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Abstract -

By means of the supersolution and subsolution method and monotone iteration
technique, the following nonlinear elliptic boundary pr blem with the nonlocal boundary

conditions L -
% 0 A
Lo = 5%1 ox; (aw(a:) 8:1:) f @ “)’_ _
] p=const (unknown), — J i a,j(})c) ou cos(n,v z,)ds=0
J 4,5=1 . amj

is considerd. The sufficient conditions which ensure af least one solution are given. Furthermore,
the estimate of the first nonzero eigenvalue for the following linear eigenproblem

L_‘p =A@, . - : .
2 0 ,
{ @| p==const (unknown), — J‘P mz:l g —éiwp; cos(n, ©)ds=0

is obtained, that is

In this paper We consider thé. nonlinear boundary problem with the nonlocal

boundary conditions as follows

% 2 (a0 2) 5 9
I/w— i,:lz=l awg (a‘j (w> amj ) f(w) u>,1n,9

(P) ) |
| p=unk nown constant, ——S S oy U oos(n, @)ds=0.
ri= ow; .

We emphasize that the above problem which ariges from many physical problems
can Dot be.reduoed 10 the Dirichlet or the Neumann problem. The problem () with
the 's’pecéial nonlinear term f which arises from plasma physics has been studied by
soveral au’_ohoré (see [2] and the reforred papers). Tn this paper we apply gupersolution
and subsolution method to discuss existence of solutions of the problem (P).

Throughout this paper We always assume that QCR" is a bounded domain with
% B, @y € O and 5,221 ai; (@) s

o2+# boundary I', f(w, ) is 2 O* function defined in €

>a é;, &, a>0, 0<,w<i.

Remark 1. The problem with nonhomogenéous boundary condition
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—I 2"_,‘ a,j—-a—u— 00w, n)ds=1I(given constant)
=1 ow;

can be transformed into the problem @) by means of substractmg from  a fanction
v which satisfies

{Lv+m=0 in Q,

o
v|p=unknown constant, — > ay KN cos(n, z;)ds=
I, j=1 3:1},

The existence and unigueness of » is easily verified by Lax-Milgram theorem,

§ 1. Some Lemmas

First we prove the following lemma.
Lemma 1. Let 6(e) be continuous in Q, c(a:)>0 e(w) 0,
Ifu(x) € O? satisfies

{Lu+0(w)u<0(>0) in Q.

%| p=const —-I a,j—% cos(n, ;)ds>0(<0),

4, J=1 aw;
Then u<0(=>0)inQ.

Proof By maximum principle Lu+ou<C0 implies that w can not attain positive
maximum in Q. If max u()>0, then positive maximum can only be attained on

I'. From theboundary condition u=const, u attain positive maximum on every pomt
of I'. Applying strong maximum principle, we have

9 ou
;,%1 (Z;j'—az OOS(n, {Ui)/>0
on every point of I" which contradicts the boundary condition
% ou
- — >
L w§=]1 @y 7, cos(n, @;)ds=>0,

Thus the proof is completed.
Remark. In the case ¢(s) =0, if  satisfies Lu<0, u| p=const,

—J é ‘faa cos(n, x;)ds=0,

I, j=1
then » must be constant. In fact, by Lu<0, w can not attain its maximum in O unlesy
% is constant, On the other hand, using the same argument as above, » can not attain
its maximum on the boundary unless v is constant. Therefore we conclude that u must
be constant, '
Lemma 2. For the linear boundary problem

' I/u+cu—F(w) inQ, 3 ; 1.1y
| p=const, —J aﬁﬂ—oos(n, z)ds=0, 1.2)
I, j— 3:17, i

whers o(x) € O is @ given function, 6(w) >0, ¥V F(x) € C*, the problem (1;1), 1.2)
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admits @ unique solution up € O**%,
el s+u<const | F]..
Prroof Introduce the space
={u| u€ H‘(Q), 7o (u) =const}, ' (1.8)

where H* () denotes the Sobolev space as usual, vo(u) denotes the trace of w on I,
thus H? is a Hilbert spact with H* norm. Define the weak solution for (1.1), (1.2).
as follows: ' ’

w€ H; and

ja(;,,é1 jaa;f, gv‘ +cwv)dw J Fodo, Vo€ Hz, (1.4)

Applying Lax-Milgram theorem, V F () €0+ I#(R2) we have a unique solution
up€ H? (se0 [1]). Denote k=uz|r="0(ur) which is constant, thus wp=upr—k€ Hy is
a weak solution for the following Dirichlet probem -

Lu+cu=F —ck, o (1.5)
{’“| r=0, | (1.6)
According to the regularity results for Dirichlet problem, we have 4o € C**# and
o] a+u<const]| F — ok ,<const (| F | ut |51, .7
Thus up € C*** and : " ‘
IluF||z+p<00nst(|lF ot (. 8)
By 1mbedd1ng theorem, we have K
j || 3ds<const|up|fa<const| F|2, = (1.9)
| k| <const| F| r*<Soonst | C(1.10)
Substituting (1.10) into (1.7) we obtain - Lo
"uF"2+M<°°nSt"F "m (1.11)
that the proof is completed.
We. now consider the linear eigenprbblem
Lp=MAp, o : (1.12)
{<p|p=const, —L‘,; @y g v cos(n w)ds=0 (1.13)

We have

Lemma 3. For the ezgengproblem (1.12), (1.13) there are the denumerable
ezgenwlues {My sueh that M=0, 0=Rlo<M<Ap<Se—>+0 the eigenfunetion space
cowespondmg to ho=0 4s spanned by 1 and the e@genfummons corresponding to different
~ eigenvalues orthogonize each other.

Proof In fact, it is a consequence of the Riesz-Schauder theory for complete
continuous operator. We leave the details to thé readers.

Further for the first nonzero eigenvalued; we have the estimate bounded from
below which only depends on the elliplicity constant and the diameter d of Q.
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Theorem 1. Wa have the estimates

20 '
= 1.14
M, (1.16)

where o 4s the ellzpthty constant, d is the diameter, n is the dimension, u 4s the least

nonzero etgenvalue with Neumann boundary condition.
Progf Notice

b= inf Ao 0) N (1.16)

pemy [ gm0 |9l

pi= it 2@0) | S
ocH}, [ odv=0 ”4””14”. 4

‘ S 99 _9p_ L . 17l
where a(p, ) L, 3, % 5L~ do, (1.15) follows dircofly from HicH?. Lot

@1 be the eigenfunction corresponding to A, then P E H 3,Jg @1do="0,a(p1,

Let D be the cube in R" with edges of lengfh d containing Q and -

Yo(p1) = @1 r=F (constant).
Extend1ng¢1 into D with k, denote the extension by @y, i. e.
o [, in Q,
¢1={ k,in D\ Q, ,
- It is easy to proof ¢, € H*(D). Applying the Poincar’e inequality in the cube D,
we obtain -

(1.18)

~o 1 J ~ o\ nd2j . 2 . 4
jD pida <‘&T( Dgplda;) +—3 ( D|g;;ad¢1|_ dm){ o d1.19
henoce "
1 e
Fomes(D—Q) +J’ q)%dw<—;;<la-mes D—-2) —!_—J.Q ¢1daz)
+——J |grad @, |%de
2 2 nd 2
=__-k + (mes(D—0)) +_2_j |grad gu|%do.  (1.20)
Because ' ' .
mes (D —Q) <mes(D) =d", . (1.21)
of lgrad i) *do<a(ps, o) =Malpult (1.22)
from (1.20), (1.21), (1.22), we obtain
: 20
. ‘}"1> nd? *

Thus the proof is completed.
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§ 2. Mai-n Results

We are now in p'osition to disouss the problem (P). N
Define. Supersolution: If u* € O® Satisfies
{LU+>f(w, ‘M+), 'i"n' ‘Q

)y
| p=const, -—s”%l @ 27:; cos(n, #)ds<0,

shen we call ws the supersolution for the problem (P). Subsolution: If u_E 02 samsﬁes
Lu_<f (e, v-), |
{u_l p=const, -—j ﬁ g: cos(n, w;)ds>0
=1 ;

@

(2.2)

‘then we call u_ the subsolution for the problem (P).

Applying the monotone iterative method to the problem (P) We have

Theorem 9. If there ave supersolution U (@) and subsolution %- (z) satisfying
u_ (2) <u, (w) in 0, then the problem (P) admits at least one solutwn u(w) € 0? with
U- (a:) <u(w) <uy (@) in Q. _

Pyroof Beoause—%]f- is bounded in Q {wE Q, mm u- (o) <8 < max u. (@)}, there

exists a positive number ¢ such tha,t f +ec is posmve in Q. ’I‘hus the problem

(P) is equivalent to the problem (P’).
Tu+ou=f (x, w)+ouin Q, (2.3)
N

u| p=constant, —j é ay; 86:;6 cos(n, w;)ds=0, (2.4)
j

I, j=1

Obviously,u., u- are also the supersolution and subsolution for the problem (P)

respectively.
Consider the linear problem
Iv+ov=Ff (@, w)+ou,in Q, ‘
{ n v ' @ .B)

v = const, —L‘”Zi_aw oo cos(n, @g)ds=
9 I ¢

By Lemma 2, Vu€ C? we have a unique »€ O satisfying (2.8).

Define,
v=Tu , o (2.6)

and .
wy=Tuy, v3=Tu-, : (2.7)

then wy— U4 and v1—U- satisfy

L(uy— ) +c(u4—u+)< (f (@, us) +cus) = (f (w, us) Aouy) =0, in Q,
: n - —w) o (2.8
{ (ug—u4) | p=const, -—L‘MZI ay Qﬁ_’l{'ia_w;_"_b_t)_ cos(n, @)ds=0, )
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and
L(vi~u_)+e(v;—u_)>0,in Q,
{ (v1—u.) | = const, —J r ;,%1 @ i@%bi cos(n, 2;)ds<0, (2.9)
respectively.
By Lemma 1 we have ,
Uy~ KO0, 01 —u_>0,in Q, (2.10)
On the other hand
(f (@, up) +ouy) — (f (o, u.) +cu.) = (—2% ;'u-+e(u+—u-) + c) (uy —u.) =0,
Becaugse u; — 4 satisfies
L(uy—wy) +e(uy—21) >0 in Q,
{ (uy—v1) | p = const, -—J S g Ou—y) cos(n, @,)ds<0, 2.10)
riy= ow;
again by Lemma 1 we obtain
| Uy — 03 2>0, (2.12)
From (2.10), (2.11), (2.12), we have
U-<So<U <Ky, in O, ' (2.18)
Let
_ Vor1=T0n, Upsa =Ty, (2.19)
Using the same argument as above, by induction it is easy to prove that
Up, Vg€ O%*F n=1, 2 oo
and '
Y-SV SUSe SU U1 oo SUY Sy, (2.15)

it follows that {u,} and {v,} are monotone bounded sequences which converge to the
measurable function % and ¥ respectively. Moreover we have u_<u<u<wu, in &,
Hence % and ¥ belong to I? Vp, 1<p<oco. By the Levi theorem wu, and v, also
converge 0 % and % in L” respectively, On the other hand, it follows from (2.15)
that %,=wu,|p is a monotone bounded sequence. Let w,=u,—Fk,, then w, satisfies

. { Lo, +cw, = (@, wy_y) +otty_q—ch,, in Q, (2.16)

. v Wy| =0, _ :

By the L? estimate for elliptic equation (see [4]), Vp, 1<p<oo we have

u'wn — W [I H3<00nst ”f ((I}, un—i) + CUy—1 — Ckn _f (w; um-—l) —CUp—1 +Ckm ” Le

1
<oonst ((M+0) |[ty-1—Un-1]zo-+comes (Q) 7 | by —Fy|)
-0 (n, m—>o0), '

of

@ €Q,miny-<s<mazu, .08

. Choose p>n, and by the imbedding‘theorein {w,} is also a O'a,uchy» sequéﬁce in 0% So

where M = sup

. This means tha t {w,} is the Cauchy sequence in " ?,

is 4, =wy,+k,. By Lemma 2, u, is also the Cauchy sequence in 0*#, Passing the limit,
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we conolude that w€C%** is the solution for the problem (P). Using the same
argument with {v,}, thus the proof is completed.

Corollary. For any solution u(w) of ‘the problem (P), u_(a) <u(w)<u.+(2),
we have u(x) <u(r) <u(z).

We usually call u(z) the great solutmn and u(w) the loast solutlon for the
problem (P).

we can also disouss the multiplicity of solution by the method introduced by H.
Amann (see [5]). | |

Remark 1. Using the same argument as the Theorem F in [5], if % and % are
different, and the linearized problems corresponding to w and u have only zero
solution, then we can conclude that the probleni (P) hag at least three solutions
u(@) <u* (z) <u(®). )

Remark 2. Using topological degroee’ argument for T', it follows that if there
are the supersolutions w@), u(e) and subsolutions v1(®), ’l):z(w) satisfying
01 () <uy (@) <va (@) <us(@) in Q, then problem (P) has at least three solutions.

In what follows we put some assumptions on the behavior of f at mﬁmty Whmh
will ensure that the problem admits at least one solution. '

Oondition (4.). 3 positive number s, and a bounded differentiable function
g+ (#, §) defined in #€ &, s€ R such that for #€ Q, u>s. We have

Flo, W<ge(o, v, | 9400, <0 (2.17)

Condition (A_). 3 negative number s- and a ‘bounded differentiable function
g-(@, s)such that for x€ Q, u<s. we have

£(o, >g-(a, 0, | 97 (@, W0, (2.18)

Theorem 3. If f(a, u) satisfies the conditions (A+) and (A-), then the problem
(P) admits at least one solution. |

Proof By Theorem 2 it suffices to verify that there exist the supersolution u,
and the subsolution u_ with u_ (@) <u.(#) in 2.

Set |
[ 9@, wis

G(m; u) =g+(w1 u) - mes(ﬂ) o

(2.19)

By the assumption, we have constant & such that |G| <k and L) Gdw=0. By the

Lemma 8 in the previous section, for any w (%) € O* there exists a unique v=Tw such
that

Ly=G(z, w), in Q, |

n 2.20

{fv] p=const, —-j S ay oo cos(w, ©;)ds=0, (2.20)
: I'i,j 39:,-

iy j=1
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and JQ vdw=0. Moreover

o L) (Vo |2de<a(v, v)= j Gudz<< J G2dw +. J v dw, (2.21)
On the other hand, applying the Poincaré inequality as in The theorem 1 we have
lolt<22- [ [Vol*dn <2 0o, o) <_"‘Lj o+ TP ol (2.99)
20 4o )o 4o
Set g= fd‘* and from the boundness of G we obtain
Il'vllm<01,J | Vo | 2d<Cs, - (2.23)
By 1mbedd1ng theorem and 2. 23), we have | |
 (v|r)?mes (I’) < const (01 +ca), | -
As v—u]| 1 is the weak solution of o T
{L“=G<% w), | (2.25)
’bUlp=_O, A

owing to L? theory for the Dirichlet problem it follows » € H2 and ,
lv—2] 2] a; <const| G| o<cs, , (2.26)

Ohoosing p>n, by imbedding theorem and (2.24), we have :
"””:l,oo_\<\05. 2.27)
We emphasize that the above ¢ (¢=1, -+, b) only depends on k. Therefore, there
exists a number 8 such that »(z)>p8, €2, Vw. Choose « large enough S0 that
o+ B>s4. .
Now we solve

Lv=G (@, at+v), ‘
n ‘ (2.28)

{(b]p=eonst, —J 2 a; ——— cos(n, o)ds=0 o L

J

Let
= {fv [vECY, |v]1,.<ecs, Ia fvdw=0},

It is easy to see that S is a closed convex set in 0" and 7" maps S int o the compact
sushset of §. By the Schauder fixed point theorem, (2.28) has a solution v,& O,

I vodw =0,
la

Set _ _ ,
Ur=a-+v>a+B>s,, (2.29)
and owing to the condition (4.,), we have '

|, 9+, wd<0, f@, u)<gilo, u), (2.30)
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G, u)>0s @, w) Bf @, ), @3
¢ Ly =G (@, wi)=f(®, ws), | .
{u‘*‘ l 'I"*\CODS‘G‘,E—L igi @y %um—j- €08 (n, ‘mi)‘\ds=0, (2 .32)
MThis means that u. is the supersolution. Using the same argument as above, from
(4-) we can fi nd the subsolution with the form u_=—a-+wv;, Choose the positive
numbers a and & large enough sothat w.<w.. The proof is completed by Theorem 2.
Corollary. If fs(w,s)<X0, then ihe necessary and sufficient conditions for ewistence

of the problem (P) is that there ewists a smooth function e Such that o | = comst,

jg f (@, up)da=0,
" Proof The necessity is obvious. In order to prove the sufficiency we choose
numbers s, and s_ such that "
" sl <up<si,
Bjr £:<<0, we obtain
Flow, w)<f(w, up), asuU>s>U,
Flo, wy=f(w, w), asuls-<th,
Let v, be the solution for '-

{Lv=f(w; %),

and

— {3 g 2 -
S Lolemoomst = 3 e goostn, edds=0
such that J‘a' v dz=0. Choose >0, B<0 absolute value .large enough such that

BAwe<<s- andﬂoé-}éfvo>s+. Evidently wy =a-+vo and u.=B-+v, are the supersolution

and the subsolution respectively. Moreover . <<t Thus,'by Theorem 2, the proof

is complete. S I
Theorem 4. If f satisfies one of the following conditions, then the problem (P)

admits at least ons solution.

(1) lim i%i)" <h(@), whore h(@) € ou,_jg b @) dw <0,

18|->c0 s

(2) lim sup i(_a_g_s}__<0’ _

18]=>00

@) lim supfi(a, ) <0,
@) f(, s)=F(z, s)+9(, ), 'wlfere.F satisfies (2) or (8) and lim -9—(%'3-)-=0,

1sl~>00

B flv, s)=F (@, s) s.+y(m, s) , where lllim sup F(z, s) <0,

i £& 9 o,

[slmoo 8 :
The above limits are assumed to be uﬁifofhﬁ with respeoﬁto ®.
Proof Itis easy to see that (1) implies that f satisfies (4+) and (A-)with
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9+=9-=0. (5)=(2) and (8)=>(2), (4) either = (8)=(2) or=>(2). By Theorem 3
the proof is complete. In what follows we consider some cases in which f does not
satisfy the conditions (4,) and (4_). Assume that S can be written in the form

F@, 9=F (@) +9(, 3), o (2.33)
Where ‘
|l|im g(w, =0, = . Lo (2.84)
Set » ) , . .
L F (a;).dw=la,‘ A : (2.85).
then F can be written as ‘ ‘
F(a) =F () +1, (2.36)

where
- ___Fk ; -0
F (o) = F(2) vy vith L F () da =0,
) (2.87)
b= mes(Q) °
Let w be the solution for
{ Lw=F,

ow (2.88)

w|p= congt, - L ¢,§1 ay 70, cos(n, x,)ds=0

and L, w do=0. As seen in the proof of Theorem 8, we have a uniqus w& C?*#, In

addition we assume that there exists numbers ¢, <0, ¢_>0, k,>0 and ¥.<0 such that
9(@, w@) +k:) <ar<0, g(o, w@)+k.) >a_>0, 2€ 0,
Theorem 6. If g satisfies the above conditions, then there ewist numbers t, wndt_,j
1-<0<t, suoh that when ¢_<i<ty the problem

Lu=F () +t+g(w, u), in Q,
(Pt){ 2 Dha (2.89)
4| p=const, —-Jp w2=1 @y oy cos(n, @,)ds=0 :
admits at least one solution. On the other hand, when ¢>%, or t<<t_ the problem (Py) has
no solution.

The proof is similar to those in [6], Wé omit the details,
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