THE ASYMPTOTIC BEHAVIOUR OF ANALYTIC FUNCTIONS

Hu KE (胡 克)

(Jiang Xi Normal Institute)

Abstract

In this paper, the author obtains the following results:

(1) If Taylor coefficients of a function $w(z) = \sum_{n=1}^{\infty} A_n z^n$ satisfy the conditions:

(i)
$$\sum_{k=1}^{\infty} k |A_k|^2 < \infty$$
, (ii) $\text{Re} \sum_{k=1}^{u} A_k = O(1)(n \to \infty)$, (iii) $A_k = O(\frac{1}{k})$, the for any $h > 0$ the

function $\varphi(z) = \exp\{w(z)\} = \sum_{k=0}^{\infty} D_k z^k$ satisfies the asymptotic equality

$$\left| \frac{\{\varphi(z) (1-z)^{-h}\}_n}{d_n(h)} - \sum_{k=0}^n D_k \right| = o(1) (n \to \infty),$$

the case $h > \frac{1}{2}$ was proved by Milin^[1].

(2) If $f(z) = z + a_2 z^2 + \dots \in S^*$ and $\lim_{r \to 1} \frac{(1 - r^2)}{r} \max_{|z| = r} |f(z)| = \alpha$, then for $\lambda > \frac{1}{2}$

$$\lim_{n\to\infty}\frac{\left|\left|\left\{\left(\frac{f(z)}{z}\right)^{\lambda}\right\}_{n}\right|-\left|\left\{\left(\frac{f(z)}{z}\right)^{\lambda}\right\}_{n-1}\right|}{d_{n}(2\lambda-1)}=\alpha^{\lambda}.$$

Let S denote all analytic and univalent functions f in unit disc U with f(0) = 0, f'(0) = 1 and let S* denote the subclass of starlike functions. Let T denote all functions $w(z) = \sum_{n=1}^{\infty} A_n z^n$ which are analytic in U with $\sum_{k=1}^{\infty} k |A_k|^2 < \infty$ and

$$\frac{1}{(1-x)^h} = \sum_{n=0}^{\infty} d_n(h) x^n.$$

In this paper, we prove the following theorems:

Theorem 1. Let $w(z) \in T$ and satisfy the following conditions

(I) Re
$$\sum_{k=1}^{n} A_k = O(1)$$
, (II) $A_k = O(\frac{1}{k})$.

If $\varphi(z) = e^{w(z)} = \sum_{k=0}^{\infty} D_k z^k$, then

$$\frac{\{\varphi(z)(1-z)^{-h}\}_n}{d_n(h)} - \sum_{k=0}^n D_k = o(1), \quad h > 0(n \to \infty), \tag{1}$$

where d_1, d_2, \dots , are the Taylor coefficients of the binomial function

$$\frac{1}{(1-x)} = \sum_{n=0}^{\infty} d_n(h) x^n.$$

Milin^[1] proved the case $h > \frac{1}{2}$ without condition (II).

Theorem 2. Let $f(z) \in S^*$ with $\lim_{r \to 1} \frac{(1-r)^2}{r} \max_{|z|=r} |f(z)| = \alpha (\alpha \neq 0)$ and $\{f(z)/z\}^{\lambda} = \sum_{r=0}^{\infty} D_n(\lambda) z^r$, then

$$|D_n(\lambda)| - |D_{n-1}(\lambda)| \sim \alpha^{\lambda} d_n(2\lambda - 1), \lambda > \frac{1}{2} (n \to \infty).$$
 (2)

The case $\lambda > \frac{3}{4}$ was proved by Milin^[1].

For the proof of the theorem we need the following lemma.

Lemma. Let
$$w(z) = \sum_{k=1}^{\infty} A_k z^k$$
, $\varphi(z) = \exp\{w(z)\} = \sum_{k=0}^{\infty} D_k z^k$. Then
$$\sum_{k=0}^{n} |D_k|^2 / d_k(\lambda) \leq d_n(\lambda + 1) \exp\left\{\frac{1}{d_n(\lambda + 1)} \sum_{v=1}^{n} d_{n-v}(\lambda) \Delta_v(\lambda)\right\},$$
(3)

where

$$\Delta_{\nu} = \frac{1}{\lambda^2} \sum_{k=1}^{\nu} k |A_k|^2 - \sum_{k=1}^{n} 1/k_{\bullet}$$

Now we come to the proof of Theorem 1. Since

$$S_n^{(h)} = \{ \varphi(z) (1-z)^{-h} \}_n = \sum_{k=0}^{\infty} d_{n-k}(h) \, \mathcal{V}_k$$

and

$$nD_n = \sum_{k=1}^n kA_k D_{n-k},$$

Hence we have

$$\frac{S_{n}(h)}{d_{n}(h)} - \frac{S_{n}(h+1)}{d_{n}(h+1)} = \sum_{k=0}^{n-1} \left\{ \frac{d_{k}(h)}{d_{n}(h)} - \frac{d_{k}(h+1)}{d_{n}(h+1)} \right\} D_{n-k}$$

$$= \sum_{k=1}^{n} \frac{kA_{k}S_{n-k}S_{n-k}(h)}{(n+h)d_{n}(h)}$$

$$= \frac{1}{(n+h)d_{n}(h)} \left\{ \sum_{0 < k < n-sn} + \sum_{n-sn < k < n} \right\} kA_{k}S_{n-k}(h)$$

$$= \frac{1}{(n+h)d_{n}(h)} \left\{ \sum_{1 < k < n-sn} + \sum_{n-sn < k < n} \right\} kA_{k}S_{n-k}(h)$$
(5)

It is known that if $\sum_{k=1}^{\infty} k |A_k|^2 < \infty$, given an arbitrary positive number $\varepsilon < \frac{1}{2}$, we can find N such that $\sum_{k=1}^{m} |kA|^2 < \varepsilon m$ when m > N. Let us choos n such that $\varepsilon n > N+1$. Since $d_n(h) \leq d_{n-1}(h)$, $n=1,2,3\cdots$ for $0 < h \leq 1$, Applying Cauchy inequality to $\sum_{k=1}^{\infty} |k|^2 < \varepsilon m$ we have

$$\begin{split} |\sum_{1}|^{2} &= |\sum_{k \leqslant n - \epsilon n} k A_{k} d_{n-k}^{1/2}(h) S_{n-k}(h) / \{d_{n-k}(h)\}^{1/2}|^{2} \\ &\leqslant [\sum_{0 \leqslant k \leqslant n - \epsilon n} |k A_{k}|^{2} d_{n-k}(h)] \left[\sum_{\epsilon n \leqslant k \leqslant n} |S_{n}(h)|^{2} / d_{k}(h)\right] \\ &\leqslant [d_{[\epsilon n]}(d) \sum_{k=1}^{m} |k A_{k}|^{2}] \left[\sum_{k=0}^{n} |S_{k}(h)|^{2} / d_{k}(h)\right] \\ &= o(d_{n}(h+1)) \sum_{k=0}^{n} |S_{k}(h)|^{2} / d_{k}(h), \end{split}$$

$$(d_{\operatorname{sn}}(h) \sim [\varepsilon n]^{h-1}/(\varGamma(h)) \sim [\varepsilon n]^{h-1}/\varGamma(h)).$$

Similarly, applying Cauchy inequality to Σ_2 , we have (Using condition (II))

$$(\sum_{2})^{2} \leqslant \sum_{n-\epsilon n < k < n} d_{n-k}(h) |kA_{k}|^{2} \sum_{k=0}^{n} |S_{k}(h)|^{2} / d_{k}(h)$$

$$= O\left(\left[\sum_{k < \epsilon n} d_{k}(h)\right] \left[\sum_{k=0}^{n} |S_{k}(h)|^{2} / d_{k}(h)\right]\right]$$

$$= O\left(d_{[\epsilon n]}(h+1) \sum_{k=0}^{n} |S_{k}(h)|^{2} / d_{k}(h)\right)$$

$$= o\left\{d_{n}(h+1) \sum_{k=0}^{n} |S_{k}(h)|^{2} / d_{k}(h)\right\}. \tag{7}$$

Since $w(z) \in T$, Re $\sum_{k=0}^{n} A_k = O(1)$, it follows that

$$\sum_{k=1}^{n} k |A_k + h/k|^2 - h^2 \sum_{k=1}^{n} 1/k = \sum_{k=1}^{n} k |A_k|^2 - 2h \operatorname{Re} \sum_{k=1}^{n} A_k = O(1).$$

$$w_1(z) = \log \varphi(z) (1-z)^{-h} = w(z) - h \log(1-z)$$

$$\sum_{k=1}^{\infty} A(z) = \sum_{k=1}^{\infty} A(z) = \sum_{k$$

Let $=\sum_{k=0}^{\infty}A_{k}z^{k}+h\sum_{k=0}^{\infty}z^{k}/k=\sum_{k=0}^{\infty}A_{k}^{(1)}z^{k}.$

We apply the lemma to this function w(z), obtaining

$$\sum_{k=0}^{n} |S_k(h)|^2 / d_k(h) \leqslant d_n(h+1) \exp \left\{ \frac{k}{d_n(h+1)} \sum_{\nu=1}^{n} d_{n-\nu}(h) \Delta_{\nu}^{(1)}(h) \right\},$$

where

$$\Delta_{\nu}^{(1)}(h) = \frac{1}{h^2} \sum_{k=1}^{\nu} k |A_k + h/k|^2 - \sum_{k=1}^{\nu} 1/k$$

In virture of (8), $\Delta_{\nu}^{(1)}(h) = O(1)$. Therefore,

$$\sum_{k=0}^{n} |S_k(h)|^2 / d_k(h) = O(d_n(h+1)). \tag{9}$$

From(5), (6), (7) and (9), we get

$$S_n(h)/d_n(h) - S_n(h+1)/d_n(h+1) = o(1), 0 < h < 1(n \to \infty).$$
(10)

The case $h \ge 1$ was proved by Milin. Hence (10) holds for every real number $h>0. \ln[1]$

$$\sum_{k=0}^{n} D_k - S_n(h)/d_n(h) = o(1), \quad h > 2.$$
 (11)

In virture of (10) and (11), the theorem follows at once.

Corollary. If $w(z) \in T$ and the conditions of Theorem 1 are satisfied, then

$$\{\varphi(z)(1-z)^{-h}/d_n(h)\}_n \sim \varphi(r) \sim \exp \sum_{k=1}^n A_k, h > 0 (n \to \infty),$$

where $r=1-\theta/n$, $0 < m < \theta < M$.

From [1]

$$\sum_{k=1}^{n} D_k \sim \varphi(r) \sim \exp \sum_{k=1}^{n} A_k.$$

To prove Theorem 2 it is sufficient to verify the conditions of Theorem 1 for the functions $f \in S^*$. WS suppose $\lim_{r \to \infty} (1-r)^2/r |f(r)| = \alpha$, $\log f(z)/z = 2 \sum_{k=1}^{\infty} r_k z^k$, then $|r_n| < 2/n \text{ for } f(z) \in S^*$. Consequently, Let $\varphi(z) = (1-z)^{2\lambda} \{f(z)/z\}^{\lambda}, w(z) = \sum_{k=1}^{\infty} A_k z^k$, then $A_k = 2\lambda (r_k - 1/k) = O(1/k)$.

Bazilevich theorem^[2] asserts that

$$\sum_{k=1}^{\infty} k |r_k - 1/k|^2 \leq \frac{1}{2} \log 1/\alpha \quad (\alpha \neq 0).$$

This shows $w_1(z) \in T$, and

Re
$$\sum_{k=1}^{n} A_k \sim \log |\varphi(r)| \sim \log \alpha^{\lambda}, \ r = 1 - \theta/n(n \rightarrow +\infty)$$

by corollary.

Then all conditions of Theorem 1 are verified. Take $h=2\lambda-1>0$, Theorem 2 follows.

It is to be noticed that condition (II) may be replaced by

(II)'
$$\sum_{k=1}^{n} d_{n-k}(h) |kA_{k}|^{2} = O(d_{n}(h+1)).$$

References

- [1] Milin, I. M., Uinivalent Functions and Orthonormal Systems, (1977), 32-71.
- [2] Бавилевич, И. Е., Матем. сб., 68 (110) (1965), 549—560.