FINITE GROUPS IN WHICH EVERY NON-MAXIMAL PROPER SUBGROUP OF EVEN ORDER IS 2-CLOSED

LI SHIRONG (李世荣)

(Guangxi University)

Abstract

In this paper the author classifies the finite groups satisfying the following condition:
(A) every non-maximal proper subgroup of even order is 2-closed.

Particularly, the following theorem is shown: A_5 and SL(2,5) are the only non-solvable groups satisfying the condition(A).

A lot of results have been obtained in characterizing the alternating group A_5 ; by its subgroups. In 1957, M. Suzuki showed that a nonabelian simple group is isomorphic to A_5 if its maximal subgroups contatin only nilpotent proper subgroups^[1]; In 1973, O. Pretzel studied a class of finite groups satisfying the condition (A_1)

Every proper subgroup is a p-group or the normalizer of a Sylow subgroup, and showed that A_5 is the only nonabelian simple group satisfying the condition $(A_1)^{(2)}$; Furthermore, in 1977, A. Machi and A. Siconolfi showed that the condition (A_2)

Every proper subgroup is a p-group or the normalizer of a p-group is equivalent to $(A_1)^{131}$. Thus another characterization of A_5 was obtained.

In this paper we will study a larger class of finite groups, this will lead to a new result characterizing A_5 .

Let G be a finite group satisfying the following condition:

(A) every non-maximal proper subgroup of even order is 2-closed.

Our main purpose is to prove that A_5 is the unique nonabelian simple group satisfying the condition (A).

In this paper our notation is standard. A finite group is called inner 2-closed, if G is not 2-closed but every proper subgroup of G is 2-closed. A inner nilpotent group is called a p-elementary group, if it has a nontrivial normal Sylow p-subgroup^[4]. the properties of p-elementary groups are well known.

§ 1. Proof of the main theorem

In [4], Π_{Ω} order solvable groups were definited, and the following theorem was

proved: any inner Π_{Ω} order solvable group is a q-elementary group. Our proof begins with this theorem.

Lemma 1. If a finite group G is inner 2-closed, then G is a q-elementary group, where q is an odd prime divisor of |G|.

Proof First show that G is solvable. Suppose the contrary and let G be a counter-example of minimal order. It is clear that G is an inner solvable group, hence G is a simple group. It follows that there exists an element y of odd prime order in G for an involution u of G such that $y^u = y^{-1}$. Since the dihedral group $\langle y, u \rangle$ is not 2-closed, $\langle y, u \rangle = G$, contrary to the fact that G is simple.

Now suppose that 2, p and q are three distinct prime factors of |G|. By the solvability of G we know that G contains a p-complement N_p . Let S be a Sylow 2-subgroup of N_p , then $S \subset N_p$. By the same reason G contains a q-complement N_q and $S \subseteq N_q$, hence $S \subset N_q$. It follows that $S \subset N_p$, $N_q > G$, contrary to the fact that G is not 2-closed. Therefore G contains only two distinct prime factors, thus G is an inner D_Q order solvable group. By the theorem mentioned above in [4] it follows that G is a q-elementary group, then the proof is completed.

By the way we point out that if G is inner p-closed and p is an odd prime, then G is not always a q-elementary group. A_5 may be taken as a counterexample, since it is inner 5-closed but not solvable. However, it is clear from the proof of Lemma 1 that the following statement is true: if a solvable finite group is inner p-closed, then it is a q-elementary group.

Lemma 2. Let G be a finite simple group, and M a maximal subgroup of G. If M is a p-elementary group, then $|M| = p^a q$, where p and q are distinct primes.

Proof By the properties of p-elementary groups we have that $|M| = p^a q^b$ and a Sylow q-subgroup Q of M must be cyclic, and each proper subgroup of Q is contained in Z(M). It is easy to prove $N_G(Q) \not\subseteq M$. In fact, if $N_G(Q) \subseteq M$, then Q must be a Sylow q-subgroup of G. Moreover, since Q is not normal in M, $N_G(Q)$ is a proper subgroup of M, hence it is nilpotent, this implies $Q \subseteq Z(N_G(Q))$. It follows by [6, theorem 9.9] that G has a normal p-complement, contradicting the fact that G is simple. In view of $N_G(Q) \not\subseteq M$ we now know that there exists an element t such that $t \in N_G(Q) \setminus M$. Obviously, $M^t \neq M$ and $Q \subseteq M \cap M^t$. Let Q_1 be a proper subgroup of Q, then $Q_1 \subseteq Z(M) \cap Z(M^t)$, therefore $Q_1 \triangleleft A \cap M^t$. Let Q_1 be a proper subgroup of Q, prime order, i. e. b=1, the lemma is proved.

Lemma 3. Let G be a nonabelian simple group satisfying the condition (A), then the following statements are true:

- (1) every maximal subgroup of even order of G is either 2-closed or q-elementary, where q is an odd prime;
 - (2) the Sylow 2-subgroups of G have trivial intersections;

- (3) involutions of G form a single conjugate class, and involutions of S are conjugate to each other in $N_G(S)$, where S is a Sylow 2-subgroup of G;
- (4) let S_0 be the subgroup of S generated by involutions of S, then S_0 is an elementary abelian group and $S_0 \subseteq Z(S)$;
- (5) let u and v be two involutions which lie in distinct Sylow 2-subgroups of G, then the dihedral group $\langle u, v \rangle$ is a p-elementary group of order 2p, and a maximal subgroup of G. Hence p is the highest power of p dividing |G|, i. e., p ||G|.

Proof (1) is clear by Lemma 1.

Suppose (2) is false. So there exist two distinct Sylow 2-subgroups S and S_1 of G such that $D = S \cap S_1 \neq 1$ is a maximal intersection. Obviously, $N_G(D)$ is not 2-closed, hence $N_G(D)$ is a p-elementary group by (1). Thus D is a Sylow 2-subgroup of $N_G(D)$ by Lemma 2. It follows that $N_G(D)$ is a 2-closed group, this is a contradiction. (2) is proved.

(3) and (4) are clear by (2) and [7, Lemmas 6 and 7].

Now let us prove (5). Put $M = \langle u, v \rangle$ and x = uv. Clearly, $M \neq G$, and M is not 2-closed by (2), hence M is a p-elementary groug by (1). Thus we know that M is a maximal subgroup of G. It follows, by Lemma 2, that $|M| = 2p^a$, where p^a is the order of x. Let $y = x^{p^{a-1}}$, then y is of order p. Clearly, $\langle y, u \rangle$ is a p-elementary group of order 2p. Since every proper subgroup of M is nilpotent, $M = \langle y, u \rangle$. Hence |M| = 2p. Finally, since the Sylow p-subgroup of M is normal in M, it is a Sylow subgroup of G. Therefore, $p \parallel |G|$. (5) is proved.

Lemma 4. Let G be a nonabelian simple group satisfying the condition (A), and S a Sylow 2-subgroup of G. Let u be an involution of S. Put $H = N_G(S)$ and $U = C_G(u)$. Then

- (1) |H:U|=p, where p is an odd prime;
- (2) G contains a p-elementary group of order 2p;
- (3) $U \cap U^g = 1$, for all $g \in G \setminus H$.

Proof It is clear that $U \subseteq H$ by Lemma 3(2). If |H:U|=1, then U=H. Thus, by Lemma 3(3) we know that S contains only one involution, therefore S is either a cyclic group or a generalized quaternion group. But in both cases G is not a nonabelian simple group by [6, 5.7 and Brauer-Suzuki Theorem]. Hence $|H:U| \neq 1$.

Now let t be an involution which is not in S. Put $K = H \cap H^t$. Thus, by Lemma 3(2) and [7, Lemma 8], K is a group of odd order and K contains exactly |H:U| elements which can be written as products of two involutions, one of which is t. Since $|H:U| \neq 1$, there exists an element $x \neq 1$ in K such that x = tv, where v is an involution. Thus $\langle t, v \rangle$ is a p-elementary group of order 2p and a maximal subgroup of G by Lemma 3(5). We may assert that $K = \langle x \rangle$. In fact, note that $t \in N_G(K)$, we have $\langle t, v \rangle = \langle x, t \rangle \sqsubseteq N_G(K)$. Hence $N_G(K) = \langle x, t \rangle$, but $t \notin K$. Therefore $K = \langle x \rangle$.

This means that K is a group of order p. (1) is proved. Clearly, (2) is also proved.

It remains to prove the statement (3). Let $g \in G \setminus H$ and $x \in U \cap U^g$. We know that both u and u^g commute with x by the definition of U, hence $\langle u, u^g \rangle \sqsubseteq C_G(x)$. On the other hand, from $g \notin H$ and Lemma 3(2) we know that u and u^g belong to distinct Sylow 2-subgroups of G, hence $\langle u, u^g \rangle$ is a q-elementary group of order 2q and a maximal subgroup of G. Thus $C_G(x) = \langle u, u^g \rangle$, this implies x = 1. (3) is proved.

Lemma 5. Let G be a nonabelian simple group satisfying the condition (A). Preserve the symbols of Lemma 4. Let V be the set of involutions which do not belong to S, and put $M_i = \langle u, v_i \rangle$ for each $v_i \in V$. Denote by T the set of all M_i , and set |U| = 2m. Then the following statements hold.

- (1) |T| = 2m and T contains m elements which are p-elementary groups, and m elements which are q-elementary groups, where p and q are distinct odd primes, and p = |H:U|.
 - (2) $q \equiv 2 \mod (p)$.

Proof Set g = |G|. Firstly, by Lemma 3 we have

$$|V| = |G: U| - |H: U| = g/2m - p.$$
 (*)

Now prove (1). From Lemma 4 we know that T contains at least one element which is a p-elementary group. Suppose that T has l elements which are p-elementary groups, then the involution u must lie in l p-elementary groups. Note that u is arbitrary, we know that every involution of G must lie in l p-elementary groups. Moreover, it is easy to know that G involves g/2p distinct p-elementary groups, each of which contains p involutions. Thus we get g/2 involutions when every involution of G is repeated l times. Clearly, among them only g/2l involutions are distinct, hence the number of involutions of G, i. e., g/2m, must be g/2l. Thus we get l=m.

If each element of T is a p-elementary group, then T=m, hence $T=\{M_1, M_2, \dots, M_{2m}\}$. Since every element of V is exactly in one M_i and all the involutions of M_i belong to V except u, by (*) we have the following equality

$$(p-1)m=g/2m-p.$$

Hence

$$2(p-1)m^2+2pm-g=0$$
,

or

$$p^{2}+2(p-1)g=[p+2(p-1)m]^{2}$$
 (**)

From this it is easy to know that p^2 divides |G|, contrary to Lemma 3(5). Thus we have proved that there exist in T q-elementary groups as well as p-elementary groups. Hence, as we prove that T contains exactly m p-elementary groups, we can prove that T has m elements which are q-elementary groups.

Now it is not difficult to complete the proof of (1). In fact, G contains $(p-1)g/2p \ge g/3$ elements of order p, and $(q-1)g/2q \ge g/3$ elements of order q. If there exists

an M_i in T which is neither a p-elementary group nor a q-elementary group, then M_i must be an r-elementary group, thus G contains at least g/3 elements of order r. Clearly, the total number of the above three classes of elements $\geqslant g$, this is impossible, (1) is proved.

Next prove (2). By (1) we know that the total number of involutions contained in M_1 , M_2 , ..., and M_{2m} is |V| exclusive of u, thus we have

$$(p-1)m+(q-1)m=g/2m-p$$

Hence

$$2(p+q-2)m^2+2pm-g=0$$
.

As we prove the equality (**) we can prove that there exists an integer n such that

$$p^2+2(p+q-2)g=n^2$$
.

From this it is easy to know that p divides g-2. (2) is proved.

Now let us prove the main theorem of this paper.

Theorem 1. The alternating group A_5 is the only nonabelian simple group satisfying the condition (A).

Proof Preserve the symbles of Lemmas 3, 4 and 5. By Lemma 4 it is easy to know that there exist at least |G:H| = g/2mp conjugates of U in G, which have trivial intersections. Hence they contain (2m-1)g/2mp elements $(\neq 1)$. Moreover, G contains (p-1)g/2p elements of order p and (q-1)g/2q elements of order q. Thus we have the following inequality

$$(2m-1)g/2mp+(p-1)g/2p+(q-1)g/2q < g_{\bullet}$$

It follows that

$$1/p - 1/mp - 1/q < 0$$
 (*)

Since $q \ge p+2$ by Lemma 5(2), we have

$$2m < p+2$$

On the other hand, $2m \ge |S_0| = 2^a$ by Lemma 3(4), but Lemmas 3(3) and 4(1) imply $p = 2^a - 1$, hence

$$p+1 \leq 2m$$

From the above two inequalities we obtain

$$2m = p + 1 = 2^a$$

By Lemma 5(2) we have q = kp+2. If k>1, then q>p+4. Thus by (*) we get $\frac{2}{p(p+4)} < \frac{1}{2mp}$.

Clearly, this is a contrary inequality. Hence k=1, i. e. q=p+2. Thus, from the following equality

$$pq = (2^a - 1)(2^a + 1)$$

we get p=3, q=5 and a=2.

Finaly, since $|S_0| = 2^a = 2m = |U| \ge |S|$, $S = S_0$. Hence the Sylow 2-subgroups of G are of order 4. Suppose that G contains more than three distinct prime factors. Let

13

r be the fourth prime factor, then by [7, Lemma 8] we know that there exist two involutions in G whose product is an element of order r. Thus the subgroup generated by them is an r-elementary group by Lemma 3, this is impossible. Theorem 1 is proved.

§ 2. Further results

In this section we prove the following

Theorem 2. Let G be a finite group satisfying the condition (A) and suppose that G is not 2-closed, then G is a group of even order whose order contains at most three distinct prime factors and one of the following statements holds:

- (1) G is isomorphic to A_5 or SL (2, 5);
- (2) |G| contains three distinct prime factors, i. e., $|G| = 2^a p^b q^c$, and G = SO(G), where S is a Sylow 2-subgroup of G which has the following properties: S is cyclic and every proper subgroup of S is contained in Z(G);
- (3) |G| contains two distinct prime factors, i. e. $G=2^ap^b$, and G=SO(G), or $G/O_2(G)$ is a p-elementary group of order $2p^b$.

Proof First prove (1). Suppose that G is nonsolvable, then G is an inner solvable group. Thus we have $G/\Phi(G) \cong A_5$ by Theorem 1 and [5, Theorem 4.1]. Let $M/\Phi(G)$ be a maximal subgroup of $G/\Phi(G)$, then $M/\Phi(G)$ is inner nilpotent, hence M is also inner nilpotent. It follows that $\Phi(G) \subseteq Z(M)$, thus we have $\Phi(G) \subseteq Z(G)$. Conversely, it is clear that $\Phi(G) \supseteq Z(G)$. Hence we have $\Phi(G) = Z(G)$. It follows by [6, chap 11, exercise 3] that $G \cong SL(2, 5)$ if $Z(G) \neq 1$. (1) is proved.

Now suppose that G contains more than three distinct prime factors, then G is solvable by (1). Since the index of a maximal subgroup of a solvable group is a power of a prime, the order of each maximal subgroup of G contains at least three distinct factors. It follows by Lemma 1 that all the maximal subgroups of G are 2-closed. Again applying Lemma 1, we know that G is 2-closed, a contradiction. This proves that |G| contains at most three distinct prime factors.

Now suppose that G is solvable. First, we consider the case that |G| contains three distinct prime factors. Since G is solvable, we know that G has a Sylow base S, P and Q. Since G is not 2-closed, one of SP and SQ is not 2-closed, for example SP. Thus we know that SP is a p-elementary group by Lemma 1. Hence S is cyclic. It follows by [6, 5, 7] that G = SO(G). Let S_1 be a proper subgroup of S, then $S_1O(G)$ is 2-closed, hence $S_1O(G) = S_1 \times O(G)$. Since S is cyclic, we get $S_1 \subseteq Z(G)$. Thus (2) holds.

Next we consider the case that |G| contains only two distinct prime factors, i. e. $|G| = 2^a p^b$. Suppose that M is a maximal subgroup of G, and $M \triangleleft G$, then |G| = M is

a prime. If |G:M|=p, then the fact that G is not 2-closed implies that M is not 2-closed, hence M must be inner 2-closed, it follows that S is cyclic. Thus we have G=SO(G) by [6,5.7]. Hence (3) holds. Therefore we may assume |G:M|=2. If M is inner 2-closed, then the Sylow p-subgroup of M is normalin G. Hence (3) holds also. If M is 2-closed, then $|G/O_2(G)|=2p^b$. Let $H/O_2(G)$ is a proper subgroup of $G/O_2(G)$. If $H/O_2(G)$ is not 2-closed, then H is also not 2-closed. Hence H is a p-elementary group. It follows that a Sylow 2-subgroup S of H is cyclic. Moreover, it is clear that S is also a Sylow 2-subgroup of G. This leads to G=SO(G). Hence $G/O_2(G)$ is inner 2-closed when $G \neq SO(G)$. Thus it is a p-elementary group. This completes the proof of Theorem 2.

From Theorem 2 we immediately obtain the following

Corollary. Let G be a non-solvable finite group. Suppose that all the non-maximal proper subgroups of even order are abelian, then $G = A_5$.

It follows that since the Sylow 2-subgroups of SL(2, 5) are quaternion groups by [6, Theorem 11.8], they are nonabelian.

References

- [1] Suzuki, M., The nonexistence of a certain type of simple groups of odd order, proc. Amer. Math. Soc., 8(1957), 668-695.
- [2] Pretzel, O., A characterization of the alternating group of degree five by its subgroups, Arch. Math. (Basel), 24 (1973), 531—534.
- [3] Machi, A. and Siconolfi, A., new characterization of A₅, Arch. Math. (Basel), 29 (1977), 385-388.
- [4] Chen Zhongmu, Inner Σ-Group, Acta Mathematica Sinica, 23: 2 (1980), 239—243.
- [5] Chen Zhongmu, Inner Σ-Group (II), Acta Mathematica Sinica, 24:3(1981), 331-335.
- [6] Kurzweil, H., Endliche Gruppen, Springer, Berlin, 1977.
- [7] Suzuki, M., Finite groups of even order in which Sylow 2-subgroups are independent, Ann. of Math., (2) 80(1964), 58-77.