SMOOTH POINT MEASURES AND DIFFEOMORPHISM GROUPS

ZHANG YINGNAN (张荫南)

(Institute of Mathematics, Fudan University)

Abstract

Let $X=R^{g}(d>1)$. Consider the unitary representations of Diff(X) given by quasiinvariant measures under the action of Diff(X). The author proposes smooth point measures as generalization of Poisson point measures and proves that every smooth point measure is quasi-invariant under the action of Diff(X) and if $\{U_g^i\}$, i=1, 2, are the unitary representations of Diff(X) given by the smooth point measures μ_i , i=1, 2, respectively, then $\{U_g^i\}$ is unitarily equivalent to $\{U_g^2\}$ iff μ_1 is equivalent to μ_2 as measure.

§ 1. Introduction

Let $X = R^d (d > 1)$ and Diff(X) be the group of all C^{∞} diffeomorphsm from X onto X having compact support, i. e., for every element ψ of Diff(X) there exists a compact subset C_{ψ} of X such that $\psi(x) = x$ for all $x \in C_{\psi}$. Assume

$$\operatorname{Diff}(X, K) = \{\psi : \psi \in \operatorname{Diff}(X), C_{\psi} \subset K\},\$$

where K is a compact subset of X. Endow Diff(X, K) with the topology defined by the countable family of metrics

$$\|\varphi-\psi\|_{n} = \max_{0 \le |m| \le n} \sup_{x \in X} \|D^{(m)}\varphi(x) - D^{(m)}\psi(x)\|,$$

for φ , $\psi \in \text{Diff}(X, K)$ and $n=0, 1, 2, \dots$, where $(m) = (m_1, m_2, \dots, m_d)$ is a d-tuple of non-negative integer, $|m| = m_1 + m_2 + \dots + m_d$, and $D^{(m)} = \partial^{|m|}/\partial x_1^{m_1} \dots \partial x_d^{m_d}$. We say a sequence $\{\psi_n\}$ of Diff(X) converge to ψ in Diff(X) if there exists a compact subset K of X such that $\{\psi_n\} \subset \text{Diff}(X, K)$ and $\{\psi_n\}$ converges to ψ in Diff(X, K). In this way, Diff(X) becomes a non-locally compact topological group.

We write

 $\Delta(A) = \{r : r = (x_n) \subset A, \text{ for every compact subset } K, |K \cap r| \text{ is finite}\},$ where A is a subset of X and |B| is the cardinal number of the set B. For every compact set K, we define a function $K(\cdot)$ on $\Delta(A)$ such that

$$K(r) = |r \cap K|$$
, for $r = (x_n) \in \Delta(A)$.

The σ -algebra generated by these functions is denoted by \mathscr{F}_{A} . We call the measurable

space $(\Delta(X), \mathscr{F}_X)$ the configuration space with Diff(X). We define the action of Diff(X) on $(\Delta(X), \mathscr{F}_X)$ such that

$$\psi(r) = (\psi(\alpha_n)), \text{ for } r = (\alpha_n) \in \Delta(X) \text{ and } \psi \in \text{Diff}(X).$$

This paper is devoted to the measures on $(\Delta(X), \mathscr{F}_X)$ which are quasi-invariant under the action of $\mathrm{Diff}(X)$ and the unitary representations of $\mathrm{Diff}(X)$ given by such measures. Our main result is as follows. First, we propose smooth point measures on $(\Delta(X), \mathscr{F}_X)$ as a generalization of Poisson measures and we prove that every smooth point measure is quasi-invariant under the action of $\mathrm{Diff}(X)$. If we define the unitary representation $\{U_{\psi}^{u}\}$ of $\mathrm{Diff}(X)$ given by μ such that

$$U^{\mu}_{\psi}(F) = F(\psi^{-1}r) \left(\frac{d\psi\mu}{d\mu}(r)\right)^{1/2}$$
, for $F \in L^{2}_{\mu}(\Delta(X))$, $\psi \in \text{Diff}(X)$,

then it must be continuous. It is obvious that $\{U_{\psi}^{n_1}\}$ and $\{U_{\psi}^{n_2}\}$ are unitarily equivalent if μ_1 and μ_2 are equivalent as measures. Conversely, it is difficult to find the necessary condition of the equivalence of $\{U_{\psi}^{n_1}\}$ and $\{U_{\psi}^{n_2}\}$. In this paper we prove that if μ_1 and μ_2 are smooth point measures, then $\{U_{\psi}^{n_1}\}$ is equivalent to $\{U_{\psi}^{n_2}\}$ iff μ_1 is equivalent to μ_2 as measure. In particular, if \mathscr{P}_{m_i} is a Poission measure of smooth measure m_i , i=1, 2, then $\{U_{\psi}^{n_1}\}$ is unitary equivalent to $\{U_{\psi}^{n_2}\}$ iff its Kakutani's distance $\left(\int (\sqrt{dm_1} - \sqrt{dm_2})^2\right)^{1/2}$ is finite.

§ 2. Smooth point measures

Set

$$A = S_r = \{x : x \in X, \|x\|_d < r < \infty\},$$

Diff $(A) = \{\psi : \psi \in \text{Diff}(X), O_{\psi} \subset A\}.$

A measure m on X is called a smooth measure if dm = f(x)dx, where $f \in C^{\infty}$, f(x) > 0 everywhere, and dx is the Lebesque measure on X. We write

Diff
$$(X, m) = \{ \psi : \psi \in \text{Diff}(X), \psi m = m \},$$

Diff $(A, m) = \text{Diff}(X, m) \cap \text{Diff}(A).$

Definition 1. A probability measure μ on $(\Delta(X), \mathscr{F}_X)$ is a smooth point measure if

- a. $\mu\{r: |r \cap A| = k\} > 0$, for $k \in \mathbb{Z}$ and for every A.
- b. there exists a smooth measure m such that μ is invariant under the action of the subgroup $\mathrm{Diff}(X, m)$, i. e., $\psi \mu = \mu$ for every $\psi \in \mathrm{Diff}(X, m)$.

Remark. We write $Z = (0, 1, 2, \cdots)$ and $Z_+ = (1, 2, \cdots)$.

If m is a smooth measure on X, we can construct a Poisson measure \mathscr{P}_m on $(\Delta(X), \mathscr{F}_X)$ such that

$$\mathscr{P}_m\{r: |r\cap C| = k\} = e^{-m(C)} \frac{(m(C))^k}{k!}$$
, for $k \in \mathbb{Z}$,

where C is a compact subset of X.

Obviously, every Poisson measure is smooth. Moreover, there exist a lot of smooth measures which are essentially different from Poisson measures. For example, let m be a smooth measure and $m(X) = \infty$, we define

$$\mathcal{P} = \frac{1}{2} (\mathcal{P}_{t_1m} + \mathcal{P}_{t_2m})$$
, where $t_1 > t_2 > 0$.

Then $\mathscr P$ is smooth, but it is not equivalent to any Poisson measure. Now we consider $A^{(k)} = \{r : r \text{ is a finite subset of } A \text{ and } |r| = k\}$, for $k \in \mathbb Z_+$,

$$A^{(0)} = \{\phi\}.$$

By the definition, we have $\psi A^{(k)} = A^{(k)}$, for $k \in \mathbb{Z}$ and $\psi \in \text{Diff}(A)$.

Suppose

$$(A^k) = \{(x_1, x_2, \dots, x_k) : (x_1, \dots, x_k) \in A^k, x_i \neq x_j, i, j = 1, \dots, k\}.$$

Thus (A^k) is an open subset of X^k . Let O be a connected component of (A^k) , we define a map T from O onto $A^{(k)}$ such that

$$T(x_1, \dots, x_k) = \{x_1, \dots, x_k\} \in A^{(k)}.$$

Evidently, T is bijective. We endow $A^{(k)}$ with a topology such that T is a homeomorphism from O onto $A^{(k)}$. Hence $A^{(k)}$ becomes a O^{∞} manifold of $k \cdot d$ dimension. Denote the Borel σ -algebra of $A^{(k)}$ by $B(A^{(k)})$, and write $Tm^k = m_k$, where m^k is the product measure of m on X^k , we conclude that m_k is invariant under the action of Diff (A, m).

Proposition 1. Let λ be a finite measure on $(A^{(k)}, B(A^{(k)}))$ and m be a smooth measure on X. If λ is invariant under the action of Diff(A, m), then there exists nonnegative constant C such that $d\lambda = Cdm$.

Proof By [1], it is well known that λ is equivalent to m. Moreover, λ is invariant with respect to Diff (A, m), and this ends the proof.

Next we observe a smooth point measure μ with respect to m. Define a map $P_A(r) = r \cap A$, $P_{A^o}(r) = r \cap A^o$, for $r \in A(X)$. Clearly, P_A and P_{A^o} are measurable maps from $(A(X), \mathscr{F}_X)$ into $(A(A), \mathscr{F}_A)$ and $(A(A^o), \mathscr{F}_{A^o})$ respectively. Furthermore, we have $P_A(\psi r) = \psi(P_A r)$, $P_{A^o}(\psi r) = P_{A^o}(r)$, and $\psi \mathscr{F}_A = \mathscr{F}_A$, $\psi B = B$ for $r \in A(X)$ $\psi \in \text{Diff}(A)$, $B \in \mathscr{F}_{A^o}$. Let us write $\mu^A = P_A \mu$, $\mu^A_k(B) = \mu^A(B)$, for $B \in B(A^{(k)})$, then μ^A_k is invariant under Diff(A, m).

Proposition 2. If μ_1 , μ_2 are smooth point measure, then μ_1^A is equivalent to μ_2^A . Proof It is immediate that $A = \bigcup_{k>0} A^{(k)}$, and $A^{(k)} \in \mathcal{F}_A$ for $k \in \mathbb{Z}$. So we have

$$\mu_1^A(B) = \sum_{k>0} \mu_1^A(B \cap A^{(k)}), \quad \mu_2^A(B) = \sum_{k>0} \mu_2^A(B \cap A^{(k)}), \text{ for } B \in \mathscr{F}_A.$$

According to Proposition 1 and Definition 1, there exist constants $C_k^{(i)} > 0$, i=1, 2, $k \in \mathbb{Z}_+$, such that

 $\mu_1^A(B \cap A^{(k)}) = C_k^{(1)} m_k^{(1)}(B \cap A^{(k)}), \ \mu_2^A(B \cap A^k) = C_k^{(2)} m_k^{(2)}(B \cap A^{(k)}), \text{ for } k \in \mathbb{Z}_+,$ where $m_k^{(1)}$, $m_k^{(2)}$ are smooth measures on $A^{(k)}$ which are defined as before. Because

 $m_k^{(1)}$ is equivalent to $m_k^{(2)}$ for $k \in \mathbb{Z}_+$, and $\mu_1^A(B \cap A^{(0)}) = 0$ iff $\mu_2^A(B \cap A^{(0)}) = 0$, thus the conclusion follows.

Corollary. If K_1 , K_2 are compact subsets of X and μ is a smooth point measure with respect to m. Suppose that $m(K_1 \cap K_2) = 0$, $\mu(B_1) > 0$, $\mu(B_2) > 0$, where $B_1 \in P_{k_1}^{-1} \mathscr{F}_{k_1}$, $B_2 \in P_{k_2}^{-1} \mathscr{F}_{k_2}$, then $\mu(B_1 \cap B_2) > 0$.

Proposition 3. Let (Ω, S) be a measurable space, μ_i be finite measure on (Ω, S) , i=1, 2, and ψ be a measurable isomorphism on (Ω, S) such that

$$\mu_1 \approx \mu_2 \approx \psi \mu_1 \approx \psi \mu_2$$
, then $\frac{d\psi \mu_1}{d\psi \mu_2}(\omega) = \frac{d\mu_1}{d\mu_2}(\psi^{-1}\omega)$, a. s., μ_2 .

Proof Since $\psi \mu_1(B) = \mu_1(\psi^{-1}B)$, for $B \in S$, we have

$$\int_{B} \frac{d\psi \mu_{1}}{d\psi \mu_{2}} \left(\omega\right) d\psi \mu_{2} = \psi \mu_{1}(B) = \int \mathbf{1}_{B}(\psi \omega) d\mu_{1} = \int_{B} \frac{d\mu_{1}}{d\mu_{2}}(\psi^{-1}\omega) d\psi \mu_{2},$$

and this ends the proof.

Proposition 4. If (Ω, S) is a measurable space, G is a group of measurable maps on (Ω, S) . Let μ_1 , μ_2 be finite measures on (Ω, S) . Assume they both are quasi-invariant with G. We define G's unitary representations $\{U_g^1\}$ and $\{U_g^2\}$ on $L_{\mu_1}^2$ and $L_{\mu_2}^2$ respectively, $U_g^*F = F(g^{-1}\omega)\left(\frac{dg\mu_i}{d\mu_i}(\omega)\right)^{1/2}$, for $F \in L_{\mu_i}^2$, i=1, 2. If μ_1 is equivalent to μ_2 as measure, then $\{U_g^1\}$ is unitarily equivalent to $\{U_g^2\}$.

Proof Set

$$T(F) = F(\omega) \left(\frac{d\mu_2}{d\mu_1}(\omega)\right)^{1/2}$$
, for $F \in L^2\mu_1$,

thus, T is a unitary map from $L^2_{\mu_1}$ onto $L^2_{\mu_2}$ and $T^{-1}U^2_gT=U^1_g$, for $g\in G$.

Proposition 5. Let μ be a probability measure on $(\Delta(X), \mathscr{F}_X)$, $\psi_n \in \text{Diff}(X)$, $\psi \in \text{Diff}(X)$. If $\psi_n \to \psi$ as $n \to \infty$ and $\psi_n \mu = \mu$ for every n, then $\psi \mu = \mu$.

Proof Suppose that $A = S_r \supset \bigcup_n C_{\psi_n}$, and $\varphi_i \in C^{\infty}(X)$, $i = 1, \dots, m$, which support $C_i \subset A$. Define

$$P = \{r : r \in \Delta(X), (\langle r, \varphi_1 \rangle, \dots, \langle r, \varphi_m \rangle) \in O\},$$

where $\langle r, \varphi_i \rangle = \sum_{x \in r} \varphi_i(x)$, C is a compact subset of R^m . By Fatou's lemma,

$$\overline{\lim}_{n\to\infty}\mu(\psi_n^{-1}P)\leqslant\mu(\overline{\lim}_{n\to\infty}\psi_n^{-1}P).$$

It is clear that $P = \{r : (\langle P_A r, \varphi_1 \rangle, \dots, \langle P_A r, \varphi_m \rangle) \in C\}$, and $\psi_n P_A r = P_A(\psi_n r)$, for n. If $P_A(r) = (\alpha_1, \dots, \alpha_k)$, $k \in \mathbb{Z}_+$, then $\psi_n P_A(r) = (\psi_n(\alpha_1), \dots, \psi_n(\alpha_k))$. Because $\psi_n(\alpha_j) \to \psi(\alpha_j)$, $j = 1, \dots, k$, it follows that $\lim_n \psi_n^{-1} P \subset \psi_0^{-1} P$.

On the other hand, $\psi_n^{-1} \rightarrow \psi^{-1}$ as $n \rightarrow \infty$, by the fact that Diff(X) is a topological group. Thus, $\mu(P) = \mu(\psi_0 P)$ for each P, this ends the proof.

Definition 2. Let μ be a smooth point measure. for $A = S_r$, we define $\tilde{\mu}$ on $(\Delta(X), \mathscr{F}_X)$ such that $\tilde{\mu} = \mu^A \times \mu^{A^c}$, where $\mu^A = P_A \mu$, $\mu^{A^c} = P_{A^c} \mu$.

Remark.
$$(\Delta(X), \mathcal{F}_X) = (\Delta(A) \times \Delta(A^0), \mathcal{F}_A \times \mathcal{F}_{A^0}).$$

Proposition 6. If μ is a smooth point measure, then $\mu \ll \tilde{\mu}$ and

$$rac{d\mu}{d ilde{\mu}} = \sum_{k\geqslant 0}
ho_k(P_{A^c}r) \mathbf{1}_{A^{(k)}}(P_Ar)$$
 ,

where $\rho_k(\cdot)$ is a non-negative measurable function on $(\Delta(A^c, \mathscr{F}_{A^c}), \text{ and } \mathbf{1}_{A^{(k)}}$ is the indicator of A(k)

Proof If $\widehat{\mathscr{F}}_{A} = P_{A}^{-1} \mathscr{F}_{A}$, $\widehat{\mathscr{F}}_{A^{o}} = P_{A^{o}} \mathscr{F}_{A^{o}}$, then there exists a regular conditional probability of μ on \mathscr{F}_X given by $\widehat{\mathscr{F}}_{A^o}$. It is denoted by $\mu(\cdot | \widehat{\mathscr{F}}_{A^o})$. Obviously

$$\mu(\widehat{B} \cap \widehat{C}) = \int_{\widehat{C}} \mu^{A}(B | \widehat{\mathscr{F}}_{A^{o}}) (r) d\mu,$$

where $\hat{B} = P_A^{-1}B$ and $\hat{C} = P_A^{-1}C$, $B \in \mathscr{F}_A$ and $C \in \mathscr{F}_{A^o}$, and

 $\mu^{A}(\cdot | \widehat{\mathscr{F}}_{A0})(r) = P_{A}\mu(\cdot | \widehat{\mathscr{F}}_{A0})(r).$

Given $\psi \in \text{Diff}(A, m)$, by assumption, μ is invariant under Diff(X, m). We can write

$$\int \mathbf{1}_{\hat{B}}(\psi r) \mathbf{1}_{\hat{C}}(\psi r) d\mu = \int \mathbf{1}_{\hat{B}}(\psi r) \mathbf{1}_{\hat{C}}(\psi r) d\psi^{-1} \mu = \mu (\hat{B} \cap \hat{C}).$$

Thus

$$\mu^{A}(\psi^{-1}B|\widehat{\mathscr{F}}_{A^{0}})(r) = \mu^{A}(B|\widehat{\mathscr{F}}_{A^{0}})(r), \quad \text{a. s., } \mu$$

By Proposition 5 and the fact that $\operatorname{Diff}(X)$ is separable topological group and the σ algebra \mathscr{F}_{A} is generated by some countable subalgebra, we can find a set $M\in \mathscr{F}_{A'}$, $\mu(M) = 0$ such that, for every $\psi \in \text{Diff}(A, m)$

$$\psi \mu^{A}(\cdot | \widehat{\mathscr{F}}_{A^{o}})(r) = \mu^{A}(\cdot | \widehat{\mathscr{F}}_{A^{o}})(r), \text{ for } r \in M.$$

According to Proposition 2, for every $k \in \mathbb{Z}$, there exists non-negative number $C_k(r)$ such that

$$\mu^{A}(B|\widehat{\mathscr{F}}_{A^{o}})(r) = C_{k}(r)\mu^{A}(B)$$
, for $B \in B(A^{(k)})$.

As $\mu^{A}(A^{(k)}) = \mu\{r: |r \cap A| = k\} > 0$, for $k \in \mathbb{Z}$, so we have

$$C_k(r) = \mu^A(A^{(k)}|\widehat{\mathscr{F}}_{A^o})(r)/\mu^A(A^{(k)}), \ k \in \mathbb{Z},$$

which is tantamount to that $C_k(r)$ is $\widehat{\mathscr{F}}_{A^o}$ -measurable. By Doob's lemma, we can write $C_k(r) = \rho_k(P_{A^o}r)$, where $\rho_k(\cdot)$ is a measurable function on $(\Delta(A^o), \mathscr{F}_{A^o})$. Therefore

$$\mu(\hat{B} \cap \hat{C}) = \sum_{k \geq 0} \int_{\hat{C}} \left(\int_{B} \mathbf{1}_{A^{(k)}}(x) d\mu^{A}(r) \right) \rho_{k}(P_{A^{(k)}}r) d\mu(r).$$

Consequently, $\mu \ll \tilde{\mu}$ and

$$rac{d\mu}{d ilde{\mu}} = \sum_{k>0}
ho_k(P_{A^{cl}}) \mathbf{1}_{A^{(k)}}(P_{A^{l}})$$
, a. s., $ilde{\mu}$.

Proposition 7. Let μ be a smooth point measure, then μ is quasi-invariant under the action of Diff(X), and

$$\frac{d\psi\mu}{d\mu}\left(r\right) = \frac{d\psi\mu^{\text{A}}}{d\mu^{\text{A}}}(P_{\text{A}}r), \text{ a. s.,}$$

where $\psi \in \text{Diff}(X)$ and $C_{\psi} \subseteq A = S_{r_{\bullet}}$

Proof Let

$$\rho(r) = \frac{d\mu}{d\tilde{\tilde{\mu}}} = \sum_{k>0} \rho_k(P_{A^c}r) \mathbf{1}_{A^{(0)}}(P_A r).$$

Hence, $\rho(\psi r) = \rho(r)$, $\mu(\psi^{-1}B) = \int_{B} \rho(r)d(\psi \widetilde{\mu})$, for $B \in \mathscr{F}_{X}$.

Obviously, $\psi \tilde{\mu} \approx \tilde{\mu}$ and $\frac{d\psi \tilde{\mu}}{d\tilde{\mu}}(r) = \frac{d\psi \mu^A}{d\mu^A}(P_A r)$, the conclusion holds.

Corollary. If μ is a smooth point measure with respect to m, then

$$\frac{d\psi\mu}{d\mu}(r) = \prod_{x \in r} \left(\frac{d\psi m}{dm}(x)\right), \text{ for } \psi \in \text{Diff}(X).$$

Proof Suppose that $C_{\psi} \subset A = S_r$. By Proposition 2, we have

$$\frac{d\mu^{A}}{d\mathscr{P}_{m}^{A}}(x) = \sum_{k \geq 0} C_{k} \mathbf{1}_{A^{(k)}}^{(k)}, C > 0.$$

Moreover

$$\frac{d\psi\mu^A}{d\mu^A} = \frac{d\psi\mu^A}{d\psi\mathscr{P}_m^A} \cdot \frac{d\psi\mathscr{P}_m^A}{d\mathscr{P}_m^A} \cdot \frac{d\mathscr{P}_m^A}{d\mu^A}.$$

According to Proposition 3

$$\left(\frac{d\psi\mu^A}{d\psi\mathcal{P}_m^A}\right)\!(x) = \frac{d\mu^A}{d\mathcal{P}_m^A}(\psi^{-1}\!x) = \frac{d\mu^A}{d\mathcal{P}_m^A}(x)\,,$$

which is tantamount to that

$$\frac{d\psi\mu}{d\mu}(r) = \frac{d\psi\mathcal{P}_{m}^{A}}{d\mathcal{P}_{m}^{A}}(r) = \prod_{x \in r} \left(\frac{d\psi m}{dm}(x)\right).$$

Proposition 8. Let m be a smooth measure on X. If $\{U_{\psi}^m\}$ is the unitary representation of Diff (X) given by \mathscr{P}_m , then it is continuous.

Proof We first consider the unitary representation of Diff(A) on $L^2(A^{(k)}, \mathscr{P}_m^A)$ which is given by \mathscr{P}_m^A . Denote the Kakutani's inner product and distance by K_ρ and K_d respectively, then

$$M_1^2(\psi) = 2\left(1 - \exp\left(-\frac{1}{2}K_d(\psi m, m)\right)\right)$$
, for $\psi \in \text{Diff}(A)$,

which ensures that $\lim_{n\to\infty} M_1^2(\psi_n) = 0$ as ψ_n converges to I_d in Diff(A).

Following [2], the unitary representation of Diff (A) on $L^2(A^{(k)}, \mathscr{P}_m^A)$ given by \mathscr{P}_m^A is continuous. Because $L^2(\Delta(A), \mathscr{P}_m^A) = \sum \bigoplus L^2(A^{(k)}, \mathscr{P}_m^A)$, it is easy to show that the unitary representation of Diff (A) on $L^2(\Delta(A), \mathscr{P}_m^A)$ given by \mathscr{P}_m is continuous. Let $F \in L^{\infty}(\Delta(X), \mathscr{F}_A)$, $J \in L^{\infty}(\Delta(X), \mathscr{F}_{A^o})$, then

$$||U_{\psi_n}^m(F \cdot J) - F \cdot J||^2 = ||J||^2 ||U_{\psi_n}^m(F) - F||^2 \to 0 \text{ as } n \to \infty.$$

Thus $\{U_{\psi}^{m}\}$ is contiouous.

Moreover, in a completely analogous fasion, we can prove that the conclusion holds in the case of smooth point measure.

Summing Propositions 1-8, we have the following

Theorem 1. Let μ be a smooth point measure with respect to m, then μ is quasi-invariant under the action of Diff(X), and

$$\frac{d\psi\mu}{d\mu}(r) = \prod_{x \in r} \left(\frac{d\psi m}{dm}(x) \right), \text{ for } \psi \in \text{Diff}(X).$$

Furthermore, the representation $\{U^{\mu}_{\psi}\}$ of $\mathrm{Diff}(X)$ given by μ is continuous.

§ 3. Unitary representation of Diff(X) given by smooth point measures

Let μ_1 and μ_2 be smooth point measures on $(\Delta(X), \mathscr{F}_X)$, and $\{U_{\psi}^1\}$, $\{U_{\psi}^2\}$ be unitary representations given by μ_1 and μ_2 respectively. In this section, we shall prove that $\{U_g^1\}$ and $\{U_g^2\}$ are unitarily equivalent iff μ_1 is equivalent to μ_2 .

Proposition 9. If μ_i , i=1, 2, is smooth point measure with respect to m_i , i=1, 2, and $P_0 \in L^2(\Delta(X), \mu_2)$ such that, for every $\psi \in \text{Diff}(A, m_1)$,

(*)
$$P_0(\psi^{-1}r)\left(\frac{d\psi\mu_2}{d\mu_2}(r)\right)^{1/2} = P_0(r)$$
 a. s., μ_2 ,

then

$$\rho_2^{1/2}(r)\,P_0(r)\,\,{\bf 1}_{A^{(8)}}(P_A r) = C(A,\,\,k,\,\,P_{A^0} r) \Big(\frac{d\mu_1^A}{d\mu_2^A}\,(P_A r)\Big)^{1/2} {\bf 1}_{A^{(8)}}(P_A r) \quad {\rm a. \ s., \ } \tilde{\mu}_2,$$

where $\tilde{\mu}_2 = \mu_2^A \times \mu_2^{A^o}$, $\frac{d\mu_2}{d\tilde{\mu}_2} = \rho_2$, $C(A, k, \cdot)$ is a measurable function on $(\Delta(A^o), \mathcal{F}_{A^o})$, $k \in \mathbb{Z}$.

Proof Define a map $T:\Delta(X)\to\Delta(A)\times\Delta(A^o)$ such that $T(r)=(P_Ar,\ P_{A^o}r)$. Thus, T is a measurable isomorphsm from $(\Delta(X),\ \mathcal{F}_X)$ onto $(\Delta(A)\times\Delta(A^o),\ \mathcal{F}_A\times\mathcal{F}_{A^o})$. Obviously, we can write $F(r)=F(P_Ar,\ P_{A^o}r)$, for $F\in L^0(\Delta(X),\ \mathcal{F}_X)$, where $F(\cdot,\cdot)$ is measurable on $(\Delta(A)\times\Delta(A^o),\ \mathcal{F}_A\times\mathcal{F}_{A^o})$, and T $\widetilde{\mu}_2=\mu_2^A\times\mu_2^{A^o}$.

We set $P(r) = \rho_2^{1/2}(r) P(r) = P(P_A r, P_{A^o} r)$. Then

$$\iint |P(x, y)|^2 d\mu_2^A(x) d\mu_2^{A^o}(y) = \int \rho_2(r) |P_0(r)|^2 d\tilde{\mu}_2 = \int |P_0(r)|^2 d\mu_2 < \infty,$$

so that $P(x, y) \in L^2(\Delta(A) \times \Delta(A^c), \mu_2^A \times \mu_2^{A^c})$.

By Fubinis theorem, there exists a set $M_1 \in \mathscr{F}_{A^c}$ such that $\mu_2^{A^c}(M_1) = 0$, and $P_n(\bullet) = P(\bullet, y) \in L^2(\mu_2^A)$ as $y \in M$.

For $\psi \in \text{Diff}(A, m_1)$, there exists $M(\psi) \in \mathscr{F}_X$ such that $\mu_2(M(\psi)) = 0$, and (*) holds as $r \in M(\cdot)$. As

$$\int_{M(\psi)} \rho_2 d\tilde{\mu}_2 = \iint \mathbf{1}_{M(\psi)}(x, y) \rho_2(x, y) d\mu_2^A(x) d\mu_2^{A^o}(y) = 0,$$

we can find a set $M(\psi, A^c) \in \mathscr{F}_{A^c}$, $\mu_2^{A^c}(M(\psi, A^c)) = 0$ and, for $y \in M(\psi, A^c)$, $\mathbf{1}_{M(\psi)}(x, y) \rho_2(x, y) = 0$, a. s., μ_2^A .

Clearly, as $y \in M(\psi, A^o)$, we have

$$P(\psi^{-1}x, y) \left(\frac{d\psi \mu_2^A}{d\mu_2^A}(x)\right)^{1/2} = P(x, y), \text{ a. s., } \mu_2^A.$$

Suppose that $\{\psi_n\}$ is a countable subset of Diff (A, m) which is dense in Diff (A, m_1) .

Let $M = \bigcup_n M(\psi_n, A^o) \cup M_1$, then $M \in \mathscr{F}_{A^o}$, $\mu_2^{A^o}(M) = 0$. As $y \in M$, we have $P_y(\cdot) \in L^2(\mu_2^A)$ and

$$P_y(\psi_n^{-1}x)\left(\frac{d\psi_n\mu_2^A}{d\mu_2^A}(x)\right)^{1/2} = P_y(x)$$
, a. s., μ_2^A .

According to Theorem 1, if $\psi \in \text{Diff}(A, m_1)$ and $y \in M$, then

As $\mu_1^A = \psi \mu_1^A \approx \mu_2^A \approx \psi \mu_2^A$ for $\psi \in \text{Diff}(A, m_1)$, we have

$$\frac{d\psi\mu_{2}^{A}}{d\mu_{2}^{A}}(x) = \frac{d\psi\mu_{2}^{A}}{d\psi\mu_{1}^{A}}(x) \cdot \frac{d\psi\mu_{1}^{A}}{d\mu_{2}^{A}}(x) = \frac{d\mu_{2}^{A}}{d\mu_{1}^{A}}(\psi^{-1}x) \cdot \frac{d\mu_{1}^{A}}{d\mu_{2}^{A}}(x).$$

Then

$$P_{y}(\psi^{-1}x)\left(\frac{d\mu_{2}^{A}}{d\mu_{1}^{A}}(\psi^{-1}x)\right)^{1/2} = P_{y}(x)\frac{d\mu_{3}^{A}}{d\mu_{1}^{A}}(x), \quad \text{a. s., } \mu_{2}^{A}.$$

for $y \in M$.

Define

$$\Phi_y(x) = P_y(x) \left(\frac{d\mu_2^A}{d\mu_1^A}(x)\right)^{1/2}, \text{ for } y \in M,$$

thus, $\Phi_y(\cdot)$ belongs in $L^1(\Delta(A), \mu_1^A)$ and $\Phi_y(\psi^{-1}x) = \Phi_y(x)$ a. s., μ_1^A , for $\psi \in \text{Diff}(A, m_1)$. By Proposition 1, we can find constant O(A, r, y), $k \in \mathbb{Z}$, such that

$$\Phi_y(x)\mathbf{1}_{A^{(h)}}(x) = C(A, r, y)\mathbf{1}_{A^{(h)}}(x), \quad \text{a. s., } \mu_1^A$$

It is clear that

$$O(A, k, y) = \int_{A^{(k)}} P_0(x, y) \rho_2^{1/2}(x, y) \left(\frac{d\mu_2^A}{d\mu_1^A}(x) \right)^{1/2} d\mu_1^A / \mu_1^A (A^{(k)}),$$

where $\mu_1^A(A^{(k)}) = \mu_1\{r: |r \cap A| = k\} > 0$ and

$$|C(A, k, y)|^2 \le \int_{A^{(k)}} |P_0(x, y)|^2 \rho_2(x, y) d\mu_2^A(x) / \mu_1^A(A^{(k)}).$$

It means that C(A, k, y) must be in $L^2(\Delta(A^o), \mathscr{F}_{A^o})$. Then we can say that for $y \in M$, $k \in \mathbb{Z}$,

$$\rho_2^{1/2}(x, y) P_0(x, y) \mathbf{1}_{A^{(k)}}(x) = C(A, k, y) \left(\frac{d\mu_1^A}{d\mu_2^A}(x)\right)^{1/2} \mathbf{1}_{A^{(k)}}(x), \quad \text{a. s., } \mu_2^A.$$

By Fubinis theorem, we have

$$\rho_2^{1/2}(r)P_0(r)\mathbf{1}_{A^{(k)}}(r) = C(A, k, P_{A^{\circ}}r) \left(\frac{d\mu_1^A}{d\mu_2^A}(P_A r)\right)^{1/2}\mathbf{1}_{A^{(k)}}(P_A r), \quad \text{a. s., } \widetilde{\mu}_2.$$

Theorem 2. Let μ_i , i=1, 2, is a smooth point measure with respect to m_i , i=1, 2. If $\{U_{\psi}^1\}$ and $\{U_{\psi}^2\}$ are the unitary representations of $\mathrm{Diff}(X)$ given by μ_1 and μ_2 respectively, then $\{U_{\psi}^1\}$ is unitarily equivalent to $\{U_{\psi}^2\}$ iff μ_1 is equivalent to μ_2 as measure.

Proof By Proposition 4, the sufficiency follows. Next we consider the necessity. Denote the inner product of $L^2_{\mu_i}$, i=1, 2, by (,)_i, i=1, 2. If there exists a unitary map T from $L^2_{\mu_1}$ onto $L^2_{\mu_2}$ such that $TU^1_{\psi}T^{-1}=U^2_{\psi}$, for $\psi\in \mathrm{Diff}(X)$, setting $F=1\in L^2_{\mu_1}$, and $G=T(F)\in L^2_{\mu_2}$, then, for $\psi\in \mathrm{Diff}(X)$, m_1),

$$G(\psi^{-1}r)\left(\frac{d\psi\mu_2}{d\mu_2}(r)\right)^{1/2}=G(r)$$
, a. s., μ_2 .

From Proposition 9, we claim that for each $A = S_r$,

$$\rho_2^{1/2}(x, y)G(x, y) = \sum_{k>0} G(A, k, y) \left(\frac{d\mu_1^A}{d\mu_2^A}(x)\right)^{1/2} \mathbf{1}_{A^{(k)}}(x) \quad \text{a. s., } \widetilde{\mu}_2,$$

where

and

$$\rho_2 = \frac{d\mu_2}{d\widetilde{\mu}_2}.$$

If $\psi \in \text{Diff}(A)$, then

$$\rho_{2}^{1/2}(x, y)G(\psi^{-1}x, y) = \sum_{k>0} C(A, k, y) \left(\frac{d\mu_{1}^{A}}{d\mu_{2}^{A}}(\psi^{-1}x)\right)^{1/2} \mathbf{1}_{A^{(k)}}(x) \quad \text{a. s., } \widetilde{\mu}_{2},$$

$$\frac{d\mu_{1}^{A}}{d\mu_{2}^{A}}(\psi^{-1}x) \frac{d\psi\mu_{2}^{A}}{d\mu_{2}^{A}}(x) = \frac{d\psi\mu_{1}^{A}}{d\mu_{2}^{A}}(x), \quad \text{a. s., } \mu_{2}^{A}.$$

$$\begin{split} \rho_{2}^{1/2}(x,\,y)G(\psi^{-1}\!x,\,y) \Big(\frac{d\psi\mu_{2}^{A}}{d\mu_{2}^{A}}(x) \Big)^{1/2} &= \sum_{k>0} C(A,\,k,\,y) \Big(\frac{d\psi\mu_{1}^{A}}{d\mu_{2}^{A}}(x) \Big)^{1/2} \mathbf{1}_{A^{(k)}}(x) \,, \ \text{a. s., } \mu_{2}^{A}. \\ &\iint \rho_{2}^{1/2}(x,\,y)G(\psi^{-1}\!x,\,y) \, \Big(\frac{d\psi\mu_{2}^{A}}{d\mu_{2}^{A}}(x) \Big)^{1/2} \rho^{1/2}(x,\,y) \overline{G(x,\,y)} d\mu_{2}^{A}(x) d\mu_{2}^{A^{o}}(y) \\ &= \sum_{k>0} \iint |C(A,\,k,\,y)|^{2} \Big(\frac{d\psi\mu_{1}^{A}}{d\mu_{2}^{A}}(x) \Big)^{1/2} \Big(\frac{d\mu_{1}^{A}}{d\mu_{2}^{A}}(x) \Big)^{1/2} \mathbf{1}_{A^{(k)}}(x) d\mu_{2}^{A^{o}}(y) d\mu_{2}^{A^{o}}(y) \\ &= \sum_{k>0} \iint |C(A,\,k,\,y)|^{2} d\mu_{2}^{A^{o}}(y) \Big(\frac{d\psi\mu_{1}^{A}}{d\mu_{2}^{A}}(x) \Big)^{1/2} d\mu_{1}^{A}(x) \,. \end{split}$$

Because

$$\begin{split} (U_{\psi}^{2}G, G)_{2} &= \iint G(\psi^{-1}x, y) \left(\frac{d\psi \mu_{2}^{A}}{d\mu_{2}^{A}}(x) \right)^{1/2} \overline{G(x, y)} \rho_{2} d\mu_{2}^{A} d\mu_{2}^{A^{o}}, \\ (U_{\psi}^{1}F, F) &= \sum_{k \geq 0} \int_{A^{(k)}} \left(\frac{d\psi \mu_{1}^{A}}{d\mu_{1}^{A}}(x) \right)^{1/2} d\mu_{1}^{A} \\ &= \sum_{k \geq 0} \frac{e^{-m_{1}(A)}}{k!} D(k, A) \left(\int_{A} \left(\frac{d\psi m_{1}}{dm_{1}}(x) \right)^{1/2} dm_{1} \right)^{k}, \end{split}$$

where $D(k, A) = \mu_1\{r: |r \cap A| = k\}/\mathscr{P}_{m_1}(A^{(k)}) > 0$.

Hence we have

$$\begin{split} & \sum_{k \geqslant 0} \left(\int |C(A, k, y)|^2 d\mu_2^{A^0} \right) \frac{D(k, A)}{k!} \left(\int_A \left(\frac{d\psi m_1}{dm_1}(x) \right)^{1/2} dm_1 \right)^k \\ &= \sum_{k \geqslant 0} \frac{D(k, A)}{k!} \left(\int_A \left(\frac{d\psi m_1}{dm_1}(x) \right)^{1/2} dm_1 \right)^k. \end{split}$$

It is easy to see that for every $A = S_r$, we always can find a sequence $\{\psi_n\} \subset \text{Diff}(A)$ sheh that

$$\int_{\mathbf{A}} \left(\frac{d\psi_n m_1}{dm_1} (x) \right)^{1/2} dm_1 \to 0 \quad \text{as } n \to \infty.$$

Consequently

$$\int |C(A, k, y)|^2 d\mu_2^{A^c} = 1, \text{ for every } k \in \mathbb{Z}.$$

Because

$$\rho_2(x, y) |G(x, y)|^2 \mathbf{1}_{A^{(k)}}(x) = |C(A, k, y)|^2 \left(\frac{d\mu_1^A}{d\mu_2^A}(x)\right) \mathbf{1}_{A^{(k)}}(x), \quad \text{a. s., } \widetilde{\mu}_2,$$

according to Fubinis theorem, we have

$$\int \rho_2(x, y) |G(x, y)|^2 d\mu_2^{A^o}(y) = \left(\frac{d\mu_1^A}{d\mu_2^A}(x)\right), \quad \text{a. s., } \mu_2^A.$$

Set $A_n = S_n$, $n = 1, 2, \cdots$ Clearly, $\{\widehat{\mathscr{F}}_{A_n}, n = 1, 2, \cdots, \}$ is increasing and $\bigvee_n \widehat{\mathscr{F}}_{A_n} = \widehat{\mathscr{F}}_{X}$. Moreover, $\left\{\frac{d\mu_1^{A_n}}{d\mu_2^{A_n}}(P_{A_n}r), \widehat{\mathscr{F}}_{A_n}, n \in Z_+\right\}$ is martingale. On the other hand

$$E^{\mu_2}(|G|^2|\widehat{\mathscr{F}}_{A_n}) = \int |G(P_{A_n}r, y)|^2 \rho_2(P_{A_n}r, y) d\mu^{A^o}(y), \quad \text{a. s., } \mu_{2o}$$

So that

$$\int \left| \left(\frac{d\mu_1^{A_n}}{d\mu_2^{A_n}} \left(P_{A_n} r \right) \right) - |G(r)|^2 \right| d\mu_2 \rightarrow 0 \quad \text{as } n \rightarrow \infty.$$

It is well known that $d\mu_1 = gd\mu_2 + d\mu_{12}$, where $g \in L^1_{\mu_2}$, μ_{12} is the singular part of μ_1 in its Lebesques decomposition. As $\mu_1(B) = 0$ iff $\mu_2(B) = 0$ for $B \in \widehat{\mathscr{F}}_{A_n}$, we have

$$\int_{B} d\mu_{1} = \int_{B} g d\mu_{2} \quad \text{for } B \in \widehat{\mathscr{F}}_{A_{n}}.$$

Thus

$$\int_{B} \frac{d\mu_{1}^{A_{n}}}{d\mu_{2}^{A_{n}}} (P_{A_{n}}r) d\mu_{2} = \int_{B} g d\mu_{2}.$$

Setting $n \rightarrow \infty$, we see

$$\int_{B} |G|^{2} d\mu_{2} = \int_{B} g d\mu_{2} \quad \text{for } B \in \mathscr{F}_{X_{\bullet}}$$

Consequently

$$1 = \int_{A(x)} |G|^2 d\mu_2 = \int_{A(x)} g d\mu_2,$$

which implies that $\mu_{12}=0$, i. e., $\mu_1\ll\mu_2$. In completely analogous fasion, we can prove that $\mu_2\ll\mu_1$, this ends the proof.

Corollary. If m, i=1, 2, is a smooth measure on X, and $\{U_{\psi}^{m_i}\}$, i=1, 2, is the unitary representation of $\mathrm{Diff}(X)$ given by \mathscr{P}_{m_i} , i=1, 2, then $\{U_{\psi}^{m_i}\}$ is unitarily equivalent to $\{U_{\psi}^{m_2}\}$ iff the Kakutanis distance $\left(\int (\sqrt{dm_1}-\sqrt{dm_2})^2\right)^{1/2}$ is finite.

Acknowledgment

The author wishes to thank Professor Xia Daoxing for his encouragement and help.

References

[1] Vershik, A. M., Gelfand, I. M., Graev, M. I., Usp. Mat. Nauk, 30 (1975), 1-50.

[2] Xia, Daoxing, Measure and Integration Theory on Infinite-Dimensional Space (translated by E. J. Brody), Acad. Press.

[3] Xia, Daoxing, On the representations of the local current algebra and the group of diffeomorphism (I), Sci. Sinica, Special Issue (II), (1979), 249—260.