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- Abstract

In this paper, the author considers Liénard’s equation, studies the properties of so-called
characteristic functions and gives three theorems which ensure that the equation has at least
one limit ¢ycle. The theorems generlize Filippov’s Theorem which is a repesentative resulttl,
Dragilev’s Theorem®), Theorem 1, 2 of [6], Theorem 9 of [8] and Theorems 1, 2 of [9]
respectively.

Until now, Filippov’s Theorem™ is still the most general and repreéentaﬁve
result ensuring that Liénard’s equation .
a;+f(os)m+g(a;) =0
& .
(7@ = 7@ )

has at least one limib cycle, this result is said to have the least conditions™*®, In this

or its equivalent system

paper, we study the properties of so-called characleristic functions and give three
existence theorems for limit oycles of (x). These theorems generalize Filippov’s
Theorem, Dragilev’s Theorem™, Theorems 1, 2 of [6], Theorem 9 of [8] and Theorems
1, 20f [9]. = |

‘We suppose that f(¢) and g(o) are continuous on (—oo, +o0), and ag(x) >0,
for ©+0; J:w g(@)dw= +oo.

We write G () ——.—J: g(€)d¢ and use Filippov’s Transformation™:

when 42>0, let 2=2;(x) =G (), it has an inverse funclion x=w,(2), therefore
F(x) =F (2.(2)) = F1(2); _

when #<<0, lot 2=2;(z) =G (), it has an inverse function s=a,(2), therefore
F(w)=F (22(2)) = Fa(2). .

Thus, the trajectories of (*) on righ-half (@, y) plane are fransformed into

integral curves of equation
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_g%m-y W

on rlgh half (z y) plane, tra;]ectorles of (*) on Toft-half (a; y) plane are transformed
into integral curves of equation

'%-eﬁ'z(z)—y' ) @

on righ-half (2, y) plane., - x :

On righ-half (2, y) plane, except the rigion (0, 0) both equations (1) and (2) satisfy
the conditions of existence and uniqueness of solutions with initial condition™ %,

On righ-half plane 23>0, y=F (2) is called the characteristio function of equation

.Obviously, we have'®4: if F(z) is contmuously dlﬁ'erentmble and F(O) =0,
then the trajectory of (8) passing through point (%, F (2)) on the characteristic curve -
must interect y—axis at two points A and B, where either y,<0, yz=>0, or 7,<0,
y5>0; besides, when 2—>--00, either y4 decreases monotonely and Yz does not deorea,se
or y, does not increase and ¥z inoreases monotonely ' -

For convenience, the frajectory passing through point (2, F (2)) is called 2
characteristic trajectory of (8)or F(z); and the two points at which the % characteristio
trajectory intersects y—axis are called characteristic "points of the 2 ‘characteristic
trajectory, where the upper (1ower) point is called the 2 upper (lower) characteristic
point; it can be proved that the set of all characteristic pomts is an 1nterva1 and we
‘all it the characteristio interval of F(2). . I s

- 'We define:

1. If point (0, F(0)) is between the upper and lower characteristic points, we
agroee that this point is also a characteristic point; if characteristic points are at one-side
of point (0, F(0)), we agree that this point is not a characteristio pomt Then, 11; can
be proved that characteristio inteaval is an open inferval.

2. Unless special explanation, we always suppose that the functions in. the next
part are continuously differentiable with respect to 2 and are equal to zero at 2=0.

By Pomcare—Benducson ¢ annular reglon Theorem and the proof of F111ppov s
‘Theorem, we have the following criterion. ' '

Criterion:

If i) there exist numbers #40>0, 290>>0 such that the z;, upper and lower chara-
cteristio points By and Ao of F1(2) are not above the 25 upper and lower characteristio
‘points By and Ay of Fy (2) respectively;

ii) there exist mumbers 211>>%10, 221>%20 such that the %y upper and lower
characteristic points By and Ay of Fy (2) are nobt below the 2s; upper and lower
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characteristic points By and As; of Fa(#) respectively, then (+) has at least one limit
cycle. '

§ L Properties of Cha,racteristiC' Function

Let m=min ¥ (@), M =max F(z) For equatlon (3), - y and 2 v M y,

C[0%e] o 102
usmg the comparison theorem and the- method of [9], we obtain
Lemma 1. Suppose that 20>0, Ho=F (zo) (H 0<F(zo))and that the upper (lower)
intersection pomt of y—awmis with the tmyectory pa;ss'mg thfrough po'mt (20, Ho) of (8) is
B(4), then we have Co :

max{M fm—l-\/(m Ho)2+2zo }<yB<M+\/220 . ' )
for m< Ho<M; : o

m+~/ (m— Ho)2+2zo <CIJB<M+\/(M Ho)2+220 6
for Ho>M y

m— N 92 <gys<min {m, M—~/(M— Ho)2+220'} C ' (6)
for Hoy=m; o » S .

m—~/ (m—Ho)*+22 <?/A<M—'\/(M;Ho)2+220 - (D

forHo<m,

Lemma 2. Suppose that Fi(z) <Fa(z) and that the chamcterr@smc mterrmls of
Fi(2) are (a;, b)) (i=1, 2), then a;<as, bi<<bs, : :

Using the method in [6], we obtain

Lemma 3. Let the characteristic interval of F (z) be (a b) If there exists number
bo>0 (20<0). such that '

[(i"x}rfo)[bo—ﬁ’(z)+ﬁ-ﬁ—,—(g—z‘._—b:]<0u | - ®
(s [w-F @+, g |>0), | 9)

then by<b(a<ay), .
A special case of Lemma 8 in [8]is the following lemma.
Lemma &. Let the characteristic interval of F (2) be (a, b). If there ewist constants
0>0, L>0 (D>0, N>0) such that

F(z)+0>0 (F(z) D<O),'

lim || <L (10)
(Jim 7o F(;)Zz 5=N) o ()

then — (O+IL)>a (b<D+N), |
In Lemma 1, let Ho=F (2,), we can easily obtain
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Lemma 5. The characteristic interval of F(z) can only have the following three

types
(@, +00); (—o0, b); (=00, +o0),

where —oco0<a<<0, 0<<h<<+oo,

Ewample 1. The characteristic interval of F (2) =C (constant) is (—oo0, +o0).

Ezample 2. (See [1]) The characteristic interval of F (z) = =a~/7 is as follows:
(=00, 0), for a<—+/8; (—oo, +00), for |a|<~/8; (0, +c0), fora>+/8,

Example 3 (See [7, 91) The characteristic interval of F(2)=az is as follows:

(— ———) for a<0; (—oo, +00), for a=0; ( ‘1z, oo) for a>0,

BEaample 4. The characteristio interval of F (2) = Az* sin 2z (|4]<+oo, >0)
is (_oo) +OO) ° '
Example 5. Lot the characteristio interval of F (z) = 42" sin® 2z (4>>0, k>2) be

1
(e, b), then ——(1—%—:7!: §W><“<O b= +°°
In fact, in[nw, (n+1)w], we have
1 1 1

1+A[(n+1)w]¥sin®2 < 1+ Az¥gin®z < 1+ A[nw]*sin®z *
Using equality ’

(n+1)w dz o dz o
jmr 14+ Bsin?z '“L, 1+Bsin’2z ~ /1+B’
we can obtain
400 T +oo dz oo
<< —‘_""“_‘——< -——m
= \/1+A[(n+1)av]"\.[o 1+4¥Fsin?s ~ &8/ 1+ Alnw]**

For %>2, series 2 is convergent. Thus, from Lemma 8, we have

7=0 A/ 1+A|:'nav] k

1
<1+UF %m)<a<00

Ezample 6. Let the characteristic interval of F (2) =Az* (4>0) be (a, b), then

"[(i‘)g*'%](j%)im—%(;/%f, ——
In fact, from Lemma 3, if 0<e< <\/ )3; then we haV;e

=

I I A ~| o2 442 \/—Z
[gﬁg)[ &' —4a +Jo TAZRe? J/ &l — g+ s'\/—— aro g ]zzle
—2e?4 =—>>0
v el
2
Thus, e<inf {—s&?} = ——1-<-1'7——>3 Besides, from Lemma 4, we have
4\V4A

ot d Ar
_ G " <_ T
Jm .L 0 R G 0«/ a0l =g Sav40”
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where C is a positive number. Therefore — (0’2+————~——><a it follows that

27 A
o vaze=((3) 1)) miveonin -((3)+3)T2) <

Theorem 1. Suppose F (%) satisfies at least one of the following condztf&ons.
i) inf F(@)=~oc0 ( sup F(2) =-+o0);

[0, +e0)

it) sup F(z)<+oo (mf F()>—00);

10540

i) inf {a@o|ao€ (9)} = —oo (sup {bo|bo € (8)} = +00);

iv) the upper (lower) bound of characteristic interval of F (2) ds finite; =

V) there ewist 4>0, Fo(2) such that the lower (upper) bound of chamctemstw
interval of Fo(2) is —oo(+o0) and F(2) <Fo(2) (F(2)>Fo(2)) for 2>4, then the
lower (upper) bound of characteristic interval of F(2) is —oo(+400),

Theorem 2. Suppose F(2) satisfies at least one of the follow'mg cond@tfwns

i) there ewist numbers 4>0, E>0 and H such that F(2)>Kz+H(F (z)
+H) for 2> 4;

ii) there exist numbers 4>>0, a>\/_8— and H such that F () >a\/ 2 +H (F@)<
—an/z +H) for 2> 4;

i) there ewist fnumbefrs 4>0, A>0 and H such that F ©) >Az"’+H (F (z) — A2?
+H) for 2> 4; '

iv) F (2)satisfies formula (10) in Lemma 4 (formula '(11) in Lemma 4);

V) there ewist 4>0 and Fo(2) such that the lower (upper) bound of characteristic
interval of Fo(2) is finite and F(2)>Fo(2) (F(2)<Fo(2)) for 2>4, then the lower
(upper) -bound of characteristic interval of F (2) is finite.

For Fi(z) and Fa(2) of (+), their characteristio intervals have nine groups of
combinations, we list them in the following table:

Table 1. —oo<a,<0, 0<b;<-+oo, i=1, 2,

group the characteristic interval of Fy (2) o the characteristic interval of Fy(2)
1 (moo, +o0) T (e, 40
2 (—eo, +2) T (Cew
8 ' o (e o) S (—o0, +o0)
4 T e | =
5. .0 ' (a1, +o0) S ‘ . (ag +oo)
6 (=0, b1) V (—e0, by)
(A o (=05 +'°<_?) S o ‘(‘12_, +oo)
8 (— oo, ) o (=00, +.00)
9 (— oo, b1) B N O )
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By Theorems 1, 2 and with the lemmas and the examples mentioned above we
can. determme when a certain group in Table 1 happens. When the 5% and 6t groups
happen, we can give some substanhal conditions o determine the bounds for example,
we shall give four corollaries of Theorem B later. '

§ 2, Ex1stence of lelt Cycles

Let my=min F(2), M‘,—max Fi(®) (i=1, 2;-j= 0 1). For all the nine cases in

Table 1, by thg ;hethod of Flllpg;ojv ’s Theorem Lemma 1 and the precedmg Oriterion,
weo have : c - e : = Co
Theorem 3. Suppose 1) Fy(z) and Fqy (z) swt@sfy one o f the I ollowmg cond/ztwns
1) there exists @ number >0 such that :
- R <F2(z) Fl(z) $F2(z), Fl(z) <aﬁ Fz(z) a«/_ 0<a<\/ s
for 0<a<®;
2) therre emst rnumbefrs z10>0 %20 >0 such that A
| M10+ \/2710<max {M2o, 'm20+ v (’mzo Fe(zzo))2+2zzo % |
20— %?mm {mao, M10— ~ (M- F1(210))2+2210}, o
| 11) there ewist numbefrs 211>max{6 210}, z21>max{8 220} such that ' o
o Moyt \/2221<max {Mn, m11+~/ ('mn F1(211))2+2211}, o
3 1 —\/22—11>mm {may, Mgy —~/. (Mm Fz(zzi))2+2321},
then (*) has at least.one Vimdt oycle. - . i - R I OO P

Theorem 8 and Filippov’s Theorem do not contam each other, the condltlon
i) in-Theorem 8. is: more-general than the condition. for the interior boundary of
Filippov’s Theorem. _ : R e

Corollary 3.1. Suppose that there e.mst numbefrs z11>zio>0 amd z21>on>O such
that | _ .

i) .' Mo+~ 2210 Mo, ﬁ’bzo"’ JféZ}mid; L

i) Mo+ \/§Z_iL<M11, M11—;’\/72_Z;—;L_>m‘4‘1,:
“then (x) has at least one limit cycle. RN

For the. cases of the 1st, 204, 8 and 4t groups in Table 1, we obtam |

Theorem 4 Suppose i) condition 1) in ’_l’heorem 8 is sat@sﬁeol o

ii) there ewists @ number A>max{8 %10, zzo} suoh thwtj (F1 (2) = Fa(2))dz>0 and

Fi(2)=Fa(2) for >4

iii) the upper bound of characteristic fmtefrwl of If’1 (z) is oo, cmd the lower bound
of characteristic interval of Fa(2)ds — '
then (%) has at least one Vimit cycle.
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By Example 2; Lemma 2.and Theorem 2, we easily know that Filippov’ s Theorem
is a speoial case of Theorem 4, By Lemma 3 and Theorem 3; applying the transforma-
fion: g=—X, y=Y, t= — 2% and Filippov’s Transformation upon (%), we can know
that Theorems 1, 2 in [6] are special cases of this theorem. By Lemma 3, Theorem 9
in [8] is also one of its special cases..

Example 7. | -

Asin?z, 0<z:<—”25,. A>1,

A—l—(z——-”-z”—) sin(z—-‘g-), z>—”25,

, }smz 0<z<—2—,,,

1+<z 2>sm(fz 2), z>'_2’_. o
then () has at least one 11m1t oycle . ) | -
Example 7 satisfies the condrblons in Theorem 4 but does not sa’olsfy the

Lot Fi(z)=

conditions in F111ppov s Theorem
Corollary 4.1. Suppose i) corndmons 1) wnd 11) w Theorem 4 are satesﬁed
ii) for 2>4, there are L
Fi(@)>aN7 + H>Fa(), |a1<J g |H\_| <+oo o
then: («) has at least one l'wmt cycle _ : o
For a=0, Corollary 4.1 generalizes Dragﬂev 8 Theoremm S L
Corollary 4.2. Suppose i) conditions 1) and if).in Theorem 4 are samsﬁed :
i) |Fy(2) | <+oo, |Fa(2)|<-+oo; or sup Fi(2)=-+oo, inf Fa(z)=—oo, for
i>d, _ T B R i '
then (%) has at least one limit cycle. SLhE :
Corollary 4.3. Suppose 1) conditions 1) end ii) in Tkeorem 4 are swt@sﬁed
ii) for F1(®) and Fo(2), @ certain case of the 2, 8 amd 4“’ groups in Table 1
happens,
then (%) has ot least one Vimit cycle. e
For the cases of the 5t and 6! groups in Table 1, we obtam . |
_ Theorem 5. Suppose i) condition i) in Theoa"em 4 ’bs sat'asﬁed
it) the Tower (upper) boufnd &% (bi) of ohamctemstw interval of F, (z) (e 1 2) is
ﬁmte and ;> a5 (bs>bs), then (*) 'has at least one limis cycle ‘
- Theorem b and Flhppov s Theorem do niot contain each other. Theorems 1, 2 in
[9] are speo1a1 cases of this theorem. .
Let mi—mm F1 (@), .mz—-mm Fz(z), and Mz—-mang(z) For the btn group in

Table 1, By Lemma 1, Theorems 1, 2 and the method in [9], we obfain
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Corollary 6.1. Suppose i) condition i) in Theorem 8 is satisfied;

ii) there ewists number 4>max{d, 1, 220} such thwt F,(2)>K(@—4)+H, K>0,
|H|< 400, for z>4;

iii) there ewists number 2*>2q4 such that

my—~/ 24 >10in {m}, Mj—/(Ms—F2 (7)) +27 }, for—F+H>m1;

2
mi‘x/ ( ml%*ﬂ) 424 >min {m}, Mj—~/ (Mi—F1(z))"+22'},

for ——%, +H<my,
then (%) has at least one limit cycle.
Corollary 6.2. Suppose i) condition i) in Theorem 3 is satisfied;
i) there ewists number A>max{d, #10, 220} such that
Fi(z)>a~/z A+-H, a=>+/8, [H|<+<>° for 2> 4;
111) there ewists @ number 2*>2a9 such that '
ml—m>m1n{m2, M3—~ (M5— Fa(7))°+37 }, for H>my;

\/(ml H)9+2A>mm{m2, M2 N (M3—Fy(Z))2+277},

for H <m1, o
then () has at least one Vimit cycle. _

Corollary 5.8. *Suppose i) condition i) in Theorem 8 is satisfied;

i) there ewists anumber 4>max{9d, 210, zzo} such that Fi(2)=>A(z—A)2+H, A>0,
| H| < +o0, for 2>4;

iii) there ewists @ number é*>é§o such that

*'my— A 24 >min{m§, Mi—~/ (M3~ F3(")) 2422},
foq‘“[(%) ]<~/A> +5>mi’

‘ 'ml—‘/ (mtg <~/A)%

2
3

‘H) g >min {(mf, Mi—~ (h-F2()*+27},

oojeo

1/ o
for —3(77) +H<ms
tnen (x) has at least one limit cycle,

The three corollaries of Theorem b can be used in the cases of the 8t and 4th
groups in Table 1. In these corollarles, conditions ii) and iii) about the exterlor

(
boundary of the annular region never contain conditions Jo (Fy(2)— Fq(2))dz>0" and

“Fi(x) >Fa(2) for 2>4". In conditions iii) of these corollaries, “min{mj Mj—
N (M—F3(2))2+22°}” can be substituted by “mm{mz, Fy (z*)}“ or “min{m;, Mj—
NETd ‘
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Ezample 8. Leb

Asinz, 0<z<-3§, A>1,
Fi(2) =2, Fa(2) =
| - _Ba Y e (=57 3m
4+ (2=2F) sint (=), #>5

then (*) has at least one limib cyole.
~ Example 8 satisfies the conditions of Theorem 5, but does not satisfy the conditions
of Filippov’s Theorem. _

Corollary 5.4. Suppose i) condition i) dn Theorem 8 is satisfied;

i) there ewist numbers 0>0,L>0 such that F1(2)satisfies formula(10)of Lemma 4,
there ewists @ number ag<0 such that Fa(z) satisfies formula (9) of Lemma 3; and
ay< — (C+L),
then (¥) has at least one limit cycle.

Example 9. Lot Fy(2) = 4:2* gin?2, Fa(2) =A?® and

2
& 1 1 3
~(+= Eyrrer) > 1(Fa) - 470 40
then (*) has at least one limit eycle. _

Example 9 satisfies the conditions of Corollary 5.4, bub does not satisfy the
conditions of Filippov’s Theorem.

For the 6 group in Table 1, we can obtain analogous corollaries.

Finally, I should express my heartfolt thanks to Professor Ye Yanggian of
Nanking University, Professor Zhang Zhifen of Beijing University and Associate
Professor Huang Qichang of Northeast Normal University, for their guidance.
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