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Abstract

Any finite simple group of Lie type is proved to be determined by its subgroup lattice
up to isomorphism.

By the subgroup lattice L(G) of a group G is meant the seb of all subgroups of G
partmlly ordered by inclusion. A group G* is said fo be lattice-isomorphic to @ if
L(@) = L(G*), i. e., there ex1sts an order-preservmg bijective mappmg w of L(G)
onto L(G*).

In general, the la’otlce-lsomorphmm L(G) ~L(@*) of two groups G' and G* does
not imply @=G*. But such an implication was expeoted in case that G isa non-abelian
finite simple group™. Although this conjecture has been verified in several ocases (for
example, the case of alternating groups), there is up to the present no proof in general.
In this paper we shall prove the following result which will lead to the settlement of
the matter, providing the classifying of finite simple groups is completed.

Theorem 1. Let G be a finit esimple Ohevalley group or a finite simple twisted
group and G* be o group with L(G) =L(G*), then G=G".

The cases G=A41(q), 242(¢?), 2B2(2*"*), 2Gh (8*™+1) are excluded in the following
exposition of the proof. And the following known theorems will be quoted:

The lattice-isomorphio image of a finite non-abelian p-group is also a p-group™.-

The lattme-lsomorphm image of a finite non-abelian simple group is also a simple
group™,

It is well-known that the group Gis a group with a BN-pair, where B is the
normalizer of a Sylow p—subgroup of G, p being the characteristic of the ground field
under consideration.But under our restriction a Sylow p-subgroup of G is non-abelian
and is generated by its mmlmal subgroups, it is not difficult to prove on basis of a
$hoorem.of R. Baer™ cited above that the lattice-isomorphism sends the set Syl,(G) of
all Sylow p-subgroups of G into the corresponding set Syl, (G*) of G*. Further, in
any finite group X the normalizer Nx (P) of the Sylow p-subgroup P can be
characterlzed in latticetheoretic térms as the greatest subgroup of X containing P bus
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not containing other subgroups of Syl,(X), so we see the mapping w also sends the set
of normalizers of Sylow p-subgroups of & into the corresponding set in G*. Thus if
we denote by ¢, the inner automorphism of G* induced by the element g and regard it
as a permutation on the set of normalizers of Sylow p-subgroups of G*, then
I,=u%%,u is a permutation on the set of normalizers of Sylow p-subgroups, and
hence ig a permutation on the set 2 of all parabolic subgroups of G. Since, by a
theorem of M. Suzuki'®, G* is simple, the mapping g I, is an embedding of G* into
the symmetric group on Q. On the other hand, according to J. Tits™, a building
4(G) with the reverse of set-theoretical inclusion as its partial ordering can be defined
on Q. Since each I, preserves set-theoretical inclusion, it can be regarded as an
automorphism of this building. Further, when ¢ lies in u(#Bx™), the building
automorphism I, fixes all faces of the chamber 2Bz~ and is therefore type-preserving.
‘But G* is generated by all subgroups of the form w(wBz™), we see gi—>1I, is an
embedding of G* into the group Spe 4(@) of all type-preserving automorphisms of
4Q. | |

A fact of vital importance at this moment is a theorem which was originally
derived by J. Tits"® in terms of the theory of algebraic groups and of which we shall
give an direct proof in the remaining part of the present paper. According to this
theorem, the group vSpe 4(G) of type-preserving automorphisms of the building 4(@)
is isomorphic to the group Spe G generated by all inner,A diagonal and field
automorphisms of the group @, and so we may regard the group G* as a subgroup of
Spe G. But the group Spe & has a normal series |

‘G=Inn G<Spe &
with solvable factor group Spe G/Inn @ and the subgroup G* is non-abelian simple,
s0 we must have G*=@ as was to be shown. ‘ _

Now, after doing all this, our main concern is to establish the isomorphism
between Spe 4(G) and Spe @, i. e., to prove |

Theorem 2. Let @ be a Chevalley group or a twisted group over & finite ﬁeld,
G 41(q), 242(g%), 2By (2™+), 3G (32™), then each element o of the group Spe G
generated by all inner, diagonal and field automorphisms of G induces a type-preserving
automorphism o* of the building 4(G) and ol—>o* is an tsomorphism of Spe G onte
Spe 4(G). _

The exposition of our proof will be given only for the case that G is a Chevalley
group over Fg, the twisted cases can be treated similarly. We note by the way that
our method can be also applied to determine the full automorphism groﬁp Aut A(G):
of 4@&. S |

The notation about the Chevalley group @ follows R. QOarter™’: B is the semi-direct
product of U by H, where U=<X,; rE€ ®@*) is the unipotent subgroup generated by
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the positive root subgroups and H is the diagonal subgroup, while N ig the monomial
subgroup and WeN/BNN=N/H is the Weyl group with the fundamental
reflections {w,; r € II} as generating involutions. A subgroup containing B is of the
form P;=<(B, n,; r€J), where JCII and n, is the image of w, in W under the
natural homomorphism, while a parabolic subgroup is a conjugate gPyg™* of some P,
The set of apartments of 4(G) is &/={gZg™"; g€ G}, where Zo={nPyn~%; nEN,
JCTIT}. For the sake of convenience we shall denote gP,g™ by ?P; and, similarly,
92097 by 9. S

The distance between the chamber 9B and *wB is l(w), where u€ U, w is the
image of nw in W and I(w) is the shortest length while w is expressed in the generators
w,, rE1I. In particular, the diameter of A4(Q@) is (wo), where wp is the unique olement
of W sending @* to @, while the chambers opposite to ¢B are 9B, n, mapping
10 wo. wk> 92y is a 1-1 correspondence between the elements of U and the apartments
containing the chamber B, while the set {9X @ 3y; a€EF o} exhausts all apartments
containing simultaneously 9B and *P,, where s€II and r=wo(—s). The type of
any face P, is the same as Py, and *P; is the unique face of “Z, which goes over t0- a
given "P,;€ 2, under the retraction retrs, ». ' '

Now we state the proof of the proposition.

- The only difficulty to surmount is to show that every 7€ Spe 4(G@) can be
induced by some o & Spe G-

Suppose 7(B) =B, then 7=ty ' fixes B.

7, permutes the chambers opposite to B among themselves, hence 7 ("B) —“*’“B
for some u; € U. Now 7o=14y. v, fixes B and ™B. Thus 7, stabilizes the apartment
So=2(B, "B) and fixes all faces "P; of 2. '

For any r€ IT, the antomorphism v, fixes B and ™P,.ry, and so it induces a
permutation on the set {¥*® o; a€ F¢} of all apartments containing B and ™Pg,yy.
In particular, 75(¥r® 3,) =X"3 t.€ Fy, and the function y(r) =, can be extended
t0 an F,-character y of the free additive group generated by the fundamental roots.
Let h(y) be the element of A determined by this character and let d be the
automorphism @t>h(x)wh(x)~* of G, then ws=d* v, fixes all faces of the apartments
2o and {3y €11}

Now let us make a closer analysis of the automorphism 7. Since this automorphism
fixes B, it induces a permutation on the set {*Zo; u€ U} of all apartments containing
B. By putting 7; ("20) =9 ¥ we get a permutation ¢: u>¢@(u) of the elements of U.
75 preserves the image of every face under the retraction retrs, s, hence it maps “"P; to
swnP, Purther, we know that any r€ @* can be written as r=w(r")with +/ €I and
wEW. Since 7; sends the pair “wg, “*Ppywry 10 the pair ""“B, """ Py py, it
maps the st {"*"“3y; a€ Fg={""®3y; a€F,} of all apartments containing the
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former pair to the set {#™X®X,; g€ F} of all apartments confaining the latter. In
other words, we have ¢(uz,(a))=p(u)a.(b) and b+0 iff ¢+0. Hence, we have
(T 07,(0) =p() ] 1,(50), and (T ar(a0) =T @5 (), whoro by, 8, axo non-zero

iff @;0.
Gwen r&d*, we can define a permutation f, of the elements of F, by
| | 0@ (@)= (F: (@) N
On the other hand, given any ordering of the Toots compatible with the height
funetlon, every eloment «€ U can be umquely expressed in the form u= H w,(a,)

with the roots arranged in increasing order. Applymg the function @, we have
o(u) = 1; q:,(b,). But for any given s€ @*, we have u=a,(a,)u, and
redt ’ ' o

Uy =15 (as) 2 I1 @(a) o L : .
r§d5+ . ‘
can be brought to the canonical form [[ &y (ay) with a:=0. So wo have

(u) a:s( fs(as)) II w,(b*) with b*

Bringing thls expression of @(u) to' the canonical form and comparing it Wlth the
former expressi on of p(%), we find that, b,= =fs(as). Thus we have the important

equality ¢ ( II o, (ar) ) H Dy (f (@),

As a further step, we show that under the restriction G+ 4;(q), the funotion
does not dependon 7 and is an automorphism of the field Fg. To start with; let r, s be
any pair of non- orthogonal fundamental roots with M =—1. By Ohevalley ]
commutator formula we have for any @, b€ Fj

. v (D) @, (@) = w,(a)ws(b)w,+s(ab)
Here the ordermg of the roots on both sides are d1s’o1nct but are both compat1ble with
the height functmn By applying the function ¢ we have ' ' ’

s (f8<b) )wr (fr (“)) wr(fr (@))ws(fs (b) )mr+s<fr+s(ab>)

wS<f8(b))mr(fr<a)) mr(ff(“))m3<f8<b))wr+s(fr<“)f8<b)> : :
50 We have fris(ab) =f:(a)fs(b). Since f(1) =fs(1)=1, we have f, (a) fH.s (@)=f(a)
and f,(ab) =f.(a)f-(b). By applying ¢ to the equality . '
ws(a)r (1) Br15(D) =2 (L) s (“) Zers(at+ b)

But

we have .
: ws(fs(“»wr 1) wr+s(fr+s (b)) =2,(1) “’S(fs(“) )wr+s (fr+s(a+b>)
But

@s(fs(@))2x <1> wr+s(fr+s(b> ) =, <1) s (fs (a) )wﬁs{fs (@) +fr+s <b>> :
50 Wwe have fres(@+0) =Fs(a) +Ffres(b), and hence Fi(a+b) =f(a) +£:(b). Thus fris
an automorphism of F, From the connectedness of the Dynkin diagram of the
associated simple Lie algebra we see that f,=f. for all n&IIl. Now we prove by




ON THE SUBGROUP LATTICE CHARACTERIZATION OF
No.2 FINITE SIMPLE GROUPS OF LIE TYPE 169

induction on the height of ¢/ that fr=f. for any 7 €d+*. As a matter of fact,
if € @*\II, then there exists »” € &* such that ' — " € @+, Lot ro=1'—mr'" begin the
r—chain of roots through 7, then 2’ =ro+mr” and My, = +1, hence
@y (1) 4, (@) = @r, (@) By (1) -5 (na),

where a € Fg, n=(—1)"M,, ,»,m= 1. Since fr=F;= f,~ by the induction hypothesis,
we have by applying the function ¢

w0 (1) @y (+(@)) = 0, (F£(0)) 0 1)+ (for (12)).
But

&0 (1), (f1(@)) = @0, (F7(@) )2 (1) -2 (01 (@),
and so f(na) =nf. (@) =f,(na), hence fr=F as desired. Thus f, can be regarded as a

field automorphism f of G and we have f*“w3=1, i.e,, 7= (448udf)*. This completes
the proof of Theorem 2.

The cases excluded from our proof are those in which W=N/B NN is generated:
by only one involution. Hence, in these cases, 4(@) hasonly one face beyond the
chambers and Spe 4(G) =Aut 4(Q) is the symmetric group on the set of all chambers.
‘However, Theorem 1 is still true for them. In particular, a proof for 4, () =PSL(2, ¢)
and 24,(q%) =PSU(8, ¢*) can be found in [5, 6].
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