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Abstract
A In this paper, the author proves the B;)unded quadratic system with two singular points
ot finite which corresponds to figures 12(a), 12(), and 13(p) in [1] has at most one’ limit’

cycle, and shows under what conditions the limit cycle exists.

The aim of ‘this f)apef is 10 investigate the oxistonce and the nﬁmber of limib

cjoles for figures 12(@), 12 (b) and 18(d) in [1] (as follows).

Fig. 12(a)  Fig. 12(b) ‘. Fig. 1(b)
Wo shall show that in all these caées the systen ha,s. ab mogt 6119' limit oycle.
For the sake of simplicity, let us g_onsidgr fhe quadratio system }

%w?'= '—-y+8m+lw3+mwy‘+ny2, %%;#—m(i—i;dw—l—by) . ; | 1)
By means of the met_hqdused in [1], we hm’re:’.' B | o

“Theorem 1. All solutwns 'of sit/stem (1) are bownded fo

r 130 iff one of the followi‘ng
conditions holds: o - o
1) 'n=0, (b—T)*+4ma<0, mb<0;
2) n=0; (b—1)*+4ma<0, b=m-+a=0, m(md
8) n=m=0, b=, ab>0, o

~ (The proof is omitted he;e.)‘~ |
© Thus, for the oage which has t'wo""ﬁn'itie sin,

+1)<0, m+#0;

gular points, it is sufficient o ‘consider

the sys’ﬁeﬁa o
B — —y+do+lo+moy, W b, @
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where

mb<<0, (b—10)*+4ma<0, (b8+a~m)?=4(lb—ma), (3)
or

m=0, b=, ab>0, (a+b3)2=41b,

According to the behavior of the paths for system (2) in a neighbourhood of a
higher order singular point, it is easy to see that the case @ +68+m=0 is corresponding
to the fignres 12(a), (3) in [11, and the case Bla(a--bd +m) +2b*]1 <0 is correspon-
ding to the figure 18(3) in [1], where B=a+b3—m,

Observe that if |8]>2, then the unique elementary singular point of system (2)
i 2 node and then that system has no limit cycle. Thus as the discussion confine to
the existence and the number of the limi oyole for system (2), we may assume || <2.
Under this condition, if @(a-58+m) +2b%+#0, we have B>>0. Otherwise we translate
the origin to the singular point (,, Yo), Whe.re‘a;o=’ -2 y0=——-—2“22B , and system

B 2
(2) becomes '

i‘%_—. —_7% (a+b'o‘+m)5—-%(a+b6+m)§+l§9+mig}, -
20z 25, o
Suppose
‘v=z7—%z z,

1b is easy to see that the derivative of v along the trajectory of system (8*) is

%:. o=0 =-—£a [(4=8") 8"+ (a-+m)®17 (z+,)
and _ =
dz

_1 _ dy = |
N ﬁ(a+bb‘+m)y, v y=0—-“f"<‘"+‘”o).

Without lost of generality, we may assume a>0. Hore note that if B<0, then ,>0,

T=0

and there is a separairix of the system (3*) as follows, which
is impossible, and hence B>0. ’

Thug the inequality Bla(a+58+m)+252] <0 is equivalent
to B>0, a(a+bd+m) +2b2<0, if |8] <2, .

So it is sufficient to consider the following two case:

- case I: a(a+50+m) +2b°<0, B>0 (|8] <2),

case II: a4+ 08+m=0,

Now it is easy to see that in such two cases m 0,

- Without lost of generality, we may assume 5>0, 6therwies, we may put —y and
—& instead of y and & respectively, in system (2). Hence m<0, and by the similarity
transformation, we can reduce m= —1,

Thus system (2) can be transformed into the form
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%%= — g+ O +1a® —ay, %—y{-r—w(l+aw+by), 4
and condition (8) into the form
5>0, (b—1)2<4a, (a+bd+1)?=4 (Ib+a), ()
and the two cases which have been mentioned above are as follows:
case I: a(a+bd—1) +2b°<0, B=a+bd+1>0, (|8]<2) (6)
case II: a+b0—1=0, ‘ : )

§ 1. Limit cycles of case I

Theorem 2. There is ewactly one limit cycle for system (4) which satisfies conditions
(5), (6) and 0<0<2,

Proof It is easy to see that 0(0, 0) is an unstable foous, and there exists at loast
one limit eycle surrounding it. We shall prove the uniqueness under conditions ®)
and (6). : |

~ Let
wv=v, p=l?+ds—@A+2)Y,
then system (4) becomes '

do
'&"t——p:

dp _ _ | _ 2 _a(lw+9) p?

9 _ o (1-+az) (1+0) ~b (i +8w).+[8+(2l+b)a: it o+ b
let again

w0, U=
‘ ’ 14

we have

do du oy e (latd) | _ o(w+d)

B ui+e), Gp=—o(l+a) 20202 td) 4 [o+ (@l+b)a—7 Ju ®

14w
finally, we leb :

(e @b)s (D) 5 dE 1
e=o, Y= u+J0 (1+8)2 . ds, pr 1+m’
then we have
do _ _y— 9y _
=y F@, =9, | ©)
where
@ a+bd+1 \? __'ra+(2Z'+b)s+(z+b)s2
9@ ="z (1+ 2 w) » Fo==), A+s)? . A
. : 2
It is ovident that zg(s)>0, @+0 and if f(2)=F'()=- 5%(21?):5{;;2(”6)5» ,

then f(0) = —3<0. Furthermore
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ATF@ T 1 Sy S { 1+¢+1)26j—1w
Ly |-l @ <“’)g"””=? —wra

where

w(®) _._, (l+b) (a+b8+1)a;3+ [Z(a+b‘o‘—l—1) +(l+b) (@+88)]a*

2 @@+t ats, B o)

From (5) we have - ‘
a>0, (2+b3—1)?=4b(~3), (11)
hence S ! .
: >8>0,
and from (6), we have - R SEREE
a+b0—-1<0
and since ¢+58+1>0, we have A
_ | | ‘ N
BrE=T =y <-1.

It is easy to verify that the straight line w= —1 is a line without contaot and
limit oyoles, if exist, must lie in the domain &> —1, and then could not have any
separatrix which is termmatmg and beginning on non-elementary singular point.

Since N ’
g s 2(21+D) 4(1+b)
[0+ (2Z+b)w+ (l+b)w] - E%H—S P ¥ +(a+b§+1)2
S aebd—1 9 ‘
we have , -
4(1+0) —2(2+b) (a+b8+1) +3(a+b3+1)2<0,
or
4(1+0) —2(20+b) (a+b3+1) +43 (b +a) <0,
hence ’ L R

—3(b-+a) >Z+b——1-(2l+b) (a+b3+1),

| —20(b+a)y>b-2A(a+b8) ~b(@+b),

© b(e+b6—1)>—2a(1—98), o (12)
From (10), we have SR

w' (@) ——(Z+b) (a+b8+1)w2+2[l(a+b8+1) +.(+0) (a+bd)]s

R4 8(a+b6+1),

and the roots of equatlon w (a:) —Oare
| = 2[l(a+b8+1) + (148) (a+b8)] —~/4 -,

= 80+0b) (a+b6+1)

and
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-—2[Z(a+bb‘+1) +(1+b) <a+ba)] + f
3(Z+b) (a+b8+1)

Po=

where
4= 4[Z(a+68+1) + (l+b) (a+b8)]2 98 (Z+b) (w+68+1)9 ®)
Tt is evidetit-that ~ S N ' o R
a:1<m2<0 ,
and w(x) has a locally maximum: value and a locally minimum value at o=, and
% =w,, respectively, furthermore :

. _ - ’w(wi) >fw(w2), S L
w(zcz)———[l(a+bb‘+1)+(z+b) (a+b$)]w2+8(a+66+1)w2+8
Let us consider

Y (@) ————[l(a+ba+1)+(z+b> (a+b'o‘)]a> +8(a+68+1)w+b‘

¥ (@) =-—[Z(a+b‘o‘+1)+ (+b) (a+b§)]m+6(a+b‘o‘+1)

The root of equation Y (z)=01is

80 (a+b§+1)
2 (@+066+1) + (Z+b) (@+b9)]’
and () has a locally minimum at o=t . '

[Z(a+b<‘3+1)+(l+b) (a+ba> —83(b+a)] |-

L= —

(o) = z(a+b6+1)+(l+b) (a-+02)
Since

a (Z 6) >0,
we have
--b‘(lb—l—a) > l(a—i—bS) ,
and therefore - L
Z(a+b8+1) + (Z—i—b) (a+b‘o‘) 38(lb+a) >T+ (a—l—b&) (2Z+b —380)
—-b(a—l—bB) ~l(a+b8—-1)>0,
hence
w (w2) = (wg) = (@) >0,
Furthermore
w(=1) =2 (—8) (@+1D) -+,—§+<z— 3) +—%<aj+,ba—1>,

on account of (12), we have

w( 1)>——(l 8)(a+68)+ (l 8) a(l 8)-——(2 ‘o‘)(a+3b8+1)>0

Thus o
‘fw(a;)>0 o>—1,

)| 1 A<0 ‘then’ o' (z) >0 and w(z) is an mcreasmg func‘mon, in order to prove 'w(a:) >0 for o> --1 it
is sufficient to show that w(~—1) >0 as below. : : :
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80 that

[géwg ]>O o>—1,

and by Theorem 6.6 of [2], our theorem has been proved.

Theorem 3. There is no limit cycle for system (&) which satisfies conditions (5)
(6) and 6<<0 or 6>2,

Proof 1If |8|>2, then the elementary singular point O (0, 0) is 2 node, and there
is no limit cycle surround it. In the case §=0, from

By= 7 [m (1-+n) —a(b+20)] =~ Z[+a(b+2D)]<0,

implies O (0, 0) is a stable focus, and if it exists some limit cycles, the number of them
must be even.
But, in this case, (10) can be rewritten in the form

w(®) =_%_(z+b) (@+1)a2[a+ 2(1(a+1) +a(@-+b)) ]

@+b) (e+1)
and (12) has the form
b(e—1) > —2dl, ' ' (13)

'We observe

2[l(a+1) +a(l+b)] 1 1\ 2

EDICSY —1= —(Z—_I_-b-)—m[l(a—l—l) +2al+ (@—1)b]
and by (18), we obtain
2[0(a+1) +a(@+bd)] l(a+1) I =
R Y CEE ) B (E= I CE= I X2

Hence

'w(a:)>—-(l+b)(w+1) 2(x+1) >0, for o>-—1,

- In other words, there is at most one limit cycle, if it exists. This contradiction shows
that there is no limit oyole for system (4) in this case.

Now, we divide our remaining proof into two parts, when —2<8<0—I+5<0
and I+5>0,

(1) Case 14+ 0<0,

Let

—y—F@)=P(z, y), 9@ =Q(s, )

and if I" is an arbitrary limit eycle of system (9), then

~§ (2P LR\ £ (+B)a+@+bo+d 4 _o(@) '
D=4 <-a;+"é§j)d"’5£p N CE dr=4), T @4

where

(@) = (1+b)2?+ (2l +b) w490, : (15)
In the case I +b=0, v(s) =lw+d=I(z+1) — (I-8) <0, for #>—1. And in case I+b
<0, the root of equation v’ (x) =0 ig
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oAb gy b g
(%) IR (7= R (16)
and it is a locally maximum point of v(x).
Since a+bd+1>0, if —2<3<0. Hence
-2
P s

furthermore
v(—1)=—(1-0)<0,

Thus v () <0, for #>—1, so that D<0, for #>—1 and then there exists at most one
limit oycle, which leades again & contradiction as above. Thus system (9) and therefore
system (4) has no limit cycle.

(2) Casel+b>0, _

If —2<8<0, as we have showed above, a+b3+1>0, and again

—2 : :
a+bd+1 . '

(a) If (204D) (a+bd+1)— (1+b) <0 and if I" is an arbitrary limit oyole of the

system (4), I'* is a limit cycle of system (9) which corresponds to I', then

p-§ (L+8yi§, (55 +%§.)dw—;g%r—1- 9@

- u(@)
T (AH4w)? dr, @amn

<-1

where

1+ 3 g U+b
w(@) = — LY (@83 1)at+(2+D S e+, - (18)

o) — 3D (b5 1)a? I
w (@) = — 28D (a3 +1)af + 2+ <0 (19)

and

(D) (a+b3 D) b
u(-D) =G (2+0-arr)

1
-m[(“rb)(lbﬂ) (21+b) (a-+b8+1) +1+b+8(a+b3+1)]

e ead R (1—8) +5(1—8) +3(~0)’]

=8 ya
- (a+b3-+1) +b2+18]

-3 [_ 1 _
<'a+ba+1[ (a-+b5-+1) — 5 a(a+Dd 1) +1]
-3 [—(a:+b6+1)—-%-a(a+b6+1)+Zb+a] |

T a+bd+1
-0 [ , 1 1 na
=_m8—._»‘-_—f[—-(a+b8+1) -Q-a(a.+b8+_1)+z-(a+b8+j) ]
~ 128 (o—b3+8) <0,
)
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Hence D<0, for »>— -1. It shows that system (4) has at most one limit oycle and it

is impossible,
(b) If (20+0) (a+b5+1) — (I+b)>01and if I" ig an arbltrary limit cycle of the
system (4), I'" is a limit oycle of system ©)) Which corresponds to I', then

D=§; <aa; 33) _35 <6a; Q>d7 (2Z+b>§ g(a:)dfv

©) o
™ (12_:;) ) d'v', ' : o . (20)
where S o
2(@) = —(21+b) @b+a)a®+[14-b— (21+0) (a+68+1)]m2+8 @)

In this case 204+-5>>0, the roots of equation 2’ (w) =0 are ;=0 and

20(20+8) (a+b3-+1) — (l+b)] <0,
T —8(2+b) (lo+a)

they are the locally maximum pomt and locally minimum point of the function 2=

Ly =

z(m), respeotwely, and
2(m) <z(my), I o (22)
2(w;) =2(0) =5<0, - | (28
It is easy to verify that | S
o 2(—1) = (1—8) [5(2h+b) —1],
and on account of the fact that
o<l ”3 (a-+B5+1) ~bo~1— 2b8——(a+b8 1)(68 _1)

—-12p8— L (a+b<3 1)2 a(a,+b<3 1)

=1—2b5—25 (1—9) +_—2—a(a+b“o‘—'-1)<1—2bb‘+2b&—2bl—'b”=i-—b(21+b),

we have :
2(—-1)<0,
Hence
" D<O0, for o><1
and as we have indicated above, there exists no limit oycle.

§ 2. Limit cycles of case I

Theorem 4. There is emctly one limit cycle for system (4) which mtzsﬁes conditions
(B), (7) and 0<d<2, . :
Proof The proof is sn:mlar to Whlch we have stated in the proof of Theorem 2.
We shall begin with system (9). We notice that [=8>0, ‘¢+b0=1 in this case, and
hence a+66+1 =2, We also have
zg(x) >0, #+0; £(0) = -—b‘<0



