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~ Abstract

In this paper the author class1ﬁes the finite groups sat1sfymg the followmg condmon

(A) every non-maximal proper subgroup of even order is 2—closed '

Particularly, the following theorem is shown: Ay and SL(2 5) are the only non-solvable
groups satlsfymg the cond1t1on(A) o

A lot of results have been obtaiped in characterizing -the alternating. group 4y
by ity subgroups. In 1957, M. Suzuki showed thal a'nonabelian simple:group is
isomorphic to 45 if its maximal subgroups contatin only nilpotent preper subgroups™;:
In 1978, O. Pretzel studied a class of finite groups satisfying the condition(4;) -

Every proper subgroup is a p-group or the mormalizer.of a: Sylow:subgreup, and:
showed that Asis the only nonabelian simple group satisfying the:condition . (4;)";.
Furthermore in 1977, A, Machi and A. Siconolfi showed that the condition (4,) .

Every proper. subgroup js.a p-group-or the norinalizer of a p—group is equi~
valent to (4y)"™, Thus another characterization of Ay was obtained. -

In this paper we will study a larger class of finite, groups this will lead to a new.
result characterizing 4, , o

Let G be a finite group satlsfymg the followmg condltlon

(A) every non-maximal proper subgroup of even order is 2—closed,

Our main purpose is to prove that 4; is the unique nonabelian simple group:
satisfying the condition (A). o . :

~ In this paper our notation is standard. A finite group is ealled inner 2—olosed ift
G is not 2-cloged but every proper subgroup of G is 2-closed. A inner nilpotent group
is called a p—elementary group, if it has a nontrivial normal Sylow p-subgroup™. the
properties of p-elementary groups are well known. -

§ 1. Proof of the main theerem

In [4], II, order solvable grdup& were. definited, and the follow_'ing theorem: was‘
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proved: any inner II, order solvable group is a g—elementary group. Our proof begins
with this theorem.

Lemma 1. If a finite group G is inner 2—closed, then @ is a g—elementary group,
where q is am odd prime divisor of |G|.

Proof First show that G is solvable. Suppose the contrary and let & be a counter-
example of minimal order. It is clear that G is an inner solvable group, hence G is a
simple group. It follows that there exists an element y of odd prime order in & for an
involution % of G' such that Y= =y, Since the dihedral group <y, 4> is not 2-closed,
<y, wp=G, contrary to the fact that G is simple.

Now suppose that 2, p and ¢ are three distinct prime factors of |G|. By the
solvability of & we know that G contains a p—complement N,. Let § be a Sylow 2-
subgroup of IV . ‘then S<]N By the same reason G contains a ¢-complement N, and
SCN,, hence SN, It follows that S<KN,, N> =G, contrary to the fact that G is
not 2-closed. Therefore G contains only two distinct prime factors, thus G is an inner

15 order solvable group. By the theorem mentioned above in [4] it follows that G isa
g-elementary group, then the proof is completed. '

By the way we point out that.if & is inner p-closed and p is an odd prime, then
@ is not always a g—elementary group. A5 may be taken as a counterexample, since it is
inner B-closed but not solvable. However, it is clear from the proof of Lemma 1 that-
the following statement is true: if a solvable finite group is inner p-closed, then it is
a g—elementary group.

Lemma 2. Let G be & finite sq,mple group, and M a mazimal subgroup of G.If M
is @ p-elementary group, then |M | =p"q, where p and q are distinct primes.

Proof By the properties of p-elementary groups we have that |M|=p%® and a
Sylow g-subgroup Q of M must be cyclic, and each proper subgroup of @ is contained
in Z(M). It is easy to prove N¢(@)LEM. In fact, if Ne(Q)EM, then Q must be a
Sylow g-subgroup of G- Moreover, since @ is not normal in M, Ne(Q) is a proper
subgroup of M, hence it is nilpotent, this implies QC.Z(N¢(Q)). It follows by [8,
theorem 9.9] that G has a normal p-complement, contradicting the fact that G is
simple. In view of Ng(Q)LEM we now know that there exists an element ¢ such that’
tENg(Q)\ M. Obviously, M?+ M and Q&M N M*. Let @y be a propér subgroup of @,
then Q& Z (M) N Z (M?), therefore Q<K{M, M*>=@, this implies Q;=1. Thus Q is of
prime order, i. e, b=1, the lemma is proved.

Lemma 8. ILet G be o nonabelian simple group satisfying the condition (A4), then
the following statements are true:

(1) every mawimal subgroup of even order of @ is either 2-closed or g-elemeniary,

 where g is an odd prime; o
- (2) the Sylow 2-subgroups of G have trivial intersections;
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(8) involutions of G form a single canjugate class, and ¢nwolutions of S are
conjugate to each other in N «(S), where 8 is a Sylow 2-subgroup of G

(4) let S, be the subgroup of S generated by involutions of S, then S, s am elementary
abelian group and Se=Z(S); .

(8) let w and v be two inwolutions which lie in distinct Sylow 2-subgroups of G, then
the dihedral group <u, v is a p-elementary group of order 2p, and @ maximal subgroup
of G. Hence p is the highest power of p dividing |G|, 4. 6., 9| |G,

Proof (1) is clear by Lemma 1. “ v

Suppose (2) is false. So there exist two distinet Sylow 2-subgroups S and Sy of G
such that D=8N81#1isa maximal intersection. Obviously, Ne(D) is nob 2-closed,
hence Ng(D) is a p-elementary group by (1), Thus D is a Sylow 2-subgroup of Ne(D)
by Lemma 2. It follows that Ng(D) is a 2-closed group, this is a contradiction. (2) is
proved.

(8) and (4) are clear by(2)and [7, Lemmas 6 and 7],

Now let us prove (). Put M~<u, vy and o=wv. Clearly, M@, and M is nob
9-closed by (2), hence M is a p-elementary groug by (1). Thus we know that M is a
maximal subgroup of G, It follows, by Lemma 2, that | M| =2p°,where p° is the order
of #. Lot y=a"", then y is of order . Clearly, <y, w)is a p-elementary group of order
2p. Since every proper subgroup of M is nilpotent, M=<y, up. Hence | M| =2p.
Finally, since the Sylow p-subgroup of M is normal in M, it is a Sylow subgroup of
" G. Therefore, p| |G]. (B) is proved. :

Lemma 4. Let G be a nonabelian simyple group satisfying the condition (4), and
8 a Sylow 2-subgroup of G. Let u be an snwobution of S. Put H=Ng(8) and U=C¢(w).
Then ‘ _ '

(1) |H:U|=p, where p is an odd prime;

(2) G contains o p-elementary group of order 2p;

(8) UNU?=1, for all geEG\H,

Proof = It is clear that US H by Lemma 8(2). If | H:U| =1, then U=H. Thus,
by Lemma 8(8) we know that S contains only one involution, therefore S is either a
cyclic group or a generalized quaternion group. But in both cases G is not a nonabelian
simple group vby [6,5.7 and Brauer-Suzuki Theorem]. Hence | H:U | #1.

Now let ¢ be an involution which is not in S. Put K=H N H*. Thus, by Lemma
8(2) and [7, Lemma 8], K is a group of 0odd order and K contains exactly |H: U|
olements which can be written as products of two involutions, one of which ig %,
Since | H: U | #1, there exists an olement ##1 in K such that #=%v, where v is an
involution. Thus <f, v) is a p—elementary group of order 2p and a maximal subgroup
of G by Lemma 8(B). We may assert that K =<{&>. In fact, note that t€CNe(K), we
have <t, vp=<w, HEN(K ). Hence Ng(K ) =<w, ty, but t¢ K. Therefore K =<{&).
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"This- means that K is a group of order p. (1) is proved. Clearly, (2) is also proved.

It remains fo prove the statement (3). Let g€ G\ H and 2€U NU’. We know
that both » and w? commute with # by the definition of U, hence <u, w$CCf4 (#). On
the other hand, from g¢ H and Lemma 8(2) we know that « and 4’ belong to distinet
Sylow 2-subgroups of @, hence <u, u%> is a g-clementary group of order 2¢ and a
maximal subgroup of G. Thus Cg(w) =<u, ¥y, this implies w=1. (3) is proved.

Lemma 6. Let @ be o nonabelian simple group satisfying the condition -(4).
Preserve the symobls of Lemma 4. Let V be the set of inwvolutions which do not . belong to
8, and put My=<u, v> for each v,€V . Denote by T the set of all M,, ‘and st |U | = 2m
Then the following statements hold.

(D |T|=2m and-T contains m elements which are p-elementary groups, and m
elements which are q-elementary groups, where p and q are distinct odd primes, and

=|H:U|. |

(2) ¢=2 mod (p), -

Proof Set.g=|G|. Firstly, by Lerma 8 we have

| [V|=1G:U|~|H: Ul=g/2m—p," B O

Now prove (1). From Lemma 4 we know that T confains ab least one element
which is a p-elementary group. Suppose that T' has I -elements which are p-elementary
groups, then the involution « must lie in ! p-elementary groups. Note that u- ig
arbitrary, we know that every involution of G' must lie in p-elementary groups:
Moreover, it is easy to know that G involves g/2p-distinct p-elementary groups, each
of which contains p involutions. Thus we get g/2 involutions when every involution
of @ is repeated 7. times. Olearly, ‘among- them only ¢/20 involutions are distinot,
hence the number of involutions of G, i. e., g/2m, must be g/2l. Thus we get I =m.

If each element of 7' is a p-elementary group; then T =m, henoe 7 = {M, Mg,
Msn}. Since every element of ¥V is exactly in one M; and all the 1nvolut10ns of M;
belong to V exoept u, by (*) we have the following equahty

R ' (p*1>m g/2m—p |
Henoce
2( p—1)m? +2pm g=0,

or

v P*+2(p~ 1)9 [p+2(p—1)m]?, . (%)
From this it is-easy o know that p? divides |G|, contrary 1o Lemma 3(5). Thus we
have proved that there exist in 7T g-elementary groups as well as p—elementa,ry groups.
Hence, as we prove that T contains exaotly m p—elementary groups, we can prove that
T has m elements which are g—elementary groups. : '

Now it is not difficult to complete the proof of (1). In fact, & contains (p—1)g/
2p>g/8 elements of order p, and. (¢ ~1)¢/2¢>>9/3 elements of order: g. If there exists
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an M, in T which is neither a p-elementary group nor a g¢-elementary group, then
M, must be an r—elementary.group, thus G contains at least g/3 elements of drder r.
Clearly, the total number of the above three classes of elements>g, this is impossible,
(1) is proved. .

Next prove (2). By (1) we know that the total number of involutions contained
in My, My, -+, and My, is |V'| exclusive of u, thus we have
(p—Dm~+(g—1)m=g/2m—p,

Hence - '
2(p+q—2)m*+2pm—g=0,
As we prove the equality (*x) we can prove that there exists an integer n such that
P*+2(p+q—2)g=n’,
From this it is easy to know that p divides g—2. (2) is proved.

Now let us.prove the main theorem of this paper.

Theorém 1. The alternating growp Ay is the only nonabelian simple group satisfy-
ing the condition (4). ' '

Proof Preserve the symobles of Lemmas 8, 4 and 5. By Lemma 4 it is easy to
know that there exist at least |G: H | = g/2mp conjugates of U in G, which have frivial
intersections. Hence they contain (2m—1)g/2mp elements (#1). Moreover, & contains
(p—1)g/2p elements of order p and (¢—1)g/2q elements of order ¢. Thus we have the
following inequality _ :

(2m—1)g/2mp+ (p—1)g/2p+ (a—1)9/2¢<g,
It follows that .
1/p—1/mp—1/¢<0, - ()
Since ¢=p-+2 by Lemma 5(2), we have
_ _ 2m<p+2, v
On the other hand, 2m> |S,| =2° by Lemma 8(4), but Lemmas 3(3) and 4(1) imply
p=2"—1, hence
: p+1<2m,
From the above two inequalities we obtain
o 2m=p-+1=2°, :
By Lemma 5(2) we have ¢=Fkp+2. If k>1, then ¢>p-+4. Thus by («) we get
2/p(p+4)<1/2mp, -
Clearly, this is a contrary inequality. Hence k=1, i. e. ¢=p+2. Thus, from the
following equality _ :
: pg=(2"—1) (2'+1)
we get p=38, ¢=>5 and a=2, _ . .

Finaly, since |S,| =20=2m=|U|>1{8], §=8,. Hence the Sylow 2-subgroups of

G are of order 4. Suppose that G contains more than three distinot prime factors. Let
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r be the fourth prime factor, then by [7, Lemma 8] we know that there exist two

involutions in G whose product is an element of order r. Thus the subgroup generated

by them is 'an r-elementary group by Lemma 8, this is impossible. Theorem 1 is

proved.

§ 2 Further results

In this section we prove the followmg

Theorem 2. Let G be o finite group satisfying the condition (A) and suppose that
G is mot. 2~closed; then G is @ group of even order whose order contains at. most three
distinet prime factors and one of the followih%g‘ statements holds:

(1) @ is isomorphit to-As or SL (2, b); -

(2) |G| contains three distinet prime: factors, 6. e., IG'l 2“p q°, -and G SO (G’),
where 8-is @ Sylow 2-subgrowpof- G whick has the following properties: 8" is eyclic and
every proper subgroup of S is contained in Z(G); :

- (8) |G| contains two distinct prime factors, i. e. G‘=2" ,and G SO (G‘) or
G/0,(Q) is a p—elementary group of order 2p°, S :

Proof First prove (1). Suppose that G is nonsolvable, then G is an inner solvable
group. Thus we have G/®(G) 22 A5 by Theorem 1 and [6, Theorem 4.1}. Let M /D(G)
be a maximal subgroup of G/®@ (@), then M/P(G) is inner nilpotent, hence M is also
inner nilpotent. It follows that ®(G) &Z (M), thus we have 8(G) EZ (¢F) . Conversely,
it is clear that ®(G) 2Z(G). Hence wWe have &(Q)=Z(G). It follows by [6, chap i1;
exéroise 3] that G=SL(2, ) if Z(G)+1. (1) is proved.

Now suppose that G contains more than three distinct prime factors, then G is
solvable by (1). Since the index of a maximal subgroup of a solvable group is a power
of a prime, the order:of each maximal sitbgroup of G' containg at least three distinet
factors. It follows by Lemma 1 that all the maximal subgroups of G are 2-closed.Again,
applying Lemma 1, we know that G' is 2-closed, a contradmtlon This proves that |Gr'|
contains at mosb three distinet prime factors. = R o :

Now suppose that G is solvable.. First, we consider the case that |G| contatins
three distinct prime factors. Since G is solvable, we know that & has a Sylow base S, P
and Q. Since @ is not 2-closed, one of SP and SQ is not 2-closed, for example SP.
Thus we know that SP is a.p-elementary group by Lemma 1. Hence § is cyclic. It
follows by [6, b. 7] that G=80(G). Let Sy be a proper subgreup of §, then 8,0 (&)
is 2-closed, henoe S;0(@) =Sy X 0(@). Since § is cyclic, we get Sﬂ:Z (G) Thus (2)
holds. , - : :
~ Next we consider the ‘case that |G| contains only two distinct prime factors, i. e.
|G| =2%". Suppose that.M: is a maximal subgroup of G, and M<(G, then |G: M| is!
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a prime. If |G: M |=p, then the fact that G is not 2-closed implies that M is not
2-closed, hence M must be inner 2-closed, it follows that S is oyclic. Thus we have
G=80(®) by [6, 5.7]. Hence (8) holds. Therefore we may assume |G: M|=2. If
M is inner 2-closed, then the Sylow p-subgroup of M is norma lin G. Hence(3) holds
also. If M is 2-closed, then |G/0:(@)|=29". Let H/0,(G) is a proper subgroup of
G/05(@). If H/0:(G) is not 2-closed, then H is also not 2-closed. Hence H is a p-
elementary group. It follows that a Sylow 2-subgroup § of H is cyclic. Moreover, it is
clear that § is also a Sylow 2-subgroup of G. This leads to G=80(G). Hence G/0:(G)
ig inner 2-closed when G'#S0O(®). Thus it is a p—elementary group. This completes
the proof of Theorem 2. '

From Theorem 2 we immediately obtain the following

Corollary. Let G be a non-solvable finite group. Suppose that oll the non-mawimal
proper subgroups of even order are abelian, then G-= 4.

It follows that. since the Sylow 2-subgroups of SL(2, b)are quaternion groups by
[6, Theorem 11.8], they are nonabelian.
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