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-Abstract

In this paper the author discusses a problem of Chebyshev approximation by linear
alternating families with fixed values at nodes and gives the analogues of all results for the
classical Chebyshev approximation, which include the theorems on existence, alternation,
uniqueness, strong uniqueness and the continuty of the best approximation operator, ete.

1. Introduction

Dunham™# congidered an approximation problem by alternating families with a
fixed value at an endpoint. In this paper we disouss this problem by linear alternating
families with fixed values at some points (called nodes) and give the analogues of all
results for the classical Ohebyshev approximation.

Let X be a compaoct subset of [@, ] containing at least n+1 points, where n is a
fixed natural number. By C(X) we mean the usual Banach space of all continuous
real-valued functions defined on X with & uniform norm |f| =max [ f)].

Given Xo={&y, *:*, 2y CX (m<n), lot K be a subset in C[a, ] having the

property: For each element p€ K
| p(@) =, =1, 2, -, m

where the o’ s are constants. We need the following two assumptions for K

(a) For each element p€ K, K —p i an (n—m)—dimensional subspace;

(b) Every non-zero element in K —p has at most n—1 zeros in[a, b].

The Chebyshev approximation problem is to ﬁnd an element pEK for given
JEC(X), such that

If -2l = inf Ilf ql.

Such an element p is called a best apprommatlon o f from K.
We follow the approach in [3].
Definition. For fized f€C (X) and an arbitrary dement PEK define
Xu={s€X: f(o) —p@)=|f-n[},

Manuseript received May 22, 1981, Revised November 18, 1981.




228 CHIN. ANN. OF MATH. Vol. 4 Ser. B

X1~ {0€ X: f (&) ~p(®) = ~ |f—p[},
X =XnulUX -1
L, 2€X,,UX,,
0@ =
-1, #€X_,UX,,
By the definition, in the case # € x 0, 0(®) may take the value either 1 or ~1,
2. Main Results .
The existence of best approximations easuly follows from the uwsual compacteness
arguments.
Theorem 1 (Existence). - For each f€O(X ) there ewists @ best approvimation
PEK o f from K.
First we establish the following simple result,
Theorem 2. If pE K and- a < ~ -
then p is a best wppromma,tfwn to f fa"om K. ‘ ' -
Proof Since for any gEK

If —¢|>max |f (@) —g(2) | = max |f (@) —a]
and the condition (1) implies
|f =l =max |7 @) —p()| =max lf (fv) -P(w) | = Imax If (@) —ml,

we have
lf-pl<lf- qM, VeEK,
Next if we compare the setting in the present paper with the one in [3], we can
see that the former may be considered as a special case of the latter in which = —oo
and u= +-oco, Thus in the setting of the present paper K is the same as M, in [31.
Furthermore, from the proof of Theorem 8.2 in [8], we can see that Theorem 3.2
still holds if every non-zero element ¢ €K —p has at most n—1 zerog in fe, b].
Fortunately, it is just assumption (b). So we have the theorem which is similar to
Theorem 3.2 in [8]. , '
" Theorem 3 (Oharacterization) Let fEO0(X) and pE K. If
- X,N Xo=0, o @
then the followmg thfree statemenis are equivalent to each other:
(a) pis a best approvimation to f from K
(b) The origin of the (n—m)-dimensional Buclidean space belongs to the convew
hull of the set of (n—m) —tuples {o(@)z:s€EX 2,}, where &= (P1(@), **, bpom(@)) with a
basis s, ++, Pu-m for the subspace K —p; |
(0) There ewists an alternating system, 4. e., a system of n+1 pomts in XpoUX,
bi<ba<on<bpy ' )
satisfying
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o) = (=D (fy), j=1,2, -, n+1,
if the values at &,€ X o are appropriately chosen. . e :
Proof (a)=>(b). Suppose 0€the hull of the set {o(2)2: ¥E X oy« Since. X, ig
compact, by Theorem of Linear Inequalities [4, p. 19] there exists an element g€ K
o(@)g(2) >0, Vo€ X,, 1))
We will show that there exists £€ (0, 1] such that |f—r|<e=|f— p|, where
re=p-+id, | | | | »
Let y € X,. From (4) it follows that ' '
F @ =ri@) [=1f @) ~p(&) ~1g @) | = |£@) ~p(a) | ~¢]¢(®) |,
if both ¢>0 and |s—y| are small enough. So there exists a number ty€ (0, 1] and a
neighborhood N, of the point y.such that o
_. lf(w) —1:(@) | <e, VIE O, t,], Vo€N,, - _ - ®)

For ye X\ X, we seo that |f(y) ~p(y) | <e. Since ry—>p as t—>0*, there also exists
& number ¢,>0 and a neighborhood IV v Of y such that (5) is valid.

Now from the open cover {N,} of the compact set X we may select a finite
subcover {N,,, -, N,}. Taking the minimum of the corresponding positive numbers
Yy ***s by, denoted by ¢, then 0<#<<1 and

|f @) —ri(@) | <e, Vo€ X,
Hence [f—r;|<e. This is a contradiction, because ¢ € K —p means g=g¢*—p for some
¢"€ K and ry=p+tig= @L-D)p+ig*€EK. '

(0)=>(c) and (c)=>(a). Substituting K —p for Mand using assumption (b) for
K —p ingtead of the assumption of Haar subspace for M, we can repeat word by word
the corresponding parts of the proof of Theorem 8.2 in [8]. ' .

Theorem 4 -(Oharacterization). Let fE€O(X) and pEK. Then p s a best
approwimation to f from K if and only if one of the following two statements is valid:

(a) X,NXo#0; R |

(b) There exists am alternating system.

From the proof of (c)=>(a) we can conclude the stronger result: If p€ K hag an
alternating system, then it is the unique best approximation to f. But Theorem 8 shows
that under condition (2) for any f its best approximation always possesses an alterna-
ting system. Thus for any f€C(X) it Possesses the unique best approximation under
condition (2). : : .

Theorem 5 (Uniqueness). Let fCCO(X ) and p be a best approzimation to f
from K. If condition (2) és valid, then D is unique.

Theorem 6 (Strong Unigueness). Let f €C(X) and p be o best approvimation to
f from K. If condition (2) is valid, then tnere exists & constant 7>0 depending only on f
such that for any ¢€ K ' '

—p such that
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If—al=1f—pl+vip—g]. (6)
Proof If |f—p| =0, f=p. In this case we only need to put y=1 to satisfy (6).
If |f —p| >0, by Theorem 3 (b) there exist r positive numbers §; and r points
¥ € X, such that

r

SV 0i=1

6=1

' ’ 1
‘=21 0‘0‘ (yi)¢!(y¢) =OJ j=11 2: °ee, B,
By Carathéodory Theorem [4, p. 17] and assumption (b) we have r=n—m-+1. Now
for any A€ K —p and |4 =1

and

n—m+1
¢=E1 Oio (y) h(y:) =0,

By assumption (b) the numbers o (3:)%(y:) are not all zeros. And from ;>0 it follows
that at least one of the mumbers o (y:;)h(y;) is positive. Hence max o (y)A(y,) >0.
[}

Noting that the set H= {h€K —p ||h" =1} is compact, we obtain
p= min max o (y) h(y) >0,

Now let ¢ €K be arbitrary and q¢#p. Then (p—¢q)/|p—¢q| EH by assumpmon
(a) and there exists an index ¢ such that

o(y) (p(y) —g (@) =>v|p— QH
Since o (y3) (f (4) —p (W) = | f— -],
If—q| >c (¥) (f W) —q @) =0 () (F (o) — P ((%)) +a(y) (p (?/4) —q ()

=|f-pl+7lp—ql.
The continuity of the best approximation operator is a consequence of the strong

. uniqueness by the proof of Theorem 4.4 in [8]. So we have

Theorem 7 (Continuity of the Best Approximation Operator). For each fEW
={f€0(X): X,NXo=0} let ©vf EK be the best approwimation to f. Then the best
approzimation operator v is continuous in W and for each fEW there ewists @ constant
A>0 such that|zf —vg| <A|f—g|is valid for all gEW,
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