A NOTE ON REDUCTIVITY OF OPERATORS

LIU LONGFU (刘隆复)
(Jilin University)

Abstract

P. Rosenthal^[1] introduced the following property (P):

If $\mathfrak U$ is any reductive algebra and $T \in \mathfrak U'$, then $T^* \in \mathfrak U'$.

In this note, the author proves

- (1) A reductive spectral operator with polynomially compact quasinilpotent part has property (P);
 - (2) A reductive spectral operator with algebraic quasinilpotent part has property (P);
 - (3) The countable direct sum of scalar operators has property(P);
- (4) If T is reductive and T is quasi-similar to a polynomially compact operator, then T is normal.
- 1. In [1], P. Rosenthal introduced the following property (P) which an operator T may have in connection with reductive algebras.

Property (P). If $\mathfrak U$ is any reductive algebra and $T \in \mathfrak U'$, then $T^* \in \mathfrak U'$.

In this note we present some sufficient conditions to guarantee that a reductive spectral operator has property (P), and that a reductive operator is normal.

2. when have reductive spectral operators have property (P)?

Theorem 1. If T is a reductive spectral operator with polynomially compact quasinilpotent part, then T has property (P).

Proof Since T is a reductive spectral operator, we can assume that the canonical decomposition of T is T=N+Q, where $N=\int \lambda E(d\lambda)$ is a normal operator and Q is a quasinilpotent operator commuting with N. Let $\mathfrak U$ be a reductive algebra such that $T\in \mathfrak U'$. Then for every Borel set $\sigma\in \mathbf C$, $E(\sigma)\in \mathfrak U'$, and consequently $N\in \mathfrak U'$ so that $Q\in \mathfrak U'$. Note that N is normal, therefore, by Fuglede's Theorem, $N\in \mathfrak U'$ implies $N^*\in \mathfrak U'$. Also, since the hypothesis that Q is polynomially compact, it follows from $Q\in \mathfrak U'$ that $Q^*\in \mathfrak U'$ by [2, Theorem 2]. Thus $T^*=N^*+Q^*\in \mathfrak U'$ and hence T has property (P).

Corollary 1. If T is a reductive spectral operator with polynomially compact quasinilpotent part, then T is normal.

Proof Let $\mathfrak U$ be the weakly closed algebra generated by T and I. Then $\mathfrak U$ is

Manuscript received Frebruary 1, 1981. Revised October 4, 1982.

reductive and $T \in \mathcal{U}'$. By Theorem 1, T^* commutes with T, that is, T is normal.

Theorem 2. If T is a reductive spectral operator with algebraic quasinilpotent part, then T has property (P).

Proof By the same argument as one we used in the proof of Theorem 1, we have $N^* \in \mathcal{U}'$. Note that since Q is algebraic, therefore, by [3, Lemma 9.3], $Q \in \mathcal{U}'$ implies $Q^* \in \mathcal{U}'$. Thus $T^* \in \mathcal{U}'$.

Corollary 2. If T is a reductive spectral operator with algebraic quasinilpotent part, then T is normal.

The above Corollaries 1 and 2 are generalizations of the corollary to Theorem 3.3 and Theorem 3.4 of [4], respectively.

Theorem 3. The countable direct sum of scalar operators has property (P).

Proof Let $S = \sum_{n=1}^{\infty} \bigoplus S_n$ denote a direct sum of scalar operators. Then there is a sequence of invertible self-adjoint operators $\{B_n\}$ such that $\{N_n\} = \{B_n^{-1}S_nB_n\}$ is a sequence of normal operators. Since we have

$$||N_n|| = r(N_n) = r(S_n) \leqslant ||S_n||,$$

so we may define the normal operator $N = \sum_{n=1}^{\infty} \bigoplus N_n$. To complete the proof, we note that since S_n is similar to N_n for each n, then [5, Theorem 2.5] implies that S is quasi-similar to N. Hence, by [2, Theorem 3], S has property (P).

3. A sufficient condition for reductive operators to be normal.

The argument used to prove [1, Theorem 5], with minor modifications will yield the following fact:

Theorem 4. If T is reductive and T is quasi-similar to a polynomially compact operator S, then T is normal.

Proof Suppose that p(S) = K is compact where p is a nonconstant polynomial and there are quasi-affinities X and Y such that TX = XS, YT = SY. It is easy to check that T commutes with the compact operator C = XKY. Let \mathfrak{M} be the reducing Kernel of C, that is $\mathfrak{M} = \ker C \cap \ker C^*$, then \mathfrak{M} reduces T and $T \mid \mathfrak{M}^{\perp}$ is normal, by [6, Theorem 2]. If $x \in \mathfrak{M}$, then $x_X = 0$ implies XKYx = Xp(S)Yx = XYp(T)x = 0, and thus p(T)x = 0. Hence $p(T \mid \mathfrak{M}) = 0$, that is, $T \mid \mathfrak{M}$ is algebraic. Now $T \mid \mathfrak{M}$ is also reductive. It follows that $T \mid \mathfrak{M}$ is normal, and thus so is $T = T \mid \mathfrak{M} \oplus T \mid \mathfrak{M}^{\perp}$.

Reference

- [1] Rosenthal, P., On commutants of reductive operator algebras, Duke Math. J., 41(1974), 829-834.
- [2] Fong, C. K., On commutants of reductive algebras, Proc. Amer. Math. Soc., 63(1977), 111-114.
- [3] Radjavi, H. and Rosenthal, P., Invariant subspaces, Springer-Verlag, Berlin and New York, 1973.
- [4] Nordgren, E., Radjavi, H. and Rosenthal, P., On operators with reducing invariant subspaces, Amer. J. Math., 97 (1975), 559—570.
- [5] Hoover, T. B., Quasi-similarity of operators, Illinois J. Math., 16 (1972), 678-686.
- [6] Moore, R. L., Hyperinvariant subspaces of reductive operators, Proc. Amer. Math. Soc., 63 (1977), 91—94.