Chin. Ann. of Math.
4B (2) 1983

ON THE TOPOLOGICAL DEGREE FOR THE SUM
OF MAXIMAL MONOTONE OPERATOR AND
GENERALIZED PSEUDOMONOTONE OPERATOR

ZuA0 YICHUN (& X %)
(Northeast Institute of Technology)

Abstract

Let X be a real separable reflexive Banach space, X* its dual space, and let T, X - X*
be a maximal monotone operator, P, X'-> X* a quasi-bounded generalized pssudomonotone
operator or T-pseudomonotone operator. In this paper, We have constructed a topological
degree for the operator(T+P). Asa by product a surjectvity result is obtained. In particular,
we have given a partially affirmative answer to a Browder’s question by using a topological
method (cf., Mathematical Developments arising from Hilbert Problems, Vol. 1 (1976),
6873 AMB)

Let X be a reflexive Banach space, X* its conjugate space. Browder™ posed the
following open question: Let 7', X —>2%" be a maximal monotone mapping and P a
bounded finitely continuous mapping from X to X*. Suppose that P is T-
pseudomonotone and that (7'+P) is coercive. Ts it then true that (I"+ P) is surjective?
An affirmative result was established by Brezis™ if 7' is linear. Browder and Hess™
introduced a olass of generalized pseudomonotone operators which is a wider class than
ones of maximal monotone and pseudomonotone operators. When we investigate the
solvabilities for nonlinear elliptic boundary value problems, nonlinear parabolic
problems and nonlinear integral equations of Hammerstein type, we often reduce the
solvability to the surjectivity of perturbed maximral monotone operators. Therefore,
the constructions of topological degree for the sum of maximal monotone operators
and generalized pseudomonotone or T-pseudomonotone operatore provide useful aid
for the study of the solvabilities of some nonlinear functional equations by using
topological methods.

In the first section of this paper, we construct the topologlcal degree for the sum
T+ P, where T is a maximal monotone operator and P a generalized pseudomonotone
or T-pseudomonotone operator of a teal reflexive Banach space X into X* by using
the topological degree for A-proper defined by Browder and Petryshyn™®, We shall
assume that there is an injective approximation scheme for (X, X*). We don’t assume
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that T and P are continuous. Since null operator is both maximal monotone and
generalized pseudomonotone, and since pseudomonotone operator is generalized
pseudomonotone, our results unify and extend the definitions of the topological degree
for sofme:dperators of monotone typet™ ™, In the second section of this paper, we
consider §ome properties of the degree given by us. Moreover, we will proved the

_ surJecthty for the sum T+P, where T' is a maximal monotone operator and P ig a

generahzed pseudomonotone or T-pseudomonotone operator. Our result of surjectivity
unifies some basio results of the theory of monotone operators'®®%. In particular, we
answered Browder’s question affirmatively if there exists an injective approximation
soheme for (X, X*) and T and P are singlevalued. In the third section of this paper,
we consider the range of the sum of maximal monoteone oprators and generalized
pseudomonotone.er T-psoudomonotone operators by using our result of the surjectivity.
In this paper, we assume throughout that all operators considered by us are single-
valued, For multivalued case, our all results are also true (see [10]).

§ 1. .The Construcﬁon of Geherali"zed
Topological Degree

We give first the concepts of an injective approximation scheme and an 4-proper
mapping™®®, Let X be a Banach space, X* its conjugate space. We shall use the
notations “—>" and “——" to denote strong and weak convergence, respectively.
We denote the collection of all natural numbers by A"

1. I'=({X,}, {X s {P.}, {@.}) is said to be an injective approximation soheme
for (X, X*) provlded that

(1) {X,} is a monotonically increasing sequence of ﬁhite-diinensional subspaces
of X such that p(x, X,)—>0 as n—> oo for each # in X, where

e(w, V) —mf“w y| for VCX

(2) for each n, X* is the conjugate space of X, Where X is taken as a Ba,nach
space with respeot to the induced norm of X, }

(8) for each n€ A", P, X, —> X is the linear injeotion;

(4) for each n€ A", Q,=P;, X*—X, where P is the adjoint operator of P,.
Obviously, | P,| =[P:] =]Q.] =1 and P, and P;* are bounded linear operators, VYn
eN. .
If X is a separable and reflexive Banach space, it can be given that an 1nJeot1ve
approximation scheme I'= ({X,}, (X5, {P.}, {Q,,}) for (X, X*), where {X,} is

an increasing sequence of finite-dimensional subspaces of X with U X,=X and P,

n=l

X,—> X is the injection mapping, i. e., Piw=o (Vo€ X,) and @,=P;.
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II. Let X be a Banach space, Q a given set in X, Let T. Q—>X*, I'= ({X.},
(X%, {P,}, {@}) be an injective approximation scheme for (X, X*). We write
Q,=0NX,and T,=Q,TP,=Q,T |, T is said to be an A-proper mappmg on Q with
respect to I” provided that

(i) for each n€ A", T, Q,— X is continuous;

(i) for any sequence {n;} i CA and a correspondmg sequence {®,}j; Wwith
@,,€ 2,, such that . :
QT Potn,~Quy fl—0  (j=>o0)
for some f € X*, there exists an infinite subsequence {@,,,}%-1 and an element @€ 2
such that @,,,—> %o (5—>o0) and Twe=Ff.

III. Let QX be a bounded and open set, T, 2> X* an A-proper with respect
10 the injective approximation scheme I' and f €T (82). Degs (T, Q, f) is said to be
the topological degree of 7' on 2 over f with respeot to I', as follows: Write 7=
Z{—o0, +oo}, where Z ig the set of all integers. Then Degs(T, @, f) is the subset
of Z given by '

Degs(T, @, f)={r|v€ 7, there exists an infinite sequence {n,} of positive
integers with n;~>c0 such that deg (T, Q.,, @, f)—>7}, where T, =@, TP, and 2,

=QNX,, and deg(T,,, 2., Q. f)is Brouwer degree for mappings of ﬁnite—dimensiona;l
Euclidean spaces of the same dimension.

. Although the scheme employed by us differs from one in [6], it has proved that
Theorem 4.1B and Remark 4.1-1 in [5] remain valid for the topological degree given
above by us (see [11]). _

In this papaer, we always made following assumptions:

(py) X isareal reflexive Banach space with an injective approximation scheme,
The scheme 1" mentioned. above is-assumed.. Further, suppose that X has the property
(B), if w,—> o and |@,|—>|@| With @y, @€ X implies a;,-,—>a:o‘,

(pa) X" isstrietly convex. :

We observe that a locally uniformly convex space has the property (h) The map
J of X into X* given by

Jo={f€ X" (-f, o) = |o|*= llfH"}
is called the normalized duality map of X. Under the hypothesis (ps), J is a
singlevalued, bounded and demicontinuous operator. As for the concepts. of Monoto-
nicity, maximal monotonicity and demicontinuous employed in this paper see e. g.
[12]. An operator P, X —~X*issaid to be generalized pseudomonotone if for any
Wy, moE .D(P) with #,— %, in. X and Px,— ¢ in X* such that ’
, Em (Pw,, @,—20) <0, :
we have Pa;o g and (P, ,)—> (P, @). Suppose that T, X —>X* is an operator.
An operator P, X — X* is said to be T-pseudomonotone if for any ., s& D(P) with.
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@~ and {T'w,} being bounded such that S
o : ' lim (Pw,, w5~ —og)<0, a o
we have Pw,—> Py and (P, @,)—=>(Po, %). An operator P, X ~> X*.is quasi-
bounded. if for each M >0 there is a constant O (M) >0 such that whenever « € D(P),
(Px, ) <M|o| and |o]| <M, it-follows' that | Px|<O. It is known easily that the
gum of finite number of quasi-bounded: operators is also quasi-bounded. If 7', X — X*
is monotone and 0€ IntD(T"), then T is quasi-bounded™. An operator P, X —>X* is
said to be finitely eontinuous or D(P) if for each. finite-dimensional space X,C X,
T | oy, i8 Continiious from thé strong topology of X into the weak topology of X*.
This concept has been involved in the definitions of multivalued pseudomonotone
operator and the mapping of type (M). Of course, we need naturally it when we
consider singlevalued operators ‘We observe that a demicontmuous operator mugt be
ﬁnltely continudus. : e S SR
."Remark 1. Our definition of . the ﬁmte contmulty sl1ghtly dlﬁ'ers from one
gwen in [6]. ' : :
Lemima 1. : Let T, X — X* be a ‘monotone opemtor and P, X —->X* a quasi-
bourided operdtor. Supposethat {w.} and {(T+ P) w,.} are both bamwleol fwzth {w,,}CD(T)
D (P) . Then {Px,}:is bounded. Ce : -
Proof First we assume 7'0=0. By the hypothes1s, there ex1sts M350 such’ that
|| &y |] <M-and: || (T +P) @' <M for any n€ A", From the monotonicity of T, we have
el e (Pay, &) = (T +P)as, m..) (T, @) e
<((T'+P)a,
~ Bince P is quasi-bounded, | Pa,|<<M; Yn€ A", et e
- Next; 6t Tyw=Tw—¢ wheniT0= g=0. 80 710=0. The' boundedness of {(T + P) a;,,}
1mp11es that { (T1+ P)#,} is also bounded.. Hence, {Pax,} is bounded. - ' .
Lemma 2. Let T;: X ->X*Dbe a mawvimal monotons operator and: P, X > X*
finitely continuous operator on D(T) N D(P) (#¢). Suppose that X , 48 a finite-dimensional
subspace of X and that Q. X*-> X 4s a continuous operator.. Then Q,. (T +P) X,~>
X* és a continuous operator on D(T) N D(P).
FProof T is demicontinuous since it'is maximal” monotone. Hence, T is finitely

. continmous. ‘By the hypothesis of .P, we know that (I'+P) is also - finitely
continuous. Since Q, is contintous ‘and. since weak convergence implies strong con-
vergence in a. ﬁmte-d1mens1onal i§pace,; Q,, (T +P) X, Xyis oontmuous on. D(T)
‘ND(P). L . . . . ,

Theorem 1. Let T, X —>X* bs a mawimal monotone opemtor, P; X>X*a
quasi-bounded and  findtely continuous operator whwh swt@sﬁes one of the following:

(i) P is generalized pseudomonotone S : L

(ii) P 4s T-pseudomonoione.
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Suppose- that QX is o bounded open set, 0 Int:Q;, 2. D(T) N D(P). and Q is weakly
‘closed. Then T + P+ sJ is an A-proper mapping on@ with respect to I' = ({X .}, {X}s:
{P,}, {Q,.}) for each >0, where J is the normalized duwlzty map of X.

Proof We write Q,=QN X,. By Lemmma 2, Q,(T +P) Pp= Q,.(T +P) lx,. n_>X "
is continuous (Vo€ A"). | N |

Step1l. Let {v,}7,CX and =, €2, such that -

| @u T+ Pl Y Py, ~Quif [0 - (j>oo) = (M)

for some f€ X*. Since [Q,,f]|<|f] (VyE./V’ )i 11; follows from the equatlon (1) that

{Q:,(T 4P+ 8J) P;a,} is bounded. Wo write = -~ ~ <% o000
SUP{llQn,(T+P+sJ)Pn,wn,ll} Ml, sugl!wll—Ma U

and ) - M max{Mi, Mg} "

Hence HEA I T IS

((T+P+8J)w,,,, a;n,) ((T+P+8J)Pnjos,,,, P,Uw,,,)
= (Qu,(T+P+8J)P,jmn, @)
< | @r,; (T4 P& Y Py i | | @, | <M @, - (VFEUM)S dodi i i
Since T is monotone and 0€ Int Q. D(T), T is quasi-bounded; Furthermore; sinco J.
is a bounded map, then T+ P-+sJ::i8 also:quasi-bounded. It follows:from the: last
inequality that | (T"+P+8J)w, | <M (Vj&.A"). By the baundedness of J, wesee that
{(T +P)w,,} is bounded. By Lemma 1; {Pa;,,,} is’ bounded:: Therefore {T"%,;} is’ also:
bounded. - LT RS S oo Ly
Step 2. For each X and each oin. X » WO have B, mE X Cn as n,>n Hence, the
equation. (1): implies that.- o IAIREH e R
I (T+P+6J)w,,, f, Ty, — @) | =| ((T+P—l—s.]')a;,,J f, P,,,(w,,, w)l
<|Qw,(T +P+e])2s,~ Qs f| |20 ~2]. V ' - -
=M+ o)) |@u (T + Pt el ) @y~ Quf |0 (j-e0) s "ot (@)
SinceX ig reflexive and:{®,,} is .bounded, there exists a subsequence {@,,,} of {w,}
such that D= o € Q(k—> 00), Hence, it follows-from the equatlon €)) tha,t
((T+P+sJ)wm,, B oo — ) > (F, To—1) (k—»o) ®)
for each & in X, Indeed it is known easily that the equation (3) ig vahd for any
1n X because of p(a; X ,.)—>0 (n-—> o) for each @ in X and the boundedness of
(T +P+tef )a;,,j(,‘,} In par’olcular set ¥=ao in the equatlon (3), we Obta,m ((T —I—P
+e&J ) By Bnyar— o) —> Ol =>00). It follows that -
AT+ P+el)wy,— T +P+ sJ)wo, a;,,m, wo)—->0 (k—>oo) @
By the monotonicity of 7', we have . SR o
(T +P+ed)wy,q— (T+P+8J)wo, By — o)
= (Tw,w, Ta:o, By~ o) + (Pw,w, Pwo, By~ @o)
‘ —I—s(Jw,W, Ja:o, Bo—T0) Lo
= (Piy= Pao, Gnye—0) +8([@,e5] = [@0D% o G
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We take ‘the limit superior on both sides of the inequality (5) and take notice of the
equation (4), then we obtain -
0>11m (P, Pa;o, B0 — P0) o

Sinoe @,,,, — o, it follows that -

hkn:l (P Prsms Lnga ™ wo) <O.

‘We have known in Step 1 that {T'w,,,} and {Pw,,} are bounded. We may assume
without loss:of generality that Pw,,,— ¢ in X*. We claim that g= Pz, and (Pa,,,,
Byy0)—> (Pwo, o) (B —>00), because P is generalized pseudomonotone or 7'-pseudomo-
notone. Indeed, we have

hm(Pwm, Pmo, Ty — wo) =0,

We take again the limit superior on both sides of (B), then we get
0>¢ ]Jin("wnm)" - "w‘)”)a)

it follows that |@,,q,|—> 2] . We assers @,,,, —> (5 —> o) since @,,,, — @, and the space
X hag the property (h).
Step 3. Since 7' and J are maximal monotone, they are demicontinuous. Hence,
- (T +P+8J)@y0 (T + P+8J)w. On the other hand, we have from the equation (3)
and the boundedness of {(T'+ P+ ¢&J)®,,,} that 6
(T +P+e)®y,q, wo—&) =((T+P+8J )by, To—Tn,q)
- A+ ((T+ P+ 6J) @4, Tnyo—0)—>(f, Bo—2) (h—>00)
for any @ in X, i, ., (T+ P+8J) @, —f. Thus (T'+P+8J)n=f. This completes
the proof of Theorem 1.
Lemma 3. Let Q be o bounded subset of X with Qsé {0}, T, @-> X* an arbitrary
operator, fEX* and p(f, T(0Q)) =a>0. Then p(f, (T'+&J)(0Q))>a/2 as 0<s
<a/2d, where d =sup||a;ﬂ and J is the normalized duality map of X,

Proof Tt suﬁices to note |Jo| = || and the others are similar to the proof of
Lemma 2.21in [7]. '

Theorem 2. Suppose that T, P and Q satisfy the wssfmptwns in Theorem 1.
erthefr suppose that p(f, (T+P) ©@02)) =a>0 for fEX*. Then DegA(T+P+sJ

Q, f) is meaningful as 0<6< and it s independent of &, whers d=supl|w||, _
L wEQ .

2d :
- Proof By virtue of Theorem 1 and Lemma 8, 7'+ P+ ¢J is A-proper on £ with

respect to ['= ({X,}, {X, } {P.}, {Qn}) 850 Deg (T +P+eJ, Q, f) is meaningful

as 0<e<-Z 5

For any &; and gy with 0< 31< 89< =, we will prove that the degrees correspon-

2d ’
ding to &, and &, respectively are the same by using the homotopy invariance of the
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topological degree for A-proper mappings. Set
T (w, t) = (T+P)o+ (teat (L—t)es)Jw, [@, 11 € ax[o, 1],
By Theorem 1, T'(s, £) is A-proper for oach # in [0, 1]. For each n€ A, we have
QT (P, t) =@Qu(T+P) Purt (tay+ (1 —1) 82) Qu/ Pr. - (8)
By Lemma 2, @n (T+P)P, and Q.JP,(J is maximal monotone) in the right side of
(6) are continuous from X, into X. Since 0 is a bounded set and | Pal = |Qnl =15
we have sgg\l QuJ Py =M <oo. For any [o, ¢] and [&", #"] in 0,% [0, 1], we have

| (¢ e+ (L—1') 82) Qo Py’ — (¥ s+ A—te) QI Pl
< (¢ (83— 85) + 82) | QuI P’ —Qu P+ | (e—ea) @ —¢") | Q] Pua"|
< 62| QuI P’ —Qu] Pr" |+ M | (81— 82) '~ |, )
Then, the second. term in the right side of (6) is uniformly continuous frora Q,% [0, 1]
to X*. Hence, QT (Pyw, ?) 18 uniformly continuous from 8, x [0, 1] to X3, too.
Let ,,€ 0Q,,(cQ) and 3,,€ [0, 1] such that, S R -
1Q., T (P on;s tns) — 8 |->0 (j—>°) . (8)
for some g€ X*, We may assume that 3,,—>$€ [0, 1], As the estimate of the inequality
(7), we know easily that , o '
1@u T (Prinss ) — QT (Panss o) |
. . <M | (82— 8) (t=ta) |20 (§—>°°)
Combining the equality (8), we obtain. _ - :
llQruT(Pn»g ) —Qn,g“_’)O - (.7”’00)- S ' - (®
For fixed ¢, since T (s, t) is A—proper, there exists {@su) S {@n} by (9) such that
wn,(x,—ewe.—{_) and T'(w, t) =9. » ‘ ,
Furthermore, by the hypothesis and Lemma 3, f é (T (w, 1)) (02% [0, 11).
As was proved above that T' (w, t) satisfies all conditions of Theorem 4.1 (B}) in
[6]. Thus. _ , | . _
Dega(T+P+8:J, @, f) —Degs(T (z, 0), 2, f)
| 1Degs(T(z, 1), 2, ) —Degs (T+P+eal, @, ).
Theorem 2 is proved. » ) o
After getting above préliminary' results, we can define the generalized topological
&égree as follows: | o - |
" Definitionl. Let T, X—>X" be @ mawimal monotone operator, P, X>X"a
quasi-bounded and finitely continuous generalized pseudomonotone OF T —pseMoMmtohe
operator. Suppose that Qc X is a bounded open set, 0€ IntQ, 2cDh(MnN D(P) and @
is weakly olosed. Further, Let f be an element in X* suoh that p(f, (T+P) (0Q)) =a
0. Then, we define that the tqpologécwl degree of (T +P) on € over f s '
Deg (T+P), @, £) =Degu(T+P+8J, Q,f,

where 0<8<-é%’ d%sup'l[mll and J s the mrmalfi,zed dudlity map of X.
rel ) . . . :
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In what follows we will explain simply the topological degree. Obviously, null
operator is maximal monotone .quasi-bounded and' finitely. continuous generalized
pseudomonotone A ‘pseudomonotone frist be generalized pseudomonotone, Moreover,
&' continuously and strongly monéténe operator on X . to X* must be maximal
monotorie. Thus we' have unifiad in Definition 1 the treatment of. the topologrcal
degrees for some operators of monotone type“" .. : : ‘

1

§ 2 The Propertles for the Topologlcal Degree
“and the Results of SurJectlty .

It is. posslble to prove that the degree given by s has the same ag" all prepert1es
of the topological- degree for A-proper mapping, But we' W111 prove only some proper-
ties with relation to the surjectivity. ’ . : Co

- Lemma 4. LatT. X-5X*be o mazimal. monotons . operator, P, X — X*
quasi-bovinded and generalized- pseudomonotone. or T—pseudomonotone operator. Suppose
that @n— o with v,, 5,€ D(T) n .D(P) and Ta:,.—l—Pw,,—-) f for some. f€ X* Then Tw
+Pgy=Ff, .

Proof By Lemma 1, {Pa;,.} ig bounded since {w,.} and {T'w,+ Pw,} are bounded,
Hence, {T'x,} is bounded, too. we may assume: that " Pa,— g€ X* (if nedessary, pass
to an infinite subsequence) By the monotonicity of T, we -have

(Paw, ta~a0) = (P +P)a,, @n—=0) — (T'ws— T, w,.-—wo) (Two, w..—wo)
| o ((T +P) a:,,, a:,,—a;o) (Ta;o, @n wo) '
Hence ' - - " _
SR li.m‘(Pa:,., By — a;o) <0,
Because P is generahzed pseudomonotone or T—pseudomonotone we claim that g Pa;o
and (Paw,, @,)~>(Pu,, va;o) Hence (Pa;,. Pa;o, w,,—a;o)——>0(n——>00) Vo€ D(T), since
T is monotone, we have

(Ta;,,—l—Pm,, Pwo-—Tw Tp— ) > (Pw,. Pwo, @ — wo) +(Pw,,-Pwo, w,,—w)
Hence ( f Pwo Tw, wg— a:) =0, Sinee T is maximal monotone, we get Ta:0+Pwo—
Corollory. I f .QCX is a bownded and fwewlalg/ olosed set, then (T +P) @ isa
closedset o | B SRR
' Pfroof It is obv1ous ‘

Remark 2 Lemma 1——4 remam vahd if X is not separa.ble :

Wo denote by T (.Q) the collect1on of all sum (T +P) from thls place to end
where T’ and P are any operators in the sense of Deﬁnltlon 1, |

Theorem 8. Lgt (T+P) GT (.Q) and f€ (T +P) (Q) Then Deg (T +P, Q, f)
= {0}. Hence, if Deg (T +P, Q f) = {0}, ‘then the equateon (T +P)z=Ff has a solution
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Proof By the corollary of Lemma 4, (T+P) () is a closed set. Hence
: - o(f, @EPY@)>0.
By Lemma 8, p(f, (T+P+eJ) (@) >0 for sufficiently small &>0. For such s,
beoause of the property for the topological degree of an A-proper mapping,
- . DegT'+P, Q,1) —Degs(T+P+8J, @, /)={0r.
And the second. part.of this theorem is obvious. : : o
Tneorem 4. Let (T+P)ET;(@), p(0, (T +P) (8Q)) >0, Further ; suppose: that

Q is symmetric about the origin of X and (T +P) is odd,on dQ. Then Deg (T+P, 2,0)
s odd. In partioular, Deg (T+P, @, 0)+{0}. - L

. Proof Sinoe the normalized duality map is odd, T+ P-+eJ is odd for any- >0,
400. Since P, and @, are linear operators, Q.(T+P+8J) P, is also odd on 09, for

each n€ A" By Theorem 4.1 (Bs) in 51, D,eg(T +P+el, 2,0 isj'odd_.
Corollary. Supposs the conditions on Q as in Theorem 4. Than we have
. Deg (b7, @, 0)#{0} for cach k>0, ,'
Proof Weo take T =%J and P=0 inf]_?heorem 4 ‘ | o D
Lemma 6. " Suppose that a family of operators St . %[0, 1]——>X * satisfy 8:€
T,,(ﬁ) fo{r:. each © in [o, 1]; 'Supposé.'thwt QuS:: §”><[O, 1] X* ds contzmwus (Vn

.

€N ).-'if fi or fE X", thare are constanis oy, #a>0 an ad positive é}ntéger inol_suoh'thdt
- Jor dil ¢€ [0, 1] it ds satisfied that | R -
o(f, 8,(0Q)) =0y, T (10)

| L p@f, QuS:(0Q,)) >0a, 88 n>Mo. (11)
Then Deg(S:, Q,'f) s independent o Fiin'[0, 1. |

Proof We take & with 0<6<mi_n{—;%~ _—;%}, vihere d=sup|z|. By the definition,
. weld

.we have Deg(8:;-Q, f) =Deg, (Sy+8J, @, f): Thus it sufficies to prove that the right
_stide of the. equalify is independent-of &: Since J, X, —>X, and QS 2, % [0 , 11— X5
are continuous, Q,(S:+8J); 0,% [0, 11— X, is continuous for each n€ A,

Next, when nz=>no, if we attend to [Qaf =1 (Vo€ A7) and |[Jo | = ||, then the
inequality (11) implies R
Co o @il eQul o= @Quf | > QuSio—Qnf | = ¢1@ul 17=]

-2‘2. e
. . T 2 -
Therefore, QufEQx(Si+eJ) (0Qy) s N> o T

’ Finally, by the equality (10) and the homotopy:invariance of ‘Brouwer degres,
~-we know that Deg (Q.(Ss+eJ )P, Qn,- Qnf) is independent of ¢ in [0, 1] (as n=>no).
Then Deg, (S;+8&J, 2, f)is independent of ¢ aceording to the definition of the degree

>ay—¢|o|>0a— 84>

for A-proper. Lemma 5 is proved.
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Lemma 6. Lot S=T+PcT,(3). Suppose that there is & constant C>0 such that
(8%, ) =0, VscaQ, (12)

Then Deg (S, 2, 0) =Deg(J, @, 0, where J is the normalized duality map of X,
~ Proof Set : ' ‘ '
- Sw=t8s+ (L—t)Jo=tTw+tPs+ A-DJs 0<i<1,
We will verify that S, satisfies all conditions in Lemma 5. For each € [0, 1] , since
T and J are maximal monotone and D({J) =X, tT+ (1 —4)J iy maximal monotone,
t00™¥; Obviously, tP is quasi-bounded and finitely continuous generalized pseudomo-
notone or T-pseudomonotone. Thetefors, S T,(2). -

By Lemma 2, Q,(T +P), 2,—> X is continuous for each n€ A", Since 3, is a
bounded and closed set, we may write sug 1€s(T+P) | = M< o0 and write d=sg§ |=].

xEQ, : 4

Henco, by [QuTa|<|al, ¥ [ao, %, [z, 1]€2yx [0, 1] we have
|@uSi0— QuSal < [1~to] |Gu (T +P)a]
- | QT+ P)a—Qu(T+Pao| + |t —1y| |@uTa]
<Mlt—"tol'-{—to"Qf‘,.(T—}-P).w'—Q,,(T+P)a;ofl Fdli—to],
Tt follows that @uS,, @, x [0, 1]—> X* is continuous for each nEN,
- Finally, the inequality (12) means 0€0Q. Hencé, there are positive constants d,
and dj such that di<<[a|<d, for any % in Q. For »€ 0Q, we have from the inequality
(12) and from (J&, #) = ||? that ‘

1680+ (1—¢) Ta] >Hi_“ (#Sw+ (L~8) Ja, o)
o 0 10
>m + (l_yf-t).”w[[}E--l- (1—,t)d_x
>min {-g_ di} ~a>0,

L.e., p(0, 8:(82))>a for all £ in [0, 1. By @u="Py and P}*=P,, similarly, we can
find p(0, Q.8:(0Q)) >q, i. e., p(Q,0, Q.8:(62)) >a because @,0=0 for each nc .4,
We know from Lemma, 5 that : S
| - Deg(8, 2, 0) =Deg(8:, @, 0) =Deg(S,, 2, 0) =Deg(J, @, 0).
Lemma 6 is proved. | A

Theorem 6. Lot (T+P)ET,(Q) and f€ X*. If there ewist two constamis r, 0'>0
with O>|f| such that B0, r) =@ and v ,

(T +P)a, )=0|a| as e €8B(0, r), ~ (18)

Then the equation (T+P)x=f has at least & solution in B(0, r), where B(0, r) is the
open ball of radius r about origin of X. ' v

Proof We write §=T-+P. Set Siz= Sz ~f if f#0. It is clear that 8, € T,(Q). 1t
implies easily that (Sy, #)=(0— |f Dl2l, as €2B(0, r). Hence, We may assume
without loss of generality f=0. The inequality (18) implies
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(Sz, ©)=0r, |So|= (Sir‘; ”m) =0

for 5€2B(0, r). By Lemma 6 and Colollary of Theorem 4, we know that
Deg (S, B(0, 1), 0) =Deg(J, B(0, r), 0)#{0}.

If the equation S»=0 hasn’t a solution in B(0, r), then 0ES8(B(0, r)). Because a

closed ball is a weakly olosed set, thus § (B(0, 7)) is the olosed set from Corollary of
Lemma 4. Consequently, p(0, § (B(0, 1)))>0. By Theorem 3, the equation (I'+P)x
— 0 has a solution in B(0, ). This completes the proof of Theorem 5.

~ Corollary 1. Let T, X-—>X"be & mawimal monotong operator and P, X — X*a
quasi-bounded and generalized pseudomohotone or T-pseudomonotone operator, DT
—D(P)=X. If (T+P) is coercive, 1. 6.

(TP ) o,
Jim S = e, (14)

then R(T+P)=X*

Proof For each f€ X*, there are two constants » and ¢ with 0>{f| and »>0
such that ((T+P)s, 2)=C|a| as «€2B(0, r) by the coercive condition (14). By
Theorem 5, there exists # in X which satisfies (T + P)z=f. |

Corollary 2. Let T be a mawimal monotone operator on X to X*. If T'is coércive,
then B(T) =X*. o

Proof It suffices to take null operator as P in Corollory 1.

Corollary 3. Let P be a quasi-bounded and finitely continuous generalized pseudo-
'monotohe operator on X to X*. If P is coercive, then R(P)=X".

Proof 'We take null operator as T in Corollary 1. '

Theorem 5 is the basio result in this paper. Corollary 1 has answered affirmatively
Browder’s problem™ if X ‘is a real sepé,rable' and reflexive Banach space. Moreover,
we require only that T-pseudomonotone operator is qu_asi-bounded. The assumptions
about P in Corollary 1 are sim'plér than ones of Th_eorém 7 in [8]. Corollary 2 and
Corollary 8 are contained essentially in [3, 91, but our methods differ from theirs.

§8. Another Application

Browder considered the range of the sum for a maximal monotone mapping and a
bounded pseudomonotonema,pping“?". Here, we apply Corollary 1 in §2 to consider
the range of the sum for a maximal monotone operator and a quasi-bounded and
finitely continuous pseudomonotone or T-pseudomonotone operator. We cite first the
following concept and result.

Definition (see [18]). Let T, Sand B be mappings with domains in the Banach
space X and values in the Banach space ¥ and with D(R) = X. Then the pair [T, S]
is said 1o be in good pesition with respect to B if there exist a mapping { of X into
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Y, a continuous function B from the positive real to the positive reals such that B(r)
~>0as r—> +oo and two constants C, Oo>0 such that the followmg conditions are
satisfied: ' R ‘
@ ¢is un1formly continuous on bounded sot of X' to the strong bopology of Y *

‘Z (ra) =r{ (@) for r>0and ¢ in X'
. I@I>0ja), s€ X,
" (2) For each u in D(T), v in D(S) Lo ‘ |

inf {(To—Tu, {@—w)+B(Ja])al}>=05, = (15)

1 {(Se=80, Lo-w) +BUaD [el}> -, (16)
inf{(Rs, {(@—u)) +0olaf}>—~oc0, )

Theorem (Theorem 1 in [18]). Let X aid Y be Bandoh spaces, T, S and R be
hree mappings with domains in X and with values in Y such that the pair [T, 8] isin
good, position with respect to R, where D(R) =X and R maps bounded sets in X into
-bounded set in Y. Suppose that the following additional conditions holol

(1) For each £>0, the mapping T+8 +£R. has all of ¥ as zts range; . |

~ (2) For each closed ball BR about O in X , @ +8) (D (T_)_ﬂ D_(_S) m.!BR) is closed
n ¥, |

Then Int(R(T+S)) Int(R(T) +R(S)) : A

Theorem 6. Lot T, X—>X*be a mawimal monotons opemtor S’ X —»X *
quasi-bounded and ﬁmtely continuous generalized pssudomonotone or T—pseudomonotone
operator, D(T) D(S) =X, Suppose that the operator S satisfies the condmon 16), 4. .
8., there exists a continuous fwnctfwn B(r); B.—R,, ,8(4‘)—>O(fr—-> +<>0) suck that for
any u, v€ X, there ewisis a constant Cy,q such that . . L '

(82~ 8u, 5—v) >0u,s~B(la]) o] _,vw‘e.fvx. L8
Then Int(R(T—i—S)) Int(R(T) +R(S)). , o

Proof Since T is maximal monotone, it satisfies (15). We take the 1dent1ty operator
of X as {, and ta.ke the normalized duahty map J of X a8 R. It is verified easily that
[T S] satisfies the definition of good position with respect to J from the ondition
(18)©%, By Corollary of Lemm_a, 4 in § 2, the condition (2) in the Browder’s theorem
ig satisfied. For each ¢ >O.,b &J is aiso generalized pseudOmenotone or T-pseudomono-
tone. Further, since (£J,'s) =¢|o]?, P=8+£J is also generalized pseudomonotone®™,
when § is generalized pseudomonotone. It is proved easily that P is T-pseudomono-
tone, teo if § is T-pseudomonotone. In order to verify the condition (1) in the
Browder’s theorem, we put u=v=0 in the inequality - (18) It follows that for eaoh
£>0 we obtain C -

<1]ﬁ,|w;-f B, 24 6%@" D >0nu- B0l o] - 150] €]

=00 IS0+ E=B(Ja) [o]>+00 as [a|->c0,
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i. e., the operator P is coercive. By Corollary 2 of Theorem 5, we geb RT+8+¢EJ)
= X*, This theorem holds according to the Browder’s theorem.
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