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Abstract

In this paper, the auther defines “orders” and corresponding Borel directions for mero-
morphic functions. Refering to the method in[1], construct the meromorphic functions with
given Borel directions. Therefore, the author extends Yang Le and Zhang Guang-hou’s
theorem, and affirmatively answer a question posed by them.

Definition 1.
eh=Ingr=r, e =ek, In,r=In(In,-1i7),
Definition 2. Suppose that M (r) and h(r) are positive Functions on [a, o) and ;
that lim M () =lm h(r) =oco; If

rer00 P=r00
m— InM(r) —Ingr _
hm == 0w P

where 0<p<co, then M (r) is called & functuon of order p with respect to h(r),
Definition 3. If the characteristic function T'(r, f) of meromorphic function
F(2) is of order p with respect to h(r),then f(2) is called @ meromorphic function of
order p with respect to h(r). |
Obviously, when h(r) =r, the order in the above definition is the same as the

ordinary one.

Definition 4. Suppose that f(2) is @ meromorchic function in the open plane. A
half line arg =04, 4s called a Borel direction of order AM(O< A< 00) with respect to h(r),
if the equality '

IRT — ]nn(fr, 0,, 9O, .f=a')}____
p (B, o) =1Lim {hm — Inh(r) >

holds for all complex number o except ab most two complex numbers, where n(r, 6o, 6,
f=a) denots the numbers of zeros of f (2) —a in the region (|2 <r) N (Jarg 2—bo| <o),
counted according to their multiplicities.

A half line arg 2=0, is called a Borel direction of order zero with reapect to &(r),
if p(fo, &) =0 and

(o n(r, 00, 8 f=) | _ ¢
?i%{ll’f h(r))? }’+°°
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~ hold for all complex numbers o except at most two complex numlers.
Definition 5. Suppose that K is a non-empty bounded closed set of real mumbers,
and that p(0) is a functzon on B, zf the inequality
11m P (0 ) <P (90)

. BEH , L
holds for any 6, EE then we call p(8) an upper semi-continuous fwn,ot'wn on E.

In the following, O and K denote constants and they do not always denote the
same numbers when they ocour,

Lemma 1. Suppose that h(r) is @ non-decreasing positive function on [a, co) and
h(r) <In*r(0<k<oo), then there ewists ¢ segueme {rs}, lim ry=00, such that

h(rd) <O%h(rpy (n=1, 2, ).
Pfroof If the conclusion of lemma were nob true, then there Would ex1st b=a
such that for r=b we would have h(r?) >9"h(1')
Put ro=max {b, ¢, 2},
where ¢=inf {r |h(r) =2}, then we would have &
In*r§* =h(r§") =9k (r§"™) 9% (rd*) = 29%h (1),
Therefore : _ . . L ‘ B
 h(ro) 97" In® 1§ = 9~ 8% In¥ g = 8% Inir,,
Bui '
h(ro) =2 and lim 8" In* ry=0

Lemma 2. Suppose that k(r) is & non-decreasiong positive function.on [a, oo), I f-
there exist two sequences {w,}, {Un}, and hm &, =1im g, = oo such that .

n—o0

h(z,) >1n"+1 &, (0<K<o0),
h(yn) <In*y, (n=1, 2, ,".)»’ “
then there exists a sequence {r,}, lim 7, =0 such that

- h(rd) <Oh(r,,.) (m=1, 2, «+;1<e<0),
Pfroof For and fized M, there exist n, and n’ such that

Wy, >max {m, @, '}, Yy >n,
Let

E={o|h(s) =In*o; o<y, },

Tm=sup {&| %€ E} >, >c*
Since In**4 ig continuous and A(r) is non-decreasing, we have rmCE. Therefore

0"y > b (Yo) Zh(rm) =" 1, |
Consequently

hrm_ bt

Yo > >,
Since r,>1, we have v3, € E,

Therefore
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h(rh) <In* oyl <8 In**+ 1y, < Oh(rm).
Lemma 8. Suppose that h(r) is @ non-decreasing positive function on [a, oo) and
h(a)>1, hm h(r) = oo, then thea”e ewists a sequence {a;,.}, hm @y = o0 such that

1) fo'r cmy <L,

P TYVION <%t STy
2) = L
2, 1+
h(w”+—m><h (m,,),
where o )
i n-..= 1, 2’ -oo.
Proof For every fixed n, we take sufficiently large r such that
Inh (’I‘o) > 36n, 4
Let

r1=1nf{frlro<rr<oo h(“']nh( )) +“ (r)}

(When fri—- oo, Lemma 8 holds ewdently)
We take ry (r1<r1<ry+1) such that

L 2y . 1+-};

and
')‘1<"I‘1+2’I‘1/111h<’7'1+1> <Z1'(1+T:8£77)' I.

Lot ri=mr+ Ai, Where dy= 24*1/ In h(fri)
Obviously

7‘1<-—————-———-]nh( D <A:L< 181

We can choose sequence {fr,,,}, {rn}, {ri} and {da} such that they have the following
properties ’
P STa<Tn <t
’r;n—'fm<2dm; A =¢;ﬂ:—’rm;
' 1 1\?
!
P <Tm* <1+ 18n )<frm (1+ EED) )
L. 2¢m ~ 1+'ﬁ'
k('rm) h(”‘m"“ ]nh( m) ) h (¢m):

where
m=1 2
and

' 1+1
h(r—}— ]nh( ) )<k (r), for rEU(fm, Pirt), |
If there exists a fixed positive number M for m>M such that

Tu=Tmtl,
where
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Tm=sup {a’—l—ﬁ(—q‘)— lm<¢<ﬂn},
then | :
Th<fme (1+ 1; )<rm(1+-i%'-) <';:m—1<1+—1_§7;)2
<rar (1 gy ) (112 )

<o (b gg) <)

Moreover, since

1\ m-x
RSB (1) SHF (1) e 35D (1),
we deduce that

lim A(r},) =00, lim r;,%oo_

Mm—roo M~roo

On the other hand, we have for any m>M
' r 1o " | /o !
Tmi1—Tyaa=m ( U [ri, 7i4a] ) =m ( U ['I‘ﬁ, Z¢+_1] > +m <‘=&J+1 [Pee1, To41] )

=M+
m

<m( %{J [r, Tt])+2 2 s,
‘ According to the definition of 7;, for every ¢ in the above ﬁrst term, there exists a
sequence {r;} such that

Ty STy<rigy  (J=1, 2, «-2), |
Hm ry-+ry/4Inh(ry) =7e<the +rier/4 0 h(rig-1),

where #(%) is a positive integer whidh depends only on 4 (M<#(3) <<3).
Therefore

m

1 'rt(i)
=i, o oot gt ]) 0 5

m

( ["’t, ) m]) t%24t<52 ’l‘t/41nh(’rt—1)
5n,(1+1/18n) d { (141/18n)2
Inh(ry) £m 1+1/n
The contradiction shows that there exists a sufficiently large m, such that
Tt Trmo—t > Ty >+ (L+1/h(a))

} <K <o,

Let
T =sup {fr +

r ' :
—_——_—-—4 ln k(q‘) Tmo—1<r<'rmo }‘

Obviously y> 7, 1.
Ohoose @, (1,—1 <@ <Tm,, now (2) holds for a;,..) such that

'rmo—-l
Y= Tnh(ry ot

Thus, we have for any r<u,

4111h( "

r Dy N 'r;no--l
" ImA) Ot ImAGy T Thiry <o TmhET
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Lemma 4. Suppose that (1) h(rr) isa fnon-decfrewsmg positive fwnctwn on [a o0);
(2) the product
,.11 kl] (14 o) ™*; lim Pm=D,
(O<P<°°; 0<ank<1; n=1} 2) 3} oy k=1} 2: "':. Kn; 1<Kn<n; mnk a’)’e POS?:t'Z:’UG
dntegers.); (8) the complew sequences {Gu}, {bu} satisfy limla,,,,[ =00, |ay| =1, h([a,.kl)
>1 lank an’k’l >4(n#n Vk%k’) arg bnk“a’rg gy == onk; lbnkl =
Under these condfbtzons (&) the infinite pfroduct

fo=1 fietogey™

n=1 k=1 , _ b”k

defines a mefromwph/ic Sunciion on the open plane P; (b) V8>0, 34>0, when |2 >4

and |2—b,| = we have |f(2) —1]<e,

h(l wl)’
Pfroof (a) Let O be the domam |2— b,,,k[ < T=TS (l | ) - and (7,,;6 be the olosed domam

|2— by | < 7 (l a ) On the closed domain
D- P- > Eonk,

n=1 k=1
we have _
: bnk_ank ank A
< h =
+ | BCJa]y () e

Since i 2 ot i8 cOvergent, the product (1) is umformly convergent on D
n==1 k=1

Honce f(2) is a meromorphm function on D. If 2€ C,y, the product f (#) is meromor-

phic on C,,since H (2) = (1+ éi‘.zi"—‘:&g"—'ﬂyw is meromorphic on C,y and f(z)/H (2)
U . ,

is holomorphic on 5,,,,6,; (b) when |2— b | =1/h(|@u,]), Wo have

T 1 (1 Lo )™

n=n, k=1 2— b”k
ng+T Ky bor—a ne+T K, a -
= SV SY o, LB T H(_—E"—k>
n=ng k=1 Z_bﬂk n=ny k=1 L— 0y
no+T Kp o4+ T m
2 E Mg+ + 11 H 0 Ipﬂrl'!'/ Dpp-1—1
n=n, k=1 fi=no k=1

Siene p, is convergent, there exists 4;>>0 such that however large 7' is, we always
have |Dnysr/Pr-1—1] <&/2p for ny>4,
Therefore, we have, for a ﬁxed N>4,

ank Mk 1 l
W= kel <1+ — b,‘k <%

Let b=max{[b,.k| |[1<n<N, 1<]o<K,,}.
'We have, for |2| >4y=2(py-1—1)/e+Db,
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N-1 — G\ _ ‘

,£=I1;£[<1+ 2— by ) —1

N-1 En ank N-1 Ep a”k
e 11 "Y<lpw-a-11/(l2| =B <.
n=1 k=1 I | n=1 k=1 -

For any >0, we choose successwely 44, N , b, Ag, such that we have, for |z| >4, and
Iz—b»kl>1/h<lankl)

@ -ti<|Ti i (1+-Lese )™ | s+ < [ @ram)™) -4+

n=l k= Z— b,,,k

<p-A+B<e, :
Theorem 1. Suppose that h(r) is @ non-dereasing positive function on [a, o0)
satisfying lim h(r) =oo, that E is an arbitrary non-empty closed set of real numbers(mod

2m) and that p(f) is an wpper semi-continuous function on H, 0<p(§) <oco. Denote po
=max{p(0) |6 € E}. Then there ewists & meromorphic function f (2) of order p, with
respect to b (r) on the open plane such that oll the half streight lines arg 2=0(0EER) are
Borel directions of order p(0) of f(2) with respect to h(r) and f(2) has no other singular
direction,

Proof We divided successively the open plane into equal parts by the rays whogse
vertices are at the origin. In the nth step, we divide the open plane into angular

"domains by n rays arg z=£~%a-v—( §j=0, 1, 2, «-, n—1). I for some ray arg:z= 27;:7"’

both of the closed domains E{jgg—_ll”i<arg z<'g%f‘ and 23;2“ <arg #< 2(j0: o

do not contain any point ¢ (9 € E), then we reject this ray. Suppose that the remained
rays are denoted by Ly (n=1, 2, -+ k=1, 2, Ky 1<K a<n), and whose arguments
are denoted by .

(1) Suppose that h(r) satisfies the condition in Lemma 1 or Lemma 2, then there
exists a sequence {,}, 7}_1)21 @, = oo, such that k(a}) < Kh(w,). We select a subsequence

of {z,}. for convenience, let {z,} still denote the subsequence for which @, >max {#_;,
n+1} and _
b ( wﬁ) > {2 [h (%2‘_0] ln(n—.‘!.)} In{n4-1) >on ln(n+1). ( A)

Put
mmaxfo (@) 0€ B, |9-0u| <22},
Inn, Inn< plp<oo,
P =1 Pris 1/In(n+1) <pw<Inn,
1/In(n+1), 0<pa<1/In(n+1),
_ [ (o)
'm'nk"'[ n ];

where [#] denotes the integral part of @.
Let Q= mﬁew”k;




No. 2 MEROMORPHIC FUNCTIONS WITH GIVEN BOREL DIRECTIONS 237

bus= o2+ s Jeo,
where a,; is the same as in Lemma 4.
Therefore

f<z>~n If (Z=gm)™

n=1 k=1 \ &— b”k
is a meromorphic function on the open plane, and when |2| >4, |2—by|=>1/2k(s?)
we have |f(2) —1| <e so that if =140 (0#0), we have

L |\ f(z')\,- 2
F@)—a (Z) |f (@) —1-0]|
Qpy; — bnk . 2
"G—aw) =B | TOT—1f @) —1]

Sy Ly . Ibnk—ankl : 2
(EZ“" Iz b * (|2— bnkl"lb»k_“nkl)> IC]—s

<0 K
Ka 21 kgl My ""_g‘&"—<K 2 ?J mnk°2“nk<Ka<°°
2h(ad). ‘
When a1 for sufficiently large n, by Rouche’s theorem, the difference between
the number of the zeros of f(2) —a and that of the poles of f(2) is at most a constant
N,. '

Put n,=max{n|vi<r}, py=max{ou|1<i<K,}.
From  h(a31)* <h(a?.s) ‘“‘”‘”<%h(wﬁ)m1+_1><§ had),
we have : ,
Man)™ <n(r, f=0)< Bh@Dm<M@Im<ID™, (@B

T

Hence 2f(0) +0, 1, oo, choosing some b, suitably, we get 2f'(0) 0. By [2] we
obtain
T(r, £)<T(r, 2f)<a{N<R, o)+ (B, 2 )+1 (B, )

" oF P BF—1
e JHOTNFODY
<0 fofr+ ]n1h( ., 2= )1nr+2n§N1nfr+1n2'r+Kf},

where K is a constant dependent on f.
Therefore, when

Y C (1 )<'r<'r+ <a>,,
-1

1
41nh( ) h(@o)’

we have
T g,'rf) <C{nlr, fF=0)+o@)a(r) )< (O+o(L))h(r)em

when
1

_— g
“"”<¢<T+41nh(a~) <,
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we have

T(Tl f) T Prr ‘3 Ny K Py Prgy
s <(O’+o(1))h<r+ B (T)) <O (@) <O ()< Oh(r)™,
In the above two cases, all sufficiently lange r are considered. Moreover, since
3 7 7 2 n
-}i(%:—)—p—lnw,%QO’-E@q:—)i— 1nm,,<0—iigfw-;‘2—p—]nm,,<0n(wﬁ, F=0)In,

<o 2. £=0) 4 <ON (i, f=0)<OT &, 5,

we have : ) _
w InT(r, f)=Insr _
b ==y,

(2) Let 6,€ H, Suppose that &, is an integer such that |G, — 6ol <%75-' and when

-gg-<8, we have for sﬁfﬁéienﬂfr‘ laige n

(e, Gy, 8, f=a)=(h(a})Pr— N} /n=> (B (@a) o4 — N) /mz> (Ch(@3) o — N )/n,
By the definition of pi,, We have pi;k.>p(90) . Combining this inequality with (A),
W seo that p>p (8,), where p ig the order of direction arg z=0, with respect to h(r).
- -For any &0, there exists 8>>0 such that : o

Pr= maX{P:pkl | O — 0o <_'g', _ %W—<8}<p(60) +a,

When n is sufficiently large, we have, for o,<r<r +71,%7<m2’

5 . 1 8 o\an
n(/r, b g f—-a)<n(¢+-——-——h(¢), 6o, 5 f_o)m,N
| <?h(T woy) |
<3 () P+ 2V < Oh () 02N <Oh(r)™+n2N,

R 1 1 e 1
and we have{ for -1t 3C <r<r+ R(r) < h(a?)’

n(r, Bo, -g—, f= a) <n< r, bo, v%, f= 0) +nZN <2h(r)P+nilN,

Combining this with(A), we obtain that the order p of the direction arg 2="0,
with respect to ~(r) is less than p(Bo) +-&. ‘

(8) Let 6,€ E. By the properties of Oy, there exist >0 and sufficiently large 7
such that there does not exist any ey in the domain( |2—fo| <) N (|| >n). By Lemmad,
for sufficiently large 'A(>n), we have -uniformly |f(z) —1]<e in the domain

(Iz—90| <—g-> N (|2 >Zl) . Hence arg z=0, isn't a singular direction (we see that 1 is

unique asymptotic value of f (2).). _ : _

(4) If h(r) does not satisfy the conditions of Lemma 1 or Lemma 2, i. e. for any

K and for sufficiently large r,we have h(r) =’ r=>lim In, v

lim ——}-b—(m—)-=0. Then by Lemma3,
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we can choose a sequence {@,}, 1:_1):: @, =oo such that
Wont ) <OR*™ ().

Taking ,+,/Inh(z,) instead of &} and @,+2w,/ Inh(w,) instead of #3, we can
obtain desired results with a similar method.

It is easy to see that when A (r) =r, Theorem 1 is Theorem 2 in [i].

At the end of [1] the authors posed a question: “For an arbitrary, non-empty
and olosed set of the rays whose verteces are at the origin, is there a meromorpic fane-
tion f(2) whose set of Julia directions is exactly {arg =00 € E}yand for which T (r, f)
<@(r) Inr (for sufficiently large ), where p(r) is a given, non-decreasing real function
such that %133 @(r) = +00?” Clearly Theorem 1 gives an affiirmative answer when we

take h(r) =g(r) and py=max{p(f) |0 € E} <1,
Taking account of the definitions in [8], we can also obtain analogous theorems.
Finally, the present author wishes to express his hearty thanks to Prof. Yu Jia-rong
for his prtient guidance rnd to Prof. Yang Lo for his important advices.

References

[1] Yang Le et Zhang Guang-hou, Sur la construction des fonetions meromorphes ayant des directions
singulidres donnéss, Sci. Sinica, 19 (1976), 445—459.

[21 Li Guoping, Cluster line theory of meromorphic function, Science publishing house, (Chinese), p 75. The
second fundamental theoremB, (B').

[8] Juneja, O. P., Kapoor, G. P. and Bajpai, 8. K., On the (p,q)-order and lower (p, q)-order of an entire
function,Jo urnal fir die reine und angew. Math., 282 (1976), 53—67.




