} , in order to prove $\mu(E) = 1$, it will suffice to show that E is a quasi-invariant set under \mathfrak{G} in \mathfrak{G} . In fact,

for each $h \in \mathcal{G}$ there exists a μ -null set F. If $g \in E \setminus F$, we have

$$F(hg) = F(g) + \widetilde{F}(h) = 0$$
.

Thus, $hg \in E$ for every $g \in E \setminus F$, i. e. $E \setminus h^{-1}E \subset F$ and then $\mu(E \setminus h^{-1}E) = 0$. In the same way, we can get $\mu(E \setminus hE) = 0$, and by the assumption that μ is quasi-invariant w. r. t. \mathfrak{G} , $\mu(h^{-1}E \setminus E) = 0$, i. e. $\mu(E \triangle h^{-1}E) = 0$, and E is a quasi-invariant set. Thus, the theorem is completely proved.

Corollary 1. If $\{f_i(g), i=1, 2, \cdots\}$ is a sequence of quasi-additive functionals, then $\{f_i(g)\}$ either converges in measure on Ω to a quasi-additive functional or doesn't converges in measure on any set $E \in \mathcal{B}$ with positive measure.

Let R be the real number field, \mathscr{B} the Borel σ -field in R. Setting $(R_i, \mathscr{B}_i) = (R, \mathscr{B})$ $i=1, 2, \cdots$, we denote the product measure space by $(R^{\infty}, \mathscr{B}^{\infty})$, where $R^{\infty} = \prod_{i=1}^{\infty} R_i$, $\mathscr{B}^{\infty} = \bigotimes_{i=1}^{\infty} \mathscr{B}_i$. Let $q(x_1, x_2, \cdots)$ be a mapping of R^{∞} to \overline{R}_+ . If q(x) = q(-x) for every $x = (x_i) \in R^{\infty}$, then we say that q is an even. q(x) is called symmetric if

$$q(\pm x_1, \pm x_2, \cdots, \pm x_n, \cdots) = q(x_1, x_2, \cdots, x_n, \cdots)$$

for all choices of signs \pm and all $x \in R^{\infty}$, q(x) is subadditive if $q(x+y) \leq q(x) + q(y)$ for any $x, y \in R^{\infty}$.

Theorem 3. Let $\Omega = (G, \mathcal{B}, \mu)$ satisfy the assumptions of Theorem 1, q(x) be an even subadditive measurable mapping of $(R^{\infty}, \mathcal{B}^{\infty})$ to \overline{R}_{+} . If $\{f_{i}(g)\}$ is an arbitrary sequence of quasi-additive functional, then

$$\mu\{g \mid \sup_{x \in \mathcal{X}} q(f_1(g), f_2(g), \dots, f_n(g), 0, 0, \dots) < \infty\} = 0 \text{ or } 1.$$

Proof It is convenient to set $\Pi_n(x) = (x_1, \dots, x_n, 0 \dots)$ and

$$q_n(x) = q(\Pi_n x) = q(x_1, \dots, x_n, 0, 0 \dots).$$

 $f(g) = (f_n(g))$ may be regarded as R^{∞} -valued random variable. Let

$$A = \{g \mid \sup q_n(f(g)) < \infty\}.$$

If $\mu(A) = 0$, then the theorem holds. If $\mu(A) > 0$, then there exists a measurable set $A' \subset A$ such that $\mu(A') > 0$ and $\sup_{n} q_n(f(g)) < M$ for $g \in A'$, where M is some constant.

Now, in order to apply the Lemma 1, first of all, we point out that $q_n(f(g))$ and $q_n(f(h))$ is a pair of quasi-convex functions on Ω w. r. t. \mathfrak{G} . In fact, for every $h \in \mathfrak{G}$ we have

$$q_n(\tilde{f}(h)) \leq q_n(\tilde{f}(h) + f(g)) + q_n(f(g)) = q_n(f(hg)) + q_n(f(g))$$

for almost all $g \in G$. By Lemma 1, there exists a positive constant C and a neighborhood $V_{A'}$ of I in $(\mathfrak{G}, \mathscr{T})$ such that

$$\sup_{h \in V_{A'}} q_n(\tilde{f}(h)) \leqslant C \int_{A'} q_n(f(g)) d\mu(g) \leqslant CM\mu(A').$$

Hence, for any $h \in V_{A'}$, $\sup_{n} q_n(\tilde{f}(h)) \leq CM \cdot \mu(A) < \infty$. Moreover, because (§, \mathscr{F}) is connected and $q_n(\tilde{f}(h))$ is convex, we get $\sup_{n} q_n(\tilde{f}(h)) < \infty$ for all $h \in \mathfrak{G}$.

Simultaneously, we have

$$\sup_{n} q_{n}(f(hg)) \leqslant \sup_{n} q_{n}(f(g)) + \sup_{n} q_{n}(\tilde{f}(h))$$

for almost all $g \in G$. Similar to the proof of Theorem 2, we can show that A is a quasi-invariant set. Since μ is ergodic w. r. t. G and $\mu(A) > 0$, we have $\mu(A) = 0$ and the Theorem is thus proved.

Corollary 1. Let $\{f_i(g)\}\ i=1,\ 2,\ \cdots$ be a sequence of quasi-additive functionals, 0 , then

$$\mu\left\{g\left|\sum_{1}^{\infty}|f_{i}(g)|^{\rho}<\infty\right\}=0 \text{ or } 1$$

Corollary 2. Under the assumptions of Corollary 1, we have

$$\mu \left\{ g \left| \sup_{n} \left| \sum_{i=1}^{n} f_{i}(g) \right| < \infty \right\} = 0 \text{ or } 1.$$

Corollary 3. Let $\|\cdot\|$ be a measurable norm on $(R^{\infty}, \mathcal{B}^{\infty})$. If $\{f_{i}(g)\}\ i=1, 2, \cdots$, is an arbitrary sequence of quasi-additive functionals, then

$$\mu\{g|\sup_{n}||\Pi_{n}f(g)||<\infty\}=0 \text{ or } 1$$

where $f(g) = (f_1(g), f_2(g), \dots, f_n(g), \dots)$.

Similarly, we may introduce the quasi-additive operator. Let $(E, \|\cdot\|)$ be a normed linear space, (E, \mathscr{B}) be measurable linear space, and F(g) be E-valued measurable function. If for each $h \in \mathfrak{G}$, there exists an element $\widetilde{F}(h) \in E$ and μ -null set E_h such that

$$F(hg) = F(g) + \widetilde{F}(h)$$

for every $g \in E_h$, then we say that F(g) is an E-valued quasi-additive operator on Ω w. r. t. \mathfrak{G} . The proof of the following theorem is similar to that of Theorem 1, so we omit its proof.

Theorem 4. Let $\Omega = (G, \mathcal{B}, \mu)$ satisfy the assumptions of Theorem 1, $(E, \|\cdot\|)$ be a normed linear space, (E, \mathcal{B}) be a measurable linear space. Let $\|\cdot\|_1$ be a measurable norm on (E, \mathcal{B}) , and B be the completion of E in norm $\|\cdot\|_1$. If $\{F_i(g)\}$ is a sequence of E-valued quasi-additive operators, then

$$\mu\left\{g\left|\sum_{i=1}^{n}F_{i}(g)\right| \text{ converges in } B\right\}=0 \text{ or } 1.$$

If, in addition, $q(x_1, x_2, \cdots)$ is an even subadditive measurable functional from $(E^{\infty}, \mathscr{B}^{\infty})$ to \overline{R}_+ , then

$$\mu\{g | \sup_{x} q(F_1(g), \dots, F_n(g), 0, 0, \dots) < \infty\} = 0 \text{ or } 1.$$

Corollary 1. Let $\{f_i(g)\}$ be a sequence of quasi-linear functionals. If $\|\cdot\|_1$ is a measurable semi-norm, then for any sequence $\{e_n\}$ in E

$$\mu \left\{ g \left| \sup_{n} \left| \sum_{i=1}^{n} f_{i}(g) e_{i} \right| \right|_{1} < \infty \right\} = 0 \text{ or } 1.$$

Corollary 2. Let $\{f_i(g)\}\$ be a sequence of quasi-linear functionals, $\|\cdot\|_1$ be a

continuous semi-norm on $(E, \|\cdot\|)$, B be the completion of $(E, \|\cdot\|_1)$, then

$$\mu \Big\{ g \Big| \sum_{i=1}^{n} f_{i}(g) e_{i} \text{ converges in } B \Big\} = 0 \text{ or } 1.$$

Especially, let $\Omega = (G, \mathcal{B}, \mu)$ be an abstract Wiener measure w. r. t. Hilbert space H. for each $x \in H$, there exists a quasi-linear functional x(g) on Ω w. r. t. H such that x(g) induces linear functional $\tilde{x}(y)$ on H, and $\tilde{x}(y) = (y, x)$ for $y \in H$. Let $\|\cdot\|_1$ be a continuous semi-norm on Hilbert space H, and H be the completion of H in $\|\cdot\|_1$, then for any sequence $\{e_n\}$ in H

$$\mu \Big\{ g \Big| \sum_{i=1}^n e_i(g) e_i \text{ converges in } B \Big\} = 0 \text{ or } 1.$$

Thus, we see that it is natural to introduce the notion of the measurable seminorm in the sense of Gruss in oder to discuss the σ -additivity of Gaussian cylinder probability.

Finally, let us discuss the zero-one law for the stochastic boundedness of the sequence of the random variables (measurable function). Let $\Omega = (G, \mathcal{B}, \mu)$ be a probability measure space and S denote the space of all real valued measurable functions on Ω . The S equipped with the topology of convergence in measure is a topological vector space. Then each element in S may be regarded as a random variable. If a subset M of the radom variables is a bounded set in S, then A is called stochastic bounded. It is easy to verify that a set $M \subset S$ is stochastic bounded iff for arbitrary s > 0 there exists a positive constant t such that

$$\mu\{g \mid |f(g)| > t\} < \varepsilon$$

for every $f \in M$.

Let $M \subset S$ and $A \in \mathcal{B}$ with $\mu(A) > 0$. If we restrict M to A and it is bounded in measure on Ω_A , then, for convenience, we say that M is stochastic bounded on A. It is clear that the stochastic boundedness is weaker than the boundedness almost everywhere.

Theorem 5. Let $\Omega = (G, \mathcal{B}, \mu)$ satisfy the assumptions of Theorem 1, $\{F_i(g)\}$ be a sequence of E-valued quasi-additive operators, q(x) be symmetric convex measurable mapping from $(E^{\infty}, \mathcal{B}^{\infty})$ to \overline{R}_+ . Let $S_n(g) = q(\Pi_n F) = q(F_1(g), F_2(g), \dots, F_n(g), 0, 0, \dots)$. If $\{S_n(g)\}$ is stochastic bounded on any A with $\mu(A) > 0$, then $\{S_n(g)\}$ must be stochastic bounded on G, and we have

$$\mu\{g \mid \sup_{n} S_{n}(g) < \infty\} = 1.$$

Proof Let t>0 and define the stopping time w. r. t. $\{S_n(g)\}$, by

$$T(g) = \inf\{j | S_j(g) > t\}.$$

Then

$$\{g \mid T(g) \leq n\} = \{g \mid \max_{1 \leq i \leq n} q(F_1(g), \dots, F_i(g), 0, 0, \dots) > t\}.$$

For $1 \le j \le n$, we put

$$Z_{nj} = (F_1, \dots, F_j, -F_{j+1}, \dots, -F_n, 0, 0\dots),$$

and we have

$$Z_{jj} = \frac{1}{2} Z_{nj} + \frac{1}{2} Z_{nn}.$$

Since q(x) is a convex function on E^{∞} , we have

$$S_{j} = q(Z_{jj}) \leqslant \frac{1}{2} q(Z_{nj}) + \frac{1}{2} q(Z_{nn}) = \frac{1}{2} q(Z_{nj}) + \frac{1}{2} S_{n}.$$

If T(g) = j, then, by the definition of T, $S_j > t$,

and
$$\{g \in A \mid T(g) = j\} \subset \{g \in A \mid T(g) = j, S_n > t\}$$

$$\bigcup \left\{g \in A \middle| T(g) = j, \ q(Z_{nj}) > t\right\}.$$

Hence, $\mu_A(T=j) \leq \mu_A(T=j, S_n > t) + \mu_A(T=j, q(Z_{nj}) > t)$. Since q(x) is symmetric, then $q(Z_{nn}) = q(Z_{nj})$, and

$$\mu_A(T=j) \leqslant 2\mu_A(T=j, S_n > t)$$

Summing over $j=1, \dots, n$, we have

$$\mu_{A}\left\{g \mid \max_{1 \leq i \leq n} q(F_{1}(g), \dots, F_{i}(g), 0, 0, \dots) > t\right\}$$

$$=\mu_{A}\{g \mid T \leqslant n\} \leqslant 2\mu_{A}(S_{n} > t),$$

by the assumption, $\{S_n\}$ is stochastic bounded on A, for $\varepsilon > 0$ there exists some positive constant t such that $\mu_A(S_n > t) < \varepsilon$ for $n = 1, 2, \dots$. Hence,

$$\mu_A\{g|\sup_{x\in A} q(F_1, \dots, F_i, 0, 0, \dots) < \infty\} = \mu(A) > 0,$$

by Theorem 4, $\mu\{g | \sup_{i} q(F_1, \dots, F_i, 0, 0\dots) < \infty\} = 1$, and $\{S_n\}$ is stochastic bounded on the whole G, and the Theorem is proved.

References

- [1] Xia Dao-xing, Measure and Integration Theory on Infinite-dimensional Spaces (Translated by E. J. Brody), Acad. press, N. Y., (1972).
- [2] Yang Yali, On the ergodic quasi-invariant measures. Scientia Sinica, 24 (1981), 739-748.
- [3] Hoffmann-Jørgesen, J., Probability in Banach Space, Lecture Notes, 598 (1977), 1—189.