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Abstract

The purpose of this paper is to study the existence of the classical solutions of some
“Dirichlet problems for quasilinear elliptic equations

2 . 2 2 ou  Ou
all(w; Y, u)_él;}%— +2a12(a:, Y, “) aigy +a22(w; Y, u) "aa‘ﬁg"l'f(m; Y, U, ’a—w‘) '5'y‘>=0:

-where ay,;(z, ¥y, w) G j=1, 2) satisfy
. 2
Mg, Y, W) [§12<”2=1 4,25 Y> wyty< A, Y, u) |§(?
-for all ¢ER? and (z, y, w) € %[0, +-00), i. 0., A%, ¥, W 4 Y5 ) denote the minimum
_and maximum eigenvalues of the matrix [a,(@, ¥, w1 respectively, moreover i
M@, ¥, 0)=0; Az, u, 0)=0; A=, 9, u) >A(w, y, w)>0, W>0). '
Some existenge theorems under the «patural conditions” imposed on f (®, Y, %, Py O

-gre obtained.

This paper is concerned with the Dirichlet problem on Q for the foilowing ~

-quasilinear equation
*u
0w 0y
ou ou)\_ '

+f (m) ‘y) u, —3—;, 'é_?'l_)'“o: (1)

~where & is a bounded domain in R?, ay (a, y, u) (6, j=1, 2) satisfy
2
?“(f‘; Y, 'U,) l§l2< i%l a‘i(w: Y, u)§,§,</1(w, Y, u) lgls (2>

for all £€R? and (=, 9, u) €A% [0, +o0), i. e., A, ¥, w)., A(=, y, ) denote thé

‘minimum and maximum eigenvalues of .the matrix [a;(e, ¥, u)] respectively.

u u
a (w) v, u’)w_ +2a12 (w) Y, u’) + @2 (w: Y, u) "a'?;é"

Moreover
Ao, 9, 0)=0, A(z, v, 0)>0; Az, y, WMo, Y w)>0, u>0, 3)
:(Clearly, equation (1) is elliptic when u>0, but is degenerate when u=0,
In general, as we know™, the Dirichlet problem for linear degenerate equations
“has only weak solutions. However, when the degeneracy occurs on no other than the
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boundary, it is possible o have classical solutiong™®. |
J 1ang[33 studled the D1r1ohle’u problem on .(21 for quas111near equations

and : .
grbj—l—K(u) +“<‘” Y) 5 +b( il/) —I-O(w y)u—f(a; ), (5)

where Q4 is an open domam enolosed by the segment {(z, 9) |0<e<1, y=0} and
. the ocurve I'y joining the pomt (o, O) with the point (1, 0) in the halfplane.
A(w, y) |y>0} K (u) satisfies
K (0)=0; K u)>0, u>0, (6)
Obviously, equations (4) and (5) are of type (D). Jiang showed that, When c(az P<
0 and f (w 1) <0, equation (4); and equatlon (5) as ‘well, together w11,h the oontlnuousf
'boundary oondﬂnon : . v
o w(@, ¥) o0, =p1(o, fy), | o M
pi(e, 9)=0, (v, ) €OQ\Ty; gi(e, )>0, (v, y) €Ly |
‘has a classical solution. This solution is positive in the interior of £, in other words,
equations (4) and (5) are not.degenerate : in Q, .
We™! extended Jiang’s result to more general equa,tlons in fn—dlmensmnal domam

In partloular for the equatlons on 0

au R Y A
K Gat+-2 +f<w v G )0 ®
and
: >y : ou  ou\ L A
el +K(’“) (m, Y, 4, _6_5"8_y>~0° 9)

We proved that Dirichleb problems (8), (7) and (9), (7) have the classical solutions
which are positive in the interior of Q4 under the “natui:al conditions” imposed on
f(@ 9 u 9, 0.

- In'§ 1 we first consider equatlon (8) and (9) on [22 with the partlally leshmg'
boundary value™ « | o .
u(m (U) |992 %(aj (U) : : (10)
_where 2, is bounded by ‘the stralghwlmes ©=0, o=1, y=0 and the open ourve [y
Jomlng the p01n15 (0 k) Wlth the point (1 h) 1n the halfplane {(w y) ]fy>h}, (h>0)
@g is defined and continuous on 90, with

g2 (2, ¥) =0, (&, y) €02:\I's; @a(a, y)>Q; (@, ¥) €T,

‘We shall show that the Difiohlét ﬁro‘blem for equation (8) or £, has a classical
solution only under the “na'm_tural oohdi’nions” imposed on f(w, y, u, p, ¢) as well,
Bui eciﬁatioii (9) cannot be ensured to be undegenerate in the interior of 25, We
shall givé an eX’amp_l'e'Which shows that the solution of (9, (10) is nob identically
positive in ;. Furthermore we shall make an estimate about the support of the
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No. 1

know where the degen-

solution of the equatioﬁ of type (9) with (10). Thus we can
y, w) must be restricted

sod. Hence we are sure that the coefficients ay (%,
1 the interior of 2,
(1) under one of the

eracy is caun
in order to make equatioh @ undegenerate i
Tn § 2 we shall discuss the Dirichlet problem for equation

following conditions.
(i) the boundary value vanishes
(ii) the boundary value vanishes
(iii) the boundary value vanishes on

only at a single point;
on a straight segment;
4wo straight segments in different direc-

‘tions.
We shall prove the existence theorems for these Dirichle problems under the
“patural conditions” imposed on f (w, ¥, , D, O and some restrictions imposed on

@i (@, Y, w),
§ 1.
 “For problem (8), (10), we have the following resulb.
 Theorem 1. If ’
1) f(@, 9, w », OEC (@
_ f(z, 4, 0, 0, 0)=>0,
for (@, y) €82 and uER,
D |f@ 9, v 0, OI<H@+LTD, -
a9, 1 2 O, fo@, 9w B DISH (p*+*+1), o
\fulo, 9, w0, D|<H (P*+¢+D), . - (12)
o, 9, W 2, O | [ Falt 9 % 2 D |<H(NPFE+1),

for (@, y) €05, 0<u<M+1, —coLp, < 400, where

M=ma,x{ max Qg(d), y); max f(m; Y,
: (@€ (@ Y)ELe

xR xR?) nOi(ngRxR"‘_), _ o

0; OJ O)/CO}: |

H is a positive constant, ‘
3) K (u) €0[0, «0) NC**(0, ), |
4) - I'y satisfies the out-ball condition, ' (18

the problem (8), (10) has @ classical solwtio
Proof Consider the equation

n which Gs positive in Qa,

I O | O o v _ '
Ls[u] "“'K<u+8> amz + 8y2 +f<m’ y; ?,l;, am) ay> | 00 ’ (14:>

Define a fonetion K. (w) €Owe(—oo, +o0) suth that

1 in E@<E.w<2 mx K@),
3 e<u<M+se e<u<i-s '

K. (w) =K ), e<u<<M+s,
According 1o an oxistence theorem™ for quasilinear elliptic equations we know tha$
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the equation
‘ 8 U,

r ot f(o, 0w 2, o)=0 (15)

with boundary condition (10) has a solution w,(y, ®) €O(R,) N 0*%(Q,). Write (15)
in the form

au ou ou ou
3’2+fo<“} Y, u, ay)'v?g/")dfv '37

f,,w Yy, u, rau, Odmo + fu(m, Yy, w, 0, 0)dr-u
ow

=—f(2, 9, 0, 0, 0),
By (11) and the maximum principle, we have
0<u(e, <M, (2, y) €D, (16}

Henoe u.(@, y) is also a solution of (14), (10),

Then we prove that for any sufﬁclently small 6>0 there is a constant 70>0,.
independent of & such that

U2, Y=m, (v, ¥) €220 {20<w<1—28, y>25}, an

Forthis purpose, we introduce

Kg(z,5) .
{ j etdl, S<w<i—d,
v(@, y) =1 JEuz,9)
0, x=3, 1-3,
where ¢(w, 9) = {;)—*(—11 g ot Y =max{y| (e, y) €EQ:}, and K is a positive:

constant given later on. Set §=2,N {(», ) |d<w<1-8, y>0o}. Obviously v (e, ¢) is:
continuous on § and it is easy %o see that for (®, ) €S and K>2

—_ 1 y ~(Eg(z, 1))
o0 '<(a;—5) A==y H9(® Ve ;
& 2 kg (e, y)oEoEmm»

T (@—0) (1—0—u)
Consider
w(@, §) =u (s, y) —oov(s, ¥) (0<o<1),
Assuming that w (e, y) has a negative minimum in S, we shall derive a contradiction.,
At the minimum point,

K (u 62’11) 0 aus . ov aus _ ov

af ' ow ‘e’ oy oy
By (14), (11) and (12), at that point for K >2 _
K (u,+ s) yra LANRLALA gyw —f (e, vy, u, cfvx, ovy) — 0 [K (U,+ &) vyp+0,,]

1
= — 0K (U4 8) V4y— 00y~ 00, J‘O folo, y, %, ov,, vov,)dr

1 1
-MJ”L f@(mJ y) 'Ms, 'I;‘O"U,, O)d’D’-O"I)JO f“(w) y: 7'“8; OJ 0>d7—f(m) 'y) O) Ol O)
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< — 0 [K (U + 8) Vop+vyy— 2H (03+07) — H (| v| + | oy]) — Ho]
<_o-e—(xg(z,y))°{ 8K (9@, 90)° __ & (y,+s) ( 2kg (e, Y)
. @

(w—0)2(1—0—w)® —8) (1—0—®)
__2HF(y(a, y))2 2H ___ Hiyg(w, v)
(—93)*(1— —2)? (#—0)2(1—d—u)* (w—8)(L—0—w)
HIG2 K3g(z, 9))°
D R »}‘

o0
Since the function e"“'[ ¢ di—>0 (as #—>-+00), there exists a constan®
%
o0
N= sup {eﬁf e~ vdt }
0<z<+oo 2
Thus, at the minimum point,

R(u+e) 39+5%
<—“"“"“‘”"””'{ (wﬁké“’({f O d oty . ARG I,
e e ey )
<_"6—(Kg(”'m{<m '§§§1””§ ik kaa%((ﬁ B yA-H J
AT MR L
R
v R ie]
o k;%q(é yz%);)ﬂr[“k‘”zﬂ] (w—a)z(lf—a—w)z[%‘“zﬂ]
s 8)(]10 5= m)[ks ]+[lo‘*—HN]} |

where /4= , nax K (s), take k so large that the terms in the brace on the right-hand
<u<M+1
3 w

side are positive, it follows that K (us—l— s) ayg

-+

9Y <0, we got a contradiction.

Hence w(w, 4) cannot have a negative minimum is S. Since
’Ll)(w, y) =us(w: y) —0-'020: (w: y) easn {9}=-“8, 1_8; or y=8}
and -
400
w(a, 9)=pa(e, =000, D>, min o =0 [ o,

(@, ¥) € TN {d<w<1—~0}
taking o small enough, w(e, y) is not negatlve on 88. It follows that w(w, ) =0 on

S i. e.,
U (@, y)>¢.v(fv, y), (e, y) €S,

By putting no=0v(25, 23), (17) is established.
Set s=% (n=1, 2, +--) and denote the corresponding solution u,(x, )by (2, 9).
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Using the interior estirate of the solutions for quasilinear ellipﬁio equations and
the Schauder’s interior estimate, we know that the C%%-norms of un(, 9), (n=1,

-++) are umformly bounded in any ologsed subdoma,m of ;. Then a subsequence
of {un(@, 9)} can be selected such that it converges in any closed subdomain of
Q, in C®—norm sense. Without loss of generality weé may assume that the subsequence
is {u (e, y)} itself. Denote its limit function by u(w, y). Clearly u(w, y) € C?(Q,).
Since %1 [4,] =0, i follovvs th_at '

K@ 2 G gt (o v S, _—g_g)——-o, (2, 9) €.
From (16) and (17), ’
0<Lu(e, <M, (o, y)eﬂz
In view of (18) and (17), using a well-known barrier, it is easy to show that u(a, )
is contmuous up to I'y and satisfies boundary condlhon (10) on Iy, It remains to
prove that u(e, y) satisfies (10) on 02,\I's. To do $0, We shall construot a continuous
function P(a, y) such that - L
P (ao, yo) 0 - (18)
P, Bu, 9), (o 9) €ET=0N {0<r<ss, (19)
Where (e, y) is a point on 025\ I's, do i a positive constant, -
=NV G- -k,
R is the redius of an out-ball which is tangent ’uo 0Q, ab (wo, yo) and centred at
CEDE
' Thus by (19) and (16) we have |
P(a, y)=ule, y)>0, (o, y) €T, »
From the continuity of P(», y) and (18), = lim wu(w, v) =O, vna,mely', u(e, ¥)

- (@ ) (@0, Yod

satisfies (10) on 0Q,\ Iy,
Now let -
P(a, ) =P(r),
_ the function P(z) is constructed as follows.

Define - :
1) = max ga(s, )+, 230,
<r<z

(@, L =M,
ho(z) =< inf{y| (z, _y)-G_U*},- O<<e<<M +2,
0, A 2<0,

Where I-4(2) is s the inverse funotion of 1(2). U= {(z, y) |0<2<M +2, h(z) <y<h (M
+2)}, U* denote the conyex closure of U in R, .
- Next, define '

hi (z) = Ji: Ja_(z ._Vt) }bo(i - 06) dt, :
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Wh_ere Jo(t) is a mollifier with the radius a, -
‘ min [K(v), 1], Oo<u<M+1,
Let K(u> — J usv<M+1
min[K (M+1), 1], u>M+1,.

and | B=—.—H[h' (M+1)] +Z— By(M+1) +HA+1,
" where A= max [K (u) 11,

O<u<M+1

Further define

L) = maX[KB( S —(In 7} (z))] 0‘<z\<M+1,
()= {h’i(M 1) el o M1,
) Z':O,

and

ha(2) = j PO, O<e<M-+1,

| Fma,lly, lot P (z) be the inverse function of %, (2), namely,

P("") h’21(z): 0<Z<80,

where o 8o=hg (M +1) >0,
Tt is not difficult to verify (see [4]) that :
P(0)=0, P(dy)—M+1, | (20)
PN ooyt =) —B) >, v), (@ 9) €N, (21)
P’ (2)>0; P'(z)<0, 0<z<d, (22)

Clearly the function P (&, y) =P(r) satisfies (18), it remains to prove (19). Introduce
- w(s, v) =Po, 9) —we, 9.

If w(w, ¥) has a negative minimum in 7', then

' 1\Pw | Pw
| P, 9)<um(e, ), K(wts 1)2y 2y S0
O _ 8? Py o—T ou, 0P y—y

ow <>\/(m x)2+(g 9)2 oy 3@} P,<)~F('v m)2+(y 92"

at the minimum pomt By L1 [u,,,] -0, (12) (22) and the cons’uruetlon of P ab that

point,

D G D Gorn B D)

" (m 5) ’ (y_':g)s ;
( )[P (>(w 5™+ (y— R 552%(?/“?7}2")3]

" (y— y)* / (a—2)"
[P et O a9+ -9y >3}

e 2 52)
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soin (1), (12, sk
+HIP(r)*+1]
< E@EPE) a "

FEmy _BH(P(r)) e (0“))

<-— [B—_H. LH M+ | +H

1
¥ (P(r))
1 , 2
XOESNHE {HK(M+1)]12+1}+H<0,
then we get a contradiction. Hence w(#, y) cannot have negative minimum in T,
In view of (21) and (20), we have

w(, ) =P, y) —ga(w, 9)>0, (v, y) €T N{0<r<do}

<_

and
w(a, y) =P(8) —un(z, ¥) >0, (2, y) €T N{r=>3},
namely, w(w, 4)=0 on &7. Thus w(w, y)=0 on T and (19) follows.
However we cannot obtain the corresponding theorem for problem (9), (10).
Applying the maximum principle for linear degenerate equations™®, we know . that
the classical solution of (9), (10) is positive in @y {y>A}. Bub it may vanish in

QN {0<y<h}, so that equation (9) may be degenerate in the interior of Q,. For

example, we consider the equation

& Pu, ou 1 du
—_ o = 7 o Y <
os? tu oy? ta or o oy F(@, 9) <Q<a\

where @, o are constants and

) (28)

pof =

0<y<1,

0,
f (=, ’-’J)={ _l(,y_l)%'l, 1<y<i+3d (3>0),

o
Lot Qy={(w, ¢} |0<w<l, 0<y<l+d8} and I's=02;N {1<y<i+3}, Undor the
condition ' '

0, o<y<i,

' % o0, = @2 (@, y)={ 1
(y—1)%, 1<y<1i+39,

it is easy to see that equation (23) has the solution

0, o<y<i,

u(@, ¥) ={ 1
(y—1)%, 1<y<1+3,

Now we give an estimate about the support of the solution of the equation
- L{w= +K(u) +w(w Yo +b(w y) +0(w Yu=f(, y) (24)

with condition (10)
Theorem 2. If

1 a(w, v), b(s, 9), o(s, 9, f (@, ¥) €0(2:) NC*(Q),
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f(@, y) =0, (z, y) €EQN {0<y<h},
2) K (w) €0[0, 00) NO"%(0, o0) satisfies (6) and the Lipschitz condition
| K (u) — K (ua) | <@|us—wa|, ws, ua€ [0, M+1], (26)

where Q@=const., M= ma.x[max -I-i-(%-yﬂ-, wax pa(z, y)]
Qs 0
8) h>ho= 2MQ

4) u(w, y) is a clwssfwwl solution of (24), (10),
then supp{u} Qs N {y=h—ho},
Proof Applying the maximum principle, we have
o<u(w, y) <M. C@n

(25)

Introduce
o(y) = {""[y (h=ho)]3, y=h—ho,
0, y<h—hy,

Obviously, ¢'(y) >0 and 0<<v"(y) <9Q9 (y#=h—ho),

Let . () = L v(y— z)Jl(z)dz

where J; (¢) is a mollifier with the radius _711, and satisfiies J% (—1%) - J% (¢). Thus,
w . ’ 3
we have

0 (y) €0%(~0, +0), wa(®) —>0(y) (n->+00, 0<yY<A),

| w(@)>v(y), onY)=0, vﬁ(y)<‘fQ—°. (28)
Next, consider the liner operator

T,[w]— +K() +w(w y) ~+b(a, y) +c(w y)w,
where  §(a, ) =c(s, y>+K =X 0 ) < —or+@- 20,
Let w(@, §) =va(y) —u(®, 9), (o, y)€T=92n{0<y<k}.

By (24), (28), (26), (28) and (10), it is not difficult to show that L[w]<0 in T
and w(w, y)>0 on 8T. Applying the maximum principle for degenerate elliptic
equation we get w(x, y)=00n T. i. e.,

w@)>u(e, v), @, y) €T,
By lefting n—>+oo and (25), .
v(y)>u(w, ¥) =0, (s, o) €T,
Hence w(w, ¥) =0, (x, ¥) €Q:N {0<y<h—ho}.
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§. 2

- In this section we consider equation (1), i. e.,

L[u] =0,
where
2,
L[u] =a11(@, ¥, u) 5 2 215 (2, 4, u) e ay—{ @as(®, 9, u) 3u
o du
—I—f(w Y % G 8y)
Lot @ be a bounded domain in R? (wo, yo) is any point on 9L. Given the

continuous boundary condition : ,

o . '“(97: Y) lso=0(, 9), E ' (29.)

where ¢ (#, y) satisfies ’ '

. §D<w0; yo) =’0; ¢<w: y) >0: (CU, y) € a‘Q\ {(!U()), y0>})

we have ‘
Theorem 3. If ay(w, y, w) €0 (2% [0, oo)) No%* (2% (0, o)) (¢, j =1, 2)

sat@sfy (2) and (8), f(w, ¥, u, P, q) satisfies the assumptions of Theorem 1 (@, replaoed

by Q), 09 satisfies the out-ball candition, moreover, ¢ if
1) there are constants 4, B>0 such that

. :A2“11(m, ’y, O) #B2a22.(w1 'y; O)J (wl y)eﬁx : (30)
or 2) an(z, y, 0)=0, (z, v) €L, | S
or8) aw(e, y, 0)<0, (z, y) €Q, - (32)

then problem (1), (29) has a classical solution which ’bS positive in Q,
Proof Without loss of generality, we may assume (2, %o) = (0, 0). As in the

proof of Theorem 1, consider | |
' u L u
L, ['U/] ij_i(w, : y:, U+ 8)—3——2— -Iv—"2a12(m, Yy, ut 8) W—l—wgz‘(w,. Y, 'bb+8) 'F

+5(e 0. 35, )0

Tt is easy to prove that there is us(@, y) EO Q) NC>*(Q) Whlch samsﬁes
L, [ua] 0, us(w 9) Igg gp(m y), O<us(a; N<M,
Now we show that {u6 (w, y)} has a umform posmve lower bound in any ‘subdomain
of Q, ' ’ '
(i) Assume thatb (30) holds
Without loss of genemh’ny, we may suppose ABséO For any §>0, we introduce
_ 5 :
V @ _ j IS gy, Aw+By>8,

0

: 0, B Aw+By=9,

'v(w y)
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Consider the linear operator

A [wl=au (s, ¥, us—l—s) -+2a12(m 9, u8+s)

6 2
For (w, y) E§=0N {As+ By>d} and sufficiently 1arge K, we have
—r ' 262 . ok
. o (Aw —3)% —
A,[0]) =0T (Aot By—3)° (At By— a>3]
X (o (@, ¥, U+ s)A2+2a12(w Y, U+ 8) AB+ag(w, ¥, us—l— s)B2]
%2 k?)
>¢ @o+By-0)"
o R At By—0)°
~ where I (a; y, u) =a1 (@, ¥, w) A*+2a5(w, 9, u)AB+a22(m Y, W) B2,
By .(3),
afy(, 9, 0) a1 (®, 9, 0) cara(w, y, 0); “11(97 y, 0)+a3 (@, y, 0) #0,
it implies, from (80),

570 +a22(w 4, us+s)

I(w, y, %t 3)

: I(w, y, 0)>0, (=, 9) €Qq,
By the continuity of I (s, ¥, u), there are I,>0 and 8>0 such that
(e, g, W=, (9,9 ER, O<Su<P,
In view of (2) and (3) , .
I(a, 4, >\, 9, ¥) (L2 +B)>Ko, (3, 9) €, B<u<M+1,
where Kg=min{I,, (m1)n Ma, y, w)y(A*+ B))1>0,

B<u<M+1

Thus -
I(a; y, wy=Ko, (w,9)€Q, 0SusM+1, (83)

Consider

w(w, y) =u (2, ¥) —ov(z, ) (0<cr<1)
If w(w, y) takes a negative minimum in S, then, ab the minimum pomt
s v Ou _ v

| ox =U§E’.6y_ oy
By L[u;] =0, (11), (12) and (88), ab that point, '

.As['w]=—f<m x, Us, _au_’ 6u> — 4. [v]

A, [w] =0;

ov > oy
< — o {A,[v] —2H (w3+02) — H (|ng| + [y ) — Ho}
%2 ]C . k2(A2 BQ)
< — Ap+By—0 . [
< —oe (AatBY ){ Aot By—0)° —2 (Aot By—5)°
E(A+B) '—77‘8“:—5’2‘} '
(Aw-+ By—5)° — Hoe S

Takmg K 0 large that’ the sum of the terms in the brace on the rlghb—hand side is
positive, we get a contradiotion. Hence w(w, y) cannob take a negamve minimum in
S. Furthermore, take o s0 small that w(w, v) is non-negatlve on o8, then 117 follows
that w(w, ¥)=0 on S
Thus ' '

e e, ool

oa[a'

dH)>0, (@, ) €D {Av+By=20},

0
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In a similar way, we can prove thab {u,(», )} has a positive lower bound on
 ON{4o+By<-25}, 8N{do—By>25}
and Q) {Ao—By<—238}. Thus there is a positive constant 7, indenpending of s
such that '
u (@, )=, (@, y) ERN{|Aw+By|=>20 or | Av— By|=>25},
(ii) Assume that (81) or (82) holds.
For any 6>0, we take A;+0 such thab

—--6- <A1w<—(3—, A:Lai%(m; y; O)>O: (wx y> E'—é'

8
Introduce :
-k
A /2:"; _ JA:R?+1/—6/2 e_tndt’ A1w+y>_g_,
o(z, 4) = ’ 5
O: Ai“”*’?! = "2_.

By taking K sufficiently large and o>>0 sufficiently small, it is not difficult to verify

that u,(w, y)=ov (e, y) on 2 {A1m+y—%,>0}, then it follows thatb

—_— K
(@, y>>a(izﬂ—j: o+dt)>0, (s, ) €AN{y>23},

Similarly we can get this estimate on 2 {y<<—28} and O {|2|>28}, hence
U (@, Y)>1>0, (v, ¥) €EQN{|o|>25 or |y|=>28},
- By the above assertion, there is a sequence {u,(#, 9)} whioch converges to u(z, y) €
0?(Q), so that ‘
Liul =0, O<u(z, y)<M, (z, y)€EQ,

To complete the proof of Theorem 8, it suffices to show that u(», y) satisfies (29)
at (0, 0). Clearly we can apply the barrier P(w, y) used in the proof of Theorem 1,
only with the modification: in the expression of {(2)

" min Mz, y, v),

F - (@) eB, usv<M+1
@) { min A(w, y, M+1),

‘ (@ )eld
and in the expression of B
A= max A(w, y, u),

(@Y ed, 0<u<M+1

Since equation (1) is degenerate when u=0, it is proper to impose the restrictions:
on a;(w, 9, 0) in Theorem 8. According to the maximum principle for linear
degenerate elliptioc equations, if the minmum of the solution of degenerate equatidn_
is attained at an inner point of the domain, it must propagate along some trajectories,
namely, the minimum is aftained everywhere on these tra;iectories, a class of which
are determined by the row veotors of the second order coeflicient matrix of the equation.
The tangent directions of the trajectories coincide with the above vectors. Hence, if
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the solution w of equation (1) with condition (29) atfaing the minimum 0 at a point
in Q, then u=0 on the trajectory passing through the minimum point, so that the
tangent direction of this trajectory is (awu(s, ¥, 0), awn(w, 9, 0)) or (a(s, ¥, 0),
aa2(, 9, 0)). By (8), we know this trajectory may be extended to the boundary 02.
In view of (29), either of the endpoints of the irajectory must fall at (%o, 9o). By
(80) or (81) or (82), we stipulate the tangent direction so that there exisis no
above-mentioned trajectory. Thus, it is impossible that u takes the minimum 0 in
the interior of Q. Now we take the assumption(30) as an example. Obviously, (30)
can be rewritten as
a2 (@, y, 0) A?+ads(w, y, 0)B?, (if au(w, y, 0)+0),

or @@, y, 0) A2 +ah (o, y, 0)B?,  (if ass(w, y, 0) #0). _
Namely, the vector (asu(w, ¥, 0), a1(, y, 0)), or (au(s, ¥, 0), as(w, g, 0)),
cannot take the directions = (B, +A4). Bub the tangent direction along a smooth
~ourve whose two endpoints fall at a single point must change continuously over 180°
and must take one of the directions =+ (B, +A4). Thus, such kind of trajectory (on
which w=0) cannot exist. For the same reason, we need analogous assumptions in
the following Theorems. '

Theorem 4. Ifay(e, y, u) EO(@1% [0, +00)) NO**(Q:%X (0, +o0)) (3, j=1,
2)satisfy (2) and(8) (@ replaced by Q1), f(=, ¥, ¥, D, q) satisfy the assumptions
of Theorem 8 (£ replaced by Q1), I's satisfies the out-ball condition, moreover, if

1) a29(w: Y, O) 5&0) ((U, 'y) Eﬁi; (34)
or 2) w12<m1 Y, O) >O; (m) y) Eﬁi; (35)
or 8) awu(e, y, 0)<0, (v, 4) €2y, (86)

then problem (1), (7) has a classical solution which is positive in Qy,

Proof The proof is similar to that of Theorem 3 and it is sufficient to show that
the solutions w(w, y) of the equations L, [«] =0 with condition (7) have a “uniform
positive lower bound in any subdomain of £, For any >0, we take a constant
A;+ 0 such that

-2 <ap< g, (@ u)El
and Agaii(w) Y, O)#“QQ(‘”} Y, 0): (w) y) E'Gi; if (34> hOIdS; )

Asass(w, y, 0)=0, (&, y) €Dy, if (85)or (36) holds.

Introduce

Ju (T, 5
——2—-—"“{ e tdt, .A.1$+y>—2'-,
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Set S =0:N {A1m+y>—g-}. Tt is not difficult to verify that, by taking K sufficiently

large and o>0 suﬂiolently small,

w(z, )=, ), (v, ¥)ER.
Then |

K . .
. £ 3
wo, 9)>romo( L~ (L ordt)>0, (a, ) €TN (y>23),
At last lot Q5 be a domain bounded by the straightlines =0, y=0 and the open
curve I's connecting the point (0, 1)-and the point (1, 0). Given the boundary

condition
u <w; y) l 202, = P3 (m) 'y) s ) (37)

where gs(w, y) is continuous on 823 with |
pa(@, 0)=ps(0, =0, 5@, ) >0, (0, PN ET,

we have the following

Theorem 5. If ay(z, g, u) EO0(Q2% [0, +00)) NOH*(2s% (O +oo)), (4, j=
1, 2) satisfy (2) and (3) (Q replaoed by Qo), f(w, 4, u, p, @) satisfy the assum-
ptwns of Theorem 8- (Q replaced by Q3), I's satisfies the out- beZ condition, moreover, if

oa(w, y, 0)=0, (=, ¥) EQS, : ' (88)

then pmblem (1), (87) has & classical solution which ts positive in Qs B

Proof The proof is similar to that of Theorem 3. It sufﬁoes o show that the
-~ solutions u, (@, ty) of corresponding equation Lg[u] =0 with boundary condition (87)
have a uniform positive lower bound in any subdomain of Q5. For any >0, we

choose positive constants 4, B(<1) such that

O<A'v<g—, 0<By'<-§—, (w, y) €0,
Introduce : S o
V@ —j‘ww_m)%y e fo+By>2}n {ory>2}
2 2 2}’
v(@, 4)=

0o ' {w+By=%} or {Aw%y:%}o

Set S=02: {m+By>—g—}n {Aw+y>—g—}, It is easy to see thatb

25°
d

— (¢+By_§2_)7:2,1x+y—-6>2
Ad[v]>0 o {(MB@/.——S—Y(A” =)

3 I(CI}, .y: u8+8)

ok Tt 1
B S A ) [ By ) +A R ] (011w, ¥, ut+6)

& y““)( oty—5): otBy—o Aetymy o

. "}"21@12(&’/, Y, ?,(3"‘—8) | +a22.(m, Y, u’6+8>11 |

" where A, is the operator defined in the proof of Theorem 3,




No.1. . = Yue, J. L. ON DIRICHLET PROBLEMS 67 .

I(_{l}, v, u) =“11(w; Y, 'M)[: » 5 + | 1) ]
I o+By——  Asty—— "

2 2
1 A
+2w12(m Yy, u) [( 5+ 5 )
@+ By — 5 Aw+y-—7

Ly

w—I—By—’-g 'Am-l—y-——Z-

B 1 2
-+“22_<w: Y, 'M)[ . F) + ) :] .
. a+By——  Aasty—-5
| | G 2
By (88), there is 8>0 such that |

2a13(w, Y, w)=>—min (4% B‘a‘) Lo (m,' y) €0, O<u<B,

where _/10——. ~ min A(w Y, u) It follows that
C (e eDs, O<usM -+l .
o
I(a, y, u)>min(4%, B2> [4(2, 9, u>+w22 @, 3, w] | 5
‘ w+By————

2

s [ omine, e [t T

doty—5 | | o+ By— :
. 1 . 1 2
for (w, y, u) €Qs% [0, B]. Henoe |
1 1 12 o
I(w; yl u>>K0|: 8 + g :l - (a;’ y, u)'éggx [O, M+1],
2 2
where 'K0=minl_:/1_. min(A{ 32), min Mo, g, u) . (A2+Bz):|‘
2 : @Y €L B<su<M+1 - .
Thus we have, for (v, y) €S
: %2 v
P
_ o+ By—— Av+y——
, 2 . 2 v
e _w g
L e By—2Y( 3N T py_ ~
where -ZQ- : max Az, y, w),

@9 u)erX[O M41]

By taking £ sufficiently large and >0 sufﬁexently small and applymg the

maximum principle, we get
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u(», ¥)=0v(w, 9), (w y) €S,

%

Taking no=a<l/2—”-v-—J’:ﬂ' e"’dt), we obtain

u(w, =m0, (o, ¥) €E23N {8=>28, y>20},

Acknowledgment

The auther wishes to thank Professor Jiang Lishang for his valuable guidance
to this paper.

References

[1] Ouefinux, O. A., Pagxesny, B. B., VpapHerus B10poro HOPaKac HeOTPANAreNsH0l XapakTepuIecKol Gopuoi.,
1971,

[2] HKemsm, M. B., O HOKOTODHIX CIyJafx BEIPOXKJSHNA YPABHOHAZ BLIMITHYECKOIO THNA Hp TPAHHLD obmacra, J.

- A. H.CCCP, 77: 2 (1951), 181—183. ’

[8] Jiang Lishang, Quasilinear degenerate elliptic equations, Chin. dnn. of Math., 2 (Eng. Issme) (1981),
41—51, -

[4]1 Yue Jingliang, A class of quasilinear degenerate elliptic equations, to appear.

[5]1 Bony, J. M., Principle du maximum inéqalité de Harnack et unicité du probléme de Qauchy pour les

: opérateurs elliptique dégénérés, Anmn. Inst. Fourier, Grenoble, 19 (1969), fasc 1, 277—304.

[6] Hill, C. D., A sharp maximum principle for degenerate elliptic-parabolic equations, Indiana Univ. Math.
J., 20 (1970), 213—229.

[7] Gilbarg, D., Trudinger, N. 8., Elliptic Differential Equations of Second Oxder, Springer-Verlag, New
York, 1977,



