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Abstract

In this work Borel’s technique is applied td_ analyzing the solvability of partial differetial
equations. It is proved that if P is analytic-hyposelliptic, f is 0, then the problem for Pu
=f with any number of conditions on a fixed point is ill-posed. Besides, some other results
on the flat solution to Laplace equation and wave equation are obtained,

In this note we are going to apply the Borel technique to discuss some problems
in partial differential equations, such as the solvability in the class of flat functions
for differential operators, approximate solvability for differentfial operators, which
may not be local solvable. At first, for reader’s conveniency we recall Borel’s lemma.

Lemma. For any sequence {h,} (o is multi-indew), there ewists @ 0= function.
g(@) in frieféghborrhood of 0 in BR", which swtfz}sﬁes' conditions

o (D*9) (0) =hy, | )]

Let us consider
Pu=f, (@€Q) (2)
D*u=h,, |a|<N, €M - ‘ 3

where P is a differential operator of m™™ order defined in an open set Q of R*, M is
a submanifold of Q, f and h, are given functions defined on @ and M respectively,
he and f satisfy compatibility conditions, N is a finite integer' or infinity. M. 8.
Baouendi and E. 0. Zachmanoglou have proved (see [1]), if all coefficients of P are
analytio, M is analytic and nonocharacteristio, f=/h,=0, then the solution w of (2),
(8) will vanish in some neighborhood of M. This means the solution of (2), (8) is
unique if it exists. However, does the solution of (2), (8) really exist? When dim (M)
=n—1, (2), (3) is a Oauchy problem. At that time, problem (2), (8) has a uniqie .
solution, so long as N =m. When codim (M)>2, things will be quite different,

- Theorem 1. If Pis Laplacian, M is a single point, then problem (2), (8) has
~ more than one solution for any finite N, and this problem may have no sqlutfion in the

case N =oco, '

Proof Without loss of generality, we can choose M as origin. We also can

~ assume f=0 by substracting an arbitrary solution of Poisson equation du=f. Notice
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that each A, is a number because M is a point. We construot a series of polynomials

Zyofk degree as follows. First, choose Zg=hy, Zi-E hw,. For k>2, the number of

4=1

coefficients of the homogeneous polynomial Z of & degree with n variables is OF, 4.
Meanwhile, the form of compatibility is

D Au| y=0 @)
Since Z;a is a polynomial of & degree, this equallty can be rewritten as
DoAZ|u=0 |B|= (®)

Equality (5) contains Of;2_s conditions for every fixed k(k> 2), so the linear algebraic
system of coefficients of Z; is solvable. Arbitrarily ehoosmg 7, according o (B), we

make summation sz"’ which satisfies (2), (8). Obviously, because of arbitrariness
o=

of Z;, the solution of (2), (3) is nob unique,

Now lob us turn to the case of N=oo. If there exists a solution of (2), (8);
beoause of P=4, the solution should be analytic. It is well known that the derivatives
~of analytio functions should satisfy an inequality

|Du(@) |<O(OlaD) ©®
-for some constant 0 (se0 [2]). So if wo choose {h.} in such a way, that {h.} grows
‘fagter than O(0|a|)!® with any constant O, for example, /= lai|2l%l, then problem
(2), (8) can never have solution,
' Remark 1. Similarly, if P is analytic-hypoelliptic, M is a point, then the
second part of conclusion in Theorem 1 still holds,

Theorem 2. If Pis anylytic-hypoelliptic, M is single point, all he in (6) are

equal to 0, then we can find & flat at M funétfi;on 5 such that Pu=jf doesn’t have any flat
solution,
_ Proof The key pointis to construct {4}, which satisfies compatibility conditions, -
such that problem (2), (8) has no solution. We notice that for every integer b, the
number of A, (|a] =k) is Ofy-y, these h, and only these A, appear in compatibility
conditions DAdu|y=0(| 8| =k—2), so We can find non-trivial h,(|a| =k), for the
number of conditions DA4u] =0 is OF72_, which is less than Of,;_,. Besides, for
any constant y, vha(|a|=F) still satisfy D°4u|y=0. This fac indicates thab there
exists a desired set of A,, which increases very quickly and does not allow a solution
of (2), (8). Using Lemma 1 we get a O~ function g. Set f=—4g, f is flab at M by
compatibility conditions, and we can claim that the equation du=jf has no flat at
M solution. In fact, if such u would exist, u+g would satisfy 4(u+g)=0 and
D~ (u+y) | =P for any o, this contradicts fo the construction of {ha},

Using a different method, S. Alinhao and M. 8. Baouendi have pointed out that
the conolusion in Theorem 2 is valid in the case n=2, (see [4], p. 190),
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Theorem 3. If P in (2) is wave operator, M is t-awis, N in (8) is infinity, then
there ewists o sequence {he}, such that Pu=0 with condition 3 hws' no solution which 8
temper distribution in direction . Furthermore, if N in (8) is finite, then the solution
is mot unique, - ‘

Proof We choose {ho} as that one in the proof of Theorem 1, each A, is inde-
pendent of ¢. Suppose Theorem 3 is not true, that means we can find a solution « of
Pu=0, which satisfies (8). It is well known that the singularity of solution w ig
contained in the characteristic seb E(P),- which does nob intersect with normal
bundle of i-axis or any other lines parallel to {-axis, therefore, for evéry fixed @ fhe
restriction u (¢, @) is a well-defined distribution. Because v is a temper distribution,
we can introduce an analytic funotion g(f) =¢7", such that Lg(Dult, ®)> is well-
defined. According to Hormander’s theorem ([2], theorem 4.1) we know fw)=
Lg(®), u(t, @) is analytio and ' |

DA @) lama =<9 (D), DPult, ) lomod =g O,

Obviously, this is impossible because of giowth property of A%,

When N in (8) is a finite number, R. 'S. Strichartz proved (see [8]), there
oxists a solution of (2), which satisfies (3) and - -

. Do) y=0 |a|=N, . : (1)
Certainly, if we omit the condition (7), the solution will never be unique,

Remark 2. Similar to Theorem 2, we can prove, if P in (2) is wave operator,

M is t-axis, N in (8) is infinity, then there exists a flab at M function f, such that
Pu=f has no flat at M solution, -

Finally, we are going to apply Borel’s lemma to the problem of solvability. It
is-woll known that there exists partial differential operators P with O= coefficients,
defined in an open set @, for some O funotion f we cannot find any solution in any
subdomain of @, but if we consider the solvability on some set of equivalent classes,
the following fact will be valid, : _—

Lot My, -+, My be Ia,rbitrary points in .Q,. we call O” functions 1 and fa are
equivalent and use the notation fi~fs, if fi~fa ig flab at My, -+, My Aocordin'g to
this equivalent relation we can divide 0=(Q) to a seb of equivalent classes 0%/~

Theorem &. Suppose P is o partial differential operator with O coefficients
defined in Q, M, -+, M, are arbitrary points in 2, the principal symbol P ts no
degenerate in M,A<j<k), then, the induced operator Py on quotient space 48 o suijectfive
map from 0=/~ to 0=/~ ' : :

Proof Let O; be the neighborhood of point M,(j=1, ++, k), 0,CL, O 0,,=0

for 1<<j, f1, fa<<h. For any FE0=(2), we can caloulate the possible values of w and
its derivatives from the equatioﬁ Py=f. We denote the possible values D ab M; by
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Ri(1<j<h, |a|>0). Making use of Borel’s lemma we can gonstruct O functions v,
the derlvatlves of which are equal to Al. Let {; be a 07’(0;) function, which is equal

to 1 in a smaller neighborhood O} O0; of M;, then u=2 {;v; satisfies the conditions
v =

(D"Pu) (M) =Df (M) 1<j<k, |a]>0,
this means Pu~jf or Pi[u] = [f], where [«], [f] denote corresponding equivalent
class. The proof is complete,

Remark 8. Theorem 4 indicates that we can find a O function u suoh that Pu
coincides with f at any finite points, so we can regard u as a kind of approximate
solution. Unfortunately, we don’t know outside the vicinities of these finite poinis
‘how near to f the funclion Pu is, '

Remark 4. We can generalize Theorem 4 to the case of system or Frobenius
algebra of vector fields (see [5]). In the latter case, if L is a Frobenius algebra,
which is spanned by m linearly independent elements Li, +-+, Lm, and fi, **, fm
are 0= functions satisfing _ | _
Ly fo=Lifu, 1<igia<m, ®
then Lu=f; has an approximate solution in above-mentioned meaning,

For simplioi'ty of notations we consider the case m=2, by means of a transformation

of variables we can denote Ly, Ly as = —l—sz aw B +Eb (N=n—2).
] 2

. §=1
At point M;, we give the values of derlvatlves (D2 (M) arbltrarlly, then from
Lu=f, we geb (DiDw) (M), (DLDmw)(M;) (1<I<oo, |a|<oo) respeotively.
Furthermore, from LyLgu=Iif (or LoLuu=Lof:) we got (D L Dau) (M) (or
(D, DLD%) (M), and step by step, all derivatives of u at M; can be obtained. The
Frobenius condition [Li, Is]=0 and (8) ensure the process is reasonable, therefore,

the result can be obtained like Theorem 4,

Acknowledgment

We would like to thank M. S. Baouendi and E. 0. Zachmanoglou for their
valuable discussions in this work,

‘References

[11 Baouendi, M. 8., Zachmanoglou, E. 0., Unique continuation of solutions of partial differential equations
and inequalities from manifolds of any dimension, Duke Math. J., 45 (1978), 1—13.
[2] Hormander, L., Uniqueness theorem and wave front sets for solutions of linear differential equatlons
with analytie coefficients, Comm. Pure Appl. Math., 24 (1971), 671—704.
[3] Strichartz, R. 8., The stationary observer problem for Ow=Mu and related equations, J. diff. eg., 9
(1971), 205-—223.
[4] Alnhae, 8., Baouendi, M. 8., Uniqueness for the characteristic Cauchy problems and strong unique
continuation for higher order partial differential inequalities, dmer. Jour. Math., 102 (1980), 179—217.
" [5] Baouendi, M. 8., Treves, F'., A property of the funetions and distributions annihilated by a locally
" - integrable system of complex vector fields, 4nn. of Math., 118 (1981), 387—421, -




