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Abstract

In this paper the author obtains several new fixed point theorems for generalized
contractive type mappings by means of Kwapisz’s contractive gauge function and then proves
that lots of contractive type mappings are topologmally equivalent to Banach oontractlon with
given contractive constant 0 € [0, 1).

§ 1. Introduction

In the paper®, we have discussed the existence of the fixed point for several
classes of generalized contractive type mappings. ’

After [1], in papers [2—b] we prove again a lot of new fixed point “theorems
with the help of contractive gauge function which is, by definition, a real valued
function @, [0, c0)—>[0, oo) satisfying t_he following conditions:

(41) @ is nondecreasing.
(4z) lim @ (t) =0, V>0, where @" denotes n-th iteration of @.

(4s) hm (t—2 () =oe.

Our results unify and extend some reoent results obtained by pal Maiti®, Figher™,
Rhoades®, Qiric®, Das; Naik™® and others.

Recently Kwapiszi™ also proves some fixed point theorems with the help of other
contractive gauge function @; [0, oo)—>[0, o) satisfying the following conditions:

(By) @ is nondecreasing and continuous from the right.

(By) For any ¢€ [0, oo) there exists a maximal solution w(q) of the equation
t=0 (t) +¢, t=>0, which satisfies 4 (0) =0,

The purpose of this paper is fo obtain some new results for generalized contractive
type mappings by means of Kwapisz’s contractive gauge function. |

§ 2. Orbitally Contractive mappings and
Quasi-Contractive mappings

Let (X, d) be a nonempty metric space and f be a self mapping on X. For each
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o€ X, lot Os(w, 0, o0) = {wo =1, wy=1 (o), *** g1 = (@), cer} = {@a} new
denote the orbit of f at @, where ® i the set of all nonnegative integers. For 4, jE€,
j>14, write '
Oy4(=, 4, N =1 Tigr=J%1, @}
5(4) =sup{d(z, y) @, yEA} is the diameter of AC X,

Lemma 1.%%  Let @, [0, 00)—>[0, o0) satisfy the conditions (B1) and (Bs). If
w(q) is the mawimal solution of the equation t=0() +q for any given ¢ € [0, o0), then
the following inequality

p<®(p)+¢, PEI0, )
implies p<p (). v

Theorem 1. Leét f be @ continuous self mapping on @ complete metric space (X,
d) .Suppose that [0, 00)—>[0, oo) satisfies +he conditions (B1) and (By) . If there ewists
pEaw, p=>1, such that ‘

7 a(fow, Fo) <05, 0, p-+k))) @
for all € X and dll & € o, then the orbit {@ntnew Of f @t ® for each #€ X converges to @
fiwed point &* of £ .

Proof Let « be an arbitrary point in X. {&a}neo=0s(, 0, o). For all 4, j€o
j>i=p, 1="np +1, 0<<I<p, by (1) we have

d (@i, ©) =d(fBa-vpsr. f =0l _1341)

<@ (3(0s @en-2p+1> O, j—(—1)p— 1))

~8(3(04(@, (n—D)p+L, D). @
Since @ is nondeoreasing, BY (2) we have :
5(0;(w, np+1, 0)) <P (01(=, (n—1)p+L, °))). )

Butb
3(0s(w, (a—1D)p-+1, 0)) <8(0s(w, (n—1)p+1, np-+1))
+8(0s(w, np+1, ©0)). Y
Then it follows from (8) and (4) thab
3(0s(w, (n—1)p+1, o)) <8 (0s(w, (n—1)p+, np-+1))

| | +&(3(0y(m, (n=1)p+1, *)))e (5)
Now letting n=1 and 1=0 in (5) we obtain -
3 (Of (m) O) oo)) <d (Of (m) 0’ p)) +@(8 (Of (m: 0: oo)) . (6)

Let M =28(0;(w, 0, D)) and suppose thatb w(M) is the maximal solution of equation
=@ (1) +M, then it follows from Lemma 1 and (6) that

| 5(0;(@, 0, 00)) <)==t <e, @
Letting n=11in (3) and noting (7) we have

<B((0)(@, 0, ) <B@)
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@

By induction it is easy to obtain

5(0;(z, np-+1, 00)) <P (Ups) == 14y, n=1, 2, +=, (8)

ty =D (o) <D (M) + M = (M) =y,
g =D (1) <P (uo) =,

Then

u,,=@(u,._1) <@(u,,_2> == Up-1, ')’b=1, 2, ses
Let t,=1lim u,. By the continuity of @ from the right we obtain

n=->00

to= }Ll_)m Uy =110 B (Up_1) =D (M Upp1) =D (o) <ljm Up-1="To,

N-»00

and hence to=® (%) . It follows from Lemma 1 and (Bj) that t,=0. Then from (8)
we obtain
lim 8(0s(w, np-+l, o)) < lim u,=0, VYO<I<p, ©)

>0

which implies that {®,}nc. is a Cauchy sequence in complete metric space (X, a) and
hence #,~>#" € X. By the continuity of f it follows immediately that " is a fixed point
of f. :
"~ Remark 1. Lot p=1 and &(f) =at, o€ [0, 1), in Thecrem 1. Obviously @: [0,
c0)—> [0, oo)satisfies the conditions(By)and(B,). Then we obtain, as a special case, the
main result of pal, Maiti'®.
Theorem 2. Let f be a continuous self mapping on & complete metric space (X,
d). Suppose that @, [0, o0)—>[0, oo) satisfies the conditions (By) and (Bs). If there
ewists p, ¢ Ew, p, ¢=>1 such that
d(f*w, ) <BB(Os(a, o, p) UOs(3, 0, D)), | (10)
for all @, yE€ X, then f has & unique fived point &* and for each x € X the orbit {@n}ncw
of f at & converges fo ",
Proof Without loss of generality we may assume p>>¢ in (10). For any s€ X,
Let {@n}sco=0s(®, 0, 00). Putting y=f?"2**s for all k€ w in (10), we have
d( f?w, f7**0) <@ (3(0;(z, 0, ») UOs(@s-as1, 0, 9)))
<®(0s(w, 0, p+K))) (1)
for all € X and all ¥ €w. Theorem 1 yields the conclusion thab {®n}new CORVErges
1o a fixed point 4" of f for each v € X.
Now assume that ¢* also is a fixed point of f. Then
d(a*, ") =d(f*", fia") < (", ¥°).
Tt follows from Lemma 1 and (B,) that d(a*, ¢*) =0, that is 2*=g* and hence & is
the unique fixed point of f.
Remark 2. Lotting ®(¢) =at, «€ [0, 1), in Theorera 2, we find that the
Theorem 2 of Fisher™ is the special case of our Theorem 2.
Fither let p(or ¢)=1 or strengthen the contractive type condition (9) in
Theorem 2. Then the continuity of f isn’t necessary. Using the same argument as in
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the proof of Theorem 8 and 4 in [3]. we may establish the following Theorems 3
and 4. =

Theorem 3. Let f be a solf mapping on a complete metric space (X, d).
Suppose that @, [0, co)—>[0, co) satisfies (By) and (By). If there exists p, ¢€w, p,
g=1, p(or ¢) =1, such that o

d(f', f%9) <P (3(0s(x, 0, p) UOs(y, 0, p)))

for all », y€ X, then f has a unique fixed point #* and {&,},c. converges fo o* for
each v € X, ,

Remark 8. The Theorem 3 of Fisher™ is a special case of our Theorem 8. ‘

Theorem 4. Let f be a self mapping on a complete metric space(X, d), suppose
that @, [0, o0)—>[0, o) satisfies (By) and (Bs). If there ewists p, g€ w, p, ¢=1 such
that | _ |

d(f*w, ) <@ (max{d (v, y), d(v, /'), d(y, f4), d(v, fu), dy, f'=)})
Sor all , y€ X, then f has a unique fiwed point * and for each #E€ X {m,}rcw converges
to a*,

- Remark 4. Theorem 4 unifies and extends the main results of Rhoades® and

ciric™, '

§ 8. Some common fixed point theorems of
generalized contractive mapping

In this section we generalize the recent results of Das, Naik™®, Let N denotes the
set of all positive integers.

Theorem 5. Let f be o continuous self mapping on a complete metric space (X, d)
and {gu}nen be a sequence of self mappings on X such that g,f =19, and gin(X) cf(X),
VREN, where {my}ncy i @ sequence of positive integers. If there ewists @, [0, o)
[0, oo) satisfying (B;y) and (B,) such that

d(gi"w, 97y) <@ (max{d(fa, fy), d(fo, giv),

a(fy, 97y, d(fa, gi), d(fy, giw)}) - (12
for all @, yEX and for all i, §EN, i+j, then f and {g}ney hawve a unique common
fiwed point fy* (= gi*y*, YnEN) and for each wo € X grrifu, — fy. |

Proof Take aﬁy wmE€X. Since gi(X)cf(X), VrEN, we may define a
sequence {@,},cy in X such that grpiw, = fn =1, Vn€w,

Now we prove that {¢}uc. is a Cauchy sequence. For any 4, jE N, j>4, by (12)
we have

d(ys, yp) =d(gittm, ginw;) <@(max{d(fa, fo;), d(fu, gievw),
a(fu), gitimy, d(fa, gisier), d(fo;, gitie)}) <@ (max{d(Yi-1, ¥;-1),
d@i-1, 9, AWs-s, ¥5), dWi-s, U5), (@sms, W), | (13)
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It follows from (13) that

where O(y;, §) = {¥i, %is1, ***, Y;}, then we have
| 3(0(yi, 0)) <P(B(0(gi-1, ©°))), (15)

From (16)we obtain
O (0 (@1, ©0)) <d (Y1, 9») +0(0(y;, )
<d(@i-1, ¥) +P (0 Wiz, 0))). (16)
putting ¢=1 in (16), we have
| 3(0(go, ) =0(go, y1) +P(3(0 (%o, ©2))). an
Suppose that w(d(yo, y1)) is the maximal solution of the equation ¢=®(t)-+d

(%o, y1) in [0, oo), then it follows from Lemma land (17) that

def.
| 3(0 (o, °0)) <u(d@o, Y1) =1, (18)
Then putting ¢=1 in (15), we obtain
dof.
3(0(ys, 0)) <B(3(0 (g0, ))) <B(up)—1s,
By induction we have
def.
3(0 (g, ©0))<P(u_s)=— w, i€N, (19)
Then ‘ '
uy =D (uy) <D (o) +d (Yo, Y1) =,
Us <P (uy) <P (o) =1y,

, <P U-1) <P (Uy-2) =t%_1, 1EN,
By the continuity of @ from the right, we obtain
: lim o, <@ (lim vy1) <Hm vy,
§-»00 {->0a G>o0 (20)
Letting t°=1¢£t5 wu, it follows from (20) that ¢,=® (%,). By Lemma 1 and (B,) it follows
that =0, hence '
lim 8(0(y, o)) <lim u=0,
which irﬁply that {¢u}new is a Cauchy sequence in the complete metric space (X, d)
and so it converges to y* € X. since f is confinuous, It follows that {fyn}nc. also
converges to fy".
Now we prove that g7y =fy*, Vj€ N. since fy,— y*, and
| IrE8Yn= Gut8f Cass=FGutE Onis=FYns1,

hence for any given &>0 there exists ny € N such that

a(fyn, fy*) <'§“; GCSYn, [Unr1) <é,

whenever n>n,. By (12) we obtain
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&(FYns1, 97°Y°) = (gRr5Ys, 97y")
<@ (max{d(fyn, fY°), d(fyn, fynrs), S(FY*, i),
(fYn 9797, (FY*, Fonrn)})

7 * Mg % * Mg ¥ &
<o (max{—g-, & Ay, 979, 5+a(fy, v, —2—})

<@ (s+d(fy", g7y")), Vn=n,, (21)
Let n—>co in (21) and then let &~>0. We have
a(fy", 97y <P @(fy", 97y")).
Thus Lemma 1 and (B,) yield d(fy*, giy*) =0, and that is g/4y*=fy*, VI EN,
Now for any ¢ €N we have
ad(gfy", fy*) =a(gfy", gry®)
<@ (max{d(ffy", fy"), a(ffy", 90y, A(fy", 979",
a(ffy", 979", a(fy", gy}
=@ (max{d(gi"fy", fy"), 0, 0, d(gify", fu"), d(g™fy", fy)})
=BGy, f1), (22)
which implies d(g¥"“fy", fy*) =0 and hence g/fy* =fy*, Vi € N. Since ffy* = g/*fy* = fy*,
hence fy* also is a fixed point of f and so fy* is a common fixed point of {g},cy
and f.
Now for any fixed 4€ N, suppose that 4* also is a common fixed point of gi* and
J, then by (12) we obtain
d(@", fy") =d (9", g7*fy")
<@ (max{d(a", fy*), 0, 0, d(a", fy"), d(s", fy")})
=& (d(e", fy*))
which implies 4" =fy* and hence the common fixed point of g and f is unique. But
since gi"fy"=fy" and f fy*=fy* imply gi“g.fy"=g:fy" and fg; fy*=gify" respectively,
g:fy" is also a common fixed point of ¢gi* and f. By the uniqueness of the common
fixed point of gi" and f we obtain g;fy*=fy". Since ¢ € N is arbitrary, fy* is a unique
common fixed point of {g,},c. and f.
Putting m,=1, YnEN we obtain
Corollary 1. Let f be a continuous self mapping on & complete metric space (X, d)
and {ga}nex be @ sequence of self mappings on X such that g,f=fg, and g¢,(X)cf(X),
VrEN. If there exists @, [0, 00)—>[0, o) satisfying (By) and (Bs) such that
d(gw, 9:y) <@ (max{d(fa, fy), d(fo, gw), d(fy, 91),
d(fw, 99), A(fy, gw)})
Jor all o, y€ X and all i, §EN, i+], then f and {gu}nev have a unmique common fiwed
point fy*(=guy*) and for each o€ X, gos1 fo>Ffy*,
Corollary 2. Let f be a continuous self mapping on a complete metric space
(X, d), g be a self mapping on X such that gf=fg, 9(X)Cf(X). If there ewists
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@, [0, o0)—>[0, oo) satisfying (Bi) and (Bg) such that
d(gw, gy) <O (max{d(fo, fy), d(fo, gv), d(fy, 99),
d(fx, gv), d(fy, 92)}) :
for all &, yE X, then f and g have & unique common fized point fy* and for each xo € X
{9f T n}new CONVETges to fy'.
Remark 5. Obviously, the Theorem 2.1 of Dag, Naik™” and the main result of
Ranganathan®™® are the special cases of Corollary 2.
Corollary 8. Let {gu}en be a, sequence of self mappings on a complete metric space
(X, d). If there ewists a sequence {mu}ney Of Positive integers and @ [0, o0)—>[0, o)
satisfying (Bi) and (Bs) such that
d(grw, giy) <O (max{d(s, ¥), 4@, gis), Ay, 97'Y)
d(z, g7y, dly, 9"@)}) |
for all w, y€ X and all §, jEN, i+ 7, then {gu}ney has @ unique common fized point y*
and for each x50 € X {gnii@utnes cOMVErges o y*.
Proof Let f=1I(identical mapping) in Theorem 8. The conclusion of Corollary 8
follows. o
Using a similar argument as in the proof of Theorem 5 we can establish
Theorem 6. Let f be o self mapping on o complete metric space (X, d) and f™ be
continuous, where m is a fiwed positive integer. Suppose that {gu}ney s @ sequence of self
mappings on F-1(X) into X satisfying gof =fgs and gi*(f"(X)) cf™(X),VneN,
where {Mp}ney s @ sequence of positive inteyers. If there ewists @, [0, 00)—>[0, <o)
satisfying (Bi) and (Bj) such that (12) holds for all @, y€EX and all %, JEN, i#],
then f and {gn}nen have a unique common fimed point.
Remark 6. Theorem 6 improves and generalizes the Theorems 8.1 and 4.1 of
Das, NajkH%,

§ 4. The relations between some contractive
type mappings

Lemma 2.081435 Lt f be o continuous self mapping on @ metric space (X, d)
with the following properties:

(i) f has a unique fized point x*.

(ii) For each € X the sequence of iterations {f"(®)}ncw converges to z*,

(iii) There ewists an open neighborhood U of " with the property that given any
open set V. containing & there ewisis an integer no such that n=>ne implies f oHc<v.

Then for an arbitrary C € [0, 1) there ewists a metric d* on X topologically equivalent
to d such that f is @ Banach contraction mapping under d* with the Lipschitz constant O.

Theorem 7. Let f be a continuous self mapping on « complete metric space (X,d).
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If one among the following contractive type conditions holds:
(I) (Banach) there ewists BE [0, 1) such that

d(f, fy)<Bd(z, y)
for all @, y& X;

(II) (Kannan'%) there ewists B & (0, —é—) such that

d(fo, fy) <Bld(, fo) +d(y, fy)]

Jorall v, y€X;

(III) (Bianchini™™) there ewists BE [0, 1) such that

d(fo, fy) <B max{d(z, fz), d(y, fy)}

for all z, y€ X;

(IV) (Reich™®) there ewisis nonnmegative real numbers a, b, ¢, a+b+e<l, such
that ' ‘

d(fa, fy)<ad(w, fo)+bd(y, fy)+cd(w, y)
for dll », y €X;
(V) (Rouw; Socrdi™®) there ewists BE [0, 1) such that
d(fo, fy) <B max{d(s, fv), d(y, fy), d(=, ¥)}
Sor dll &, y€ X3
1

(VI) (Chatterjea™) there ewists BE [O, -2—->such that

d(fo, fy) <Bld(s, fy)+d(y, f2)]
for all », y€ X4
(VII) (Hardy; Roges™) there ewist nonnegative real numbers ay, @, as, as, s,
X ‘
> ai<1, such that

$=1

d(fa, fy)<ad(w, y) +ad(w, fo) +asd(y, fy)
‘ +ad(x, fy)+asd(y, fo)

Sfor dll », yE X3 ’

(VIII) (Zamfirescu®, Massa®) there ewists BE [0, 1) such that

A fo, Fo)<B max{d(@, 1), 5[4, fo) +d(y, 1)1,

314G, f9)+dG, f91}

for all x, yE X; ’
(IX) (Ciric®¥) there ewists BE [0, 1) such that

i(fa, fo)<B max{d(@, 9), d(a, fa), 4G, fu),

| 5[4, f4)+d(, fo)1}
Jor dll @, y€ X;
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(X) (Ciric*®)there ewists BE [0, 1) such that
d(fa, fy) <B{d(, v), d@, fo), d(y, fv), d(o, fy), d@y, fo)}

foralle, y €X; ' ,

(XI) (Rhoades®) there exist BE [0, 1) and p, ¢ EN such that

d(f*w, f) <Pmax{d(s, 9), d(o, f’0), d(y, f*), d@, f4), ¢y, f*2)}

Sfor dll w, yEX;

(XII) (Fisher™) there exist BE [0, 1) and p, ¢ €N such that

d( %, fu) < max{d(fw, f'9), d(fw, f'5), d(fY, f9):
0<r, 7'<<p; 0<s, §'<<¢};

(XIII) (Ding xie-ping) there exists P, g€ N and @;: [0, oo) (PHIg+D+ P+ (a+1)_y,
[0, o) are nondecreasing and continuous from the right in each cooridinate variable and
D) =B:(t, 1, -, 1) satisfies (By) and (Ba) such that ‘

A(f20, fu) <B:@(fw, 1), d(f'm, F70), d(fY, F9):
O<r, r'<p; 0<s, §'<¢) :

for all z, y€ X;

(XIV) (Ding wie-ping) there ewist p, ¢EN and @:[0, 00)—>[0, oo) satisfying
(By) and (Bj) such that '

d(f*, f) <P (0s(=, 0, p) UOs(y, 0, 1))

for all », yE X;
then the following conclusions hold:

(i) f has a unique fimed point o in X;

(i) for each € X the sequence of iterations {f* (@) }ren converges to a°;

(iii) U-uniform convergence: there ewists some neighborhood U of o such that

tim (@) = {&'},

this means that for any open set V containing «* there exists an integer ny such that n=>nq
implies f*(U)CV; '

(iv) stability of the fiwed point o™ for any neighborhood Wof a" there ewisis some
neighborhood V' of & such that each ¢ €V implies f* (@) EW, Yn€w;

(V) for am arbitrary ¢ € [0, 1) there ewists a metric d* topologically equivalent to d
such that f is @ Banach contraction mapping under d* with the Lipschitz constant c.

Proof T is easy to see that the contractive type conditions (I)—(XIII) are all
the special cases of the contractive type condition (XIV). Thus we only need to prove
the conclusions of Theorem 7 for f satisfying the contractive type condition (XIV).

In fach, we have proved, in Theorem 2, the conclusions (i) and (if) of the The-
orem 7. Now we prove the conclusion (iii) of his theorem.

Since f, and so f2, -+, f?, are continuous and &* is a unique fixed point of f,

hence for a given positive number %I->O there exists a positive number 7, O<n<%—
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such that

d(fo, @) =d(fo, o) <G

for all s €U = {w|d (&, 2*)<n} and all 4€{0, 1, ---p}. Thus for all 4, §E{0, 1, ---p}
and all #, yEU we have

d(f'a, ) <d(fo, o") +d(fly, o) <T+2 =1,

and so
sup 3(0;(v, 0, ) <M. (23)

Since the contractive type condition (XIV)implies the orbitally contractive type
condition (1) in Theorem 1.

An analysis of the proof of Theorem 1 shows that when we take the supremum
in the inequlities (3)—(9) of Theorem 1 for all #€U, these inequalities still hold,
where M satisfies (23). Then it follows from (9) that

lim sup 8(0;(w, np+1, o)) =0, VO<I<p. (24)

Now we fix the open neighborhood U= {w|d (=, ") <n} of 2*, then for any given
>0, (24) implies that there exisls n, € N such that

d@, o) =d(f, flo) << (25)

for all #€U and all ¢, §EN, j>i=>n,.
Letting j—>o0 in (25) we obtain

dla, ") =d(f'5, o) <Z (26)

for all €U and all ¢=n,, then the diameter of f*(U) sabisfy
3(fU)) = sup d(f'e, f'y) < sup [d(f'w, o) +d(fYy, 7)]

& &
<§-+-§-=8 (27) _

for all i>ne. (27) means that 3(f*(U))—>0, as i—>c0. Thus f(U) is squeezed into any
neighborhood of #*, as ¢ is large enough and the proof of conclusion (iii) is completed,
Acoording to the Lemma 2 the conclusion (V') of this theorem is also true.
Following the Lemma 2.1 of Ouofimes* the conclusion (iv) is agam frue and
hence the proof of this theorem is completed.

- Remark. Theorem 7 improves and extends some main results in [7—9] and
[16—24] and strengthens their conclusions. Theorem 7 shows in essential that under
a suitable metric d* toplogically equivalent o d, these mappings in -this theorem are
topologically equivalent to each other.

Olearly, by Theorem 7 we have
Theorem. 8. Let S be a continuous self mapping on a complete metric space
(X, d). If f satisfies one among the contractive type conditions (I)— (X IV )in Theorem
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7, then there ewists a metric &* on X topologically equivalent to d such that under d* f is am
Edelstein contractive mapping'®™ (For oll x, y€ X, d(fz, fy) <d(w, v)).

References

[1] Ding Xieping, Fixed point theorems of generalized contractive type mappings, Acta Mathematica sinica,
24 (1981), 67—381.

[2] Ding Xieping Chang Shihsen, generalized contractions and fized point theorems, Kewue Tongbao,
Math., physics, chem., 1 (1980), 57—61.

{ 8] ' Ding Xieping, Orbitally Contraction mappings and fixed point theorems, (to appear).

[4] Ding Xieping, Common fixed point theorems on a sequence of mappings, sichuen shuiyan xuebo, 1(1982),
1—8. "

[5] Ding Xieping, Fixed point theorems of Some Contractive type mappings and relations between them,
(to appear).

[6] pal, T. K. Maiti, M., Extensions of ciric’s quasi-contractions, Pure. dppl. Uath. Sci., 8(1977),17—20,
(761.378.54033).

{71 Fisher, B., Quasi-contractions on metric space, proc. dmer. Math. Soc., 78 (1979), 821—3825.

[8] Rhoades, B. E.,Comparison of various definitions of contractive mappings, Trans Amer. Math. Soc., 226
(1977) 257—290.

[9] Cirie, Lj. B., A generalization of Banach’s Contraction principle, Proc. Amer. Math. Soc., 45 (1974),
267—273.

[10] Das, K. M. and Viswanatha Naik, K., Common fixed point theorems for commuting maps on a metric
space, Proc. Amer. Math. Soc., 77 (1979), 369—373.

[11] Kwapisz, M., Some generalization of an abstrat contraction mapping principle, Nonlinear Anal.,

. (1979), 293—302.

[12] Ranganathan 8., A fixed point theorem for commutmg mappings, Math. Sem. Notes, 8 (1978), 351—857.

[18] Meyers, P. R., A converse to Banach’s contraction theorem, J. Res. Nat. Bur. Standards. Sect., B7T1B
(1967), 73—76.

[14] Onofines, B. H., O6pamenne IpARNATS CEAMAOMEZ o0ToGpamennit, ¥ MH, 81:4 (190), (1976), 169—198.

{1517 Solomon, L., A topological characterization of Banach contractions, Pacific J. Math., 69 (1977),
461-—466.

[16] Xannan, R., Some results on fixed point II, Amer. Math. Monthly, 76 (1969), 405—408.

[17] Bianchini, B. M. T., Su un problema di S. Reich riguardante la teoria dei puntifssi, Boll. Un. Mat.
Ital., 8 (1972), 103—108.

[18] Reich, 8., Some remarks Concerning contraction mapping, Canad. Math. Bull., 14 (1971), 121—124.

{191 Roux, D., Soerdi, P., Alevne generalizazioni del teorema di Browder-Gohde-Kirk, 4tti Adccad, Nas.
Lincet Rend cl sci. Fiw. Mat. Natur, (8) 52 (1972), 682—688.

[20] Cbatterjea, S. K., Fixed point theorems, C. B. Acad. Bulgare Sci., 25 (1972), 727—730.

[21] Hardy, G. E. and Rogers, T., D. A generalization of a fixed point theorem of Reich, Canad, Math.
Bull., 16 (1973), 201—2086.

[22] Zamfirescu, T. Fix point theorem in metric spaces, Arch. Math. (Basel), 23 (1972), 292—298.

[28] Massa, S., Unosservagione su un teorema di Browder-Roux-Soardi, Boll. Un. Math Tial., (4) 7 (19738),
151—155.

[24] Cirie, L. B., Generalized Contractions and fixed point theorems, pudl. Inst. Math. (Beograd) (V. 8.), 12
(26) (1971), 19—26.

[25] Edelstein, M., On fixed and periodic points under contractive mappings, J. London Math. Soc., 37
(1962), 74—T79.




