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Abstract

The aim of this paper is to study the relations between submanifolds with parallel mean
eurvature and their Gauss maps, and in virtue of them we obtain three main theorems. They-
show some geometrical restrictions to a submanifold of Euclidean space Er with parallel
Imean curvature. R

§ 1. Local formulas

‘Tt M and N be smooth connected oriented Riemannian manifolds of dimension
m and n respectively. We denote their metrics by dS% and dS% respectively. We choose
local fields of orthonormal frames in M and N respectively such that, locally, we
have

dS§,=m§+'---+wi=$ ()2,

@8} = B34+ =30 (Ga)?, o (1)
where ; and @, are the fields of dual frames in M and N respectively. We shall make
use of the following convention on the ranges of indices:

_ | 1<i, §, &k, =, <m;1<e, B, 7, *+, <N,
and we shall agree that repeated indices are summed over the respective ranges. Then
the structure equations of M and N are given respéotively by

[ dwi=2 ws\Nws, ( d5a=25ﬁ/\5m,
dwy;= 2wy N\ wkj+lQ¢j, daaﬁ =2 :)a., A 57,; + ﬁaﬁ,
S~ 1 . A~ ~ -~
L Q= ——% 2 Ryjaon Ao, 2 1 Las=—5 3 Rogystor Aoy, (2)
Rii =2 ka, Eaﬁ =2 R‘W‘yﬁ;
| R=2Ry, L R=E§m,

where wy;, Biu, Riy R(@as, Bagy, Bes, B) are the connection form, the curvature
tensor, the Ricei tensor and the scalar curvature of M (V) respectively.
Let f: M — A be a smooth map. Then we have
f *:)a = 20, &)
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For simplicity we still denote f*w, by @s, and f*@es by @ae similarly. By taking
exterior differentiation of (3), we obtain

A 2 DayNax=0 S (4
where _, - ‘ .
D“ai % a3 Gogoopi+ 3 U= -3 wauwy.' o ®)
From (4), by Oartan’s lemma we have
: B = Laji, . . .. < (6)
The energy densmy of f, e( 1), is defined by
(N=FT@) @)
D 1s saud to 'be a harmomo map 1f and only it o : R o ,
: ‘ : s I- ’ N_J Zaaﬁ'—'o o | lf : | ) . (8)
Ffis sa1d to be totally geodesm map if and only it . ey
am-—O. (9)

By exterior differentiating (5) and using the structure equations (2) and (2%),
we obtain T

R - 2 Dauy N w;= b YOS amﬁﬁa,' : a (10)
here R -
: | ’Daa&i:‘m"‘"‘_f—.' dauj+ 2 Cojw+2 aamww+‘2dm;5&a. LR € )
Set ' . o
D=2 toation., . - (12)
From (10),we have _ , . B
o Qotik — @ity = -2 GatRukj -2 %ﬂm%agﬁaya. l (1 3)

Then we may caloulate the Laplaeiah of a, as follows
A= 2 @iy = 2 Qgji = =2 @i 2 “aszm -2 %ﬂrﬂmgﬁaw ) )
= E Qgiji +E Rl,daz E R ﬁa.,,sa ,,ﬂﬁaa; . (14:) ‘

'~ When f is’'a harmonioc map, from (8) we obtain

dagi=2 Ryt —2 gﬂ“%“ﬁaa'ﬂ“&l; . o (15)
and then we haye o E : ' .

Ae(f> ———‘_:2[4(%(‘1.0“)2) = E (aaw)s"‘zaaid”«zi -

Oy By §

=|8(f)| 245 RyGuius—3 Eeaya%ﬂyﬂaﬂat, | (16)
where B{f) is the second fundamental form of f and : : A
|B() 2= 2 (@ais)?, o : 17

§ 2. Submantfolds of B W_ith parallel mean curvature

In this section we consider the case that M™is immersed in Br, ive., fiM™— E"
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is an isometrically immersion. In this case, we can choose a local field of orthonormal
frames ey, *+-, 6, in E"® such that, restricted to M, the vectors e, *-*, én are tangent to
M and the remaining vectors e+, ***, €, are normalto M. Then we have
- d8y=2(w)?, dS%nF'.E(aa) o *547_*@:, .f*5,=0, f *5¢j=wm - - (18)
here. the indices v, s, ¢, +++ run over the range m-+1, «-, n. . S
In this case we replace the nuclear letter @ in the formulas of the previous section.
by puclear letter . Because E* is flat, so from (B), we have . o
. 5¢§~=Eh¢}kwk, : o '(19)’ ,
Pyt = s, ' (20)
Tt is well-known that Ay is called the second fundamental tensor of M. When
hy=0, M is said to be a totally geodesw submanifold.
" Now the formulas (11) and (12) become : Do
Dhyy= 8hupyg+ 3 By 2 hugyoops 42 huggdge =2 h;,.mw,, ' SN CINE
From (13) we obtain L » ST
Pas=hurrs, . (22)
From this, together with (20), we know that Ay is symmetric with respect 10 the
indices ¢, §, k. The vector v , o
o | g-1 Eh;,,;e, ‘ | (23)

is called the mean curvature vector of M in E* and when it Vamshes 1dentma11y,
0., Dhiyy=0, M is said to be a minimal submanifold. 4 '
A submanifold M is said o be a submanifold with parallel mean curvature, if the
mean ocurvature vector H is parallel in the normal bundle. That means

DH = ;’% > hymeoe, =0, (24)

Hence Mis a submanifold with parallel mean curvature if and only if the following

condition is satisfied ‘
2 hyi=0, ) - (25)

Let g be the Gauss map from M™ into the Grassman manifold Gm,n-m)-
~ As we know from [1], if 6, and 6,4 denote the metric form and connection form
0f G, n-my Tespectively, we have . '
' g*gtr=alr,‘ : _ A
90 10,40 o, ir=— 524 — Bistoys, . . (26):
Noting that wy= 3 hiswy and Gim,n-m is of dimension m(n—m), according to (3),

we just obtain :
Qirp = hirk, (27)
for Gauss map g. - .

In the same way, from (B) we have -
> Qiy = da;z,- + X Qi p; Ea_ks'jz;ks'; ir = By + 2 Pigong = 2 Py ( — 5ma~),s —Opst0i) . -
= Qs+ 2 hagsitong 2 Paersons + 2 P W= 2 P,
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So, .
: “t_rik=htrm. o (28)
From (8), we knowa that ¢ is harmonio if and only if 2 ayj;=0, and it is
equivalent t0 3 A, =0 because of (28) and (22), i. e., M™ ig a submanifold with

Parallel mean curvature. Thus we have again proved the theorem obtained by Ruh
and Vilmg'®,

Theorem (Ruh & Vilms). Gauss map g of animmersed submanifold of M of E"
48 harmonic if and only if M is o submanifold with parallel mean curvature.

§ 3. Main results

Throughout this section we assume that M™.—> B ig g submanifold immersed in
E", -we denote the square of the length of the second fundamental form by §, i. e.,
S = 61‘2] (hurj)?, and denote the infimum of the Ricei curvature of M at point & by
Q). | o
The following result* ig well-known.

Lemma. The sectional curvature of Grassman manifold G‘@,‘,._m), Rimmm
satisfies the inequality '

B - O0<Einm<2,

Using this Lemma we can prove the following

Theorem 1. ILet M™>E* pe 4 compact submanifold with parallel mean
curvature. Then

[, 8@-28)av =0, (29)

Proof . By Ruh-Vilms theorem we know that Gauss map ¢ is harmonic. Then from
(16) we have

de @) =B *+= Rl aynajn— pX Igl(i?éﬂfcémaiﬂ’ai_si’a_jﬁ’agqjl. (30)
By the Temma and (27), we obtain '

()= 1B(9) *+Q5 =2 33 (a) (@)= |B(9) [*+Q8 287, (1)

Aeoause M™ is compact, integra,{a-ing (81) over- M™, and applying Green’s
theorem, we obtain

0>[ 8@ vt | 5@-28)a7,
Then
[,..8@-29)ar <o,

Krom the proof it is éasy o obtain the following
Corollary 1. Let M™—>Er pe o compact submamifold with parallel mean
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curvature. If the equality holds in (29), then Gauss map g 4 totally geodesic.

Theorem 2. Let M™— E"be a submanifold with parallel mean curvature. If Q
4s mot less tham 28 everywhere and Q is larger than 28 at @ point p€ M™, then M™ must
be noncompact. _

Proof From (31) we conclude that e(g) is a subharmonio function on M, If
M™ is compact, then e(g) =const, and B(g) =0. Now we consider the formula (30) ab
the point p. We can casily obtain e(g) (p) =0. So ¢(g) =0 and it means that g is a
constant map, i. e., huy=0. Hence M™ is a totally geodesio submanifold of E® and,
consequently, must be noncompact. It is a contradiotion.

This theorem is a non-existence theorem of some type of submanifold with parallel
mean curvature in E*.

Theorem 3. Let M™ be a complete noncompact submanifold immersed in B with
parallel mean curvature. If Q is not less than 28 everywhere and Gauss map g has finite
energy, then M™ must be B,

Proof From Ruh-Vilms theorem, it follows that Gauss map g is harmonic. Using

Schwarz inequality, we obtain easily

|Ve(g) |*<26(9) | B I°.
On the other hand, because Q is not less than 28 everywhere, hence from (31)

we have

de(g) —1B(g) |*=>0.
Hence

_ de(g) _ |Vel@]® de(g) = 1B |
ANED =5 7y DT ade) =0

Because ¢ has finite energy, i. e., E(g)= SM e(g)dV y< +o§,i’u together with (32),

means that «/e(g) is a non-negative T2-integrable subharmonic function on M™

In [4], S. T. Yau has shown that every non-negative L*-integrable subharmonic
function on a complete Riemannian manifold must be a constant. Applying this fo
/7(g) ,we conclude that ¢(g) is a constant.

On the other hand, because Q=>28=>0, M™ is a complete noncompact manifold
with non-negative Ricci curvature. By a theorem obtaind by S. T. Yau in [4], the
volume of M™ is infinite. This forces the constant e(g) to be zero and ¢ to be a
constant map. Hence M™ is & totally geodesic submanifold of E* and the theorem is
proved. |
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